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Abstract

Literature mining is the process of extracting and combining facts from scientific publications. In recent years, many

computer programs have been designed to extract various molecular biology findings from Medline abstracts or full-

text articles. The present article describes the range of text mining techniques that have been applied to scientific

documents. It divides ‘automated reading’ into four general subtasks: text categorization, named entity tagging, fact

extraction, and collection-wide analysis. Literature mining offers powerful methods to support knowledge discovery

and the construction of topic maps and ontologies. An overview is given of recent developments in medical language

processing. Special attention is given to the domain particularities of molecular biology, and the emerging synergy

between literature mining and molecular databases accessible through Internet.
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1. Introduction

With an overwhelming amount of biomedi-

cal information available as text, it is natural

to ask if it can be read automatically. For

several decades, natural language processing

(NLP) has been applied in biomedicine to

automatically ‘read’ patient records and has

resulted in a growing, but fairly homogeneous

body of research. Now with the explosive

growth of molecular biology research, there is

a tremendous amount of text of a different

sort, journal articles. The text collection in

Medline can be mined to learn about a

subfield, find supporting evidence for new

experiments, add to molecular biology data-

bases, or support Evidence Based Medicine.
Literature mining can be compared with

reading and understanding literature but is

performed automatically by a computer. Like

reading, most literature mining projects target
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a specific goal. In bioinformatics, examples

are:

�/ finding protein�/protein interactions (a.o.
[1�/3]);

�/ finding protein�/gene interactions [4],
�/ finding subcellular localization of proteins

[5�/7];
�/ functional annotation of proteins [8,9];
�/ pathway discovery [10,11];
�/ vocabulary construction [12�/14];
�/ assisting BLAST or SCOP search with

evidence found in literature [15,16];
�/ discovering gene functions and relations

[17].

A few examples in medicine include:

�/ charting a literature by clustering articles
[18];

�/ discovery of hidden relations between, for
instance, diseases and medications [19�/21];

�/ use medical text to support the construction
of knowledge bases [22].

With this wide variety of goals, it is not

surprising that many different tools have been

adopted or invented by the various research-

ers. Although the approaches differ, they can

all be seen as examples of one or more stages

of a reading process.
Most of the studies that work with biome-

dical literature use Medline abstracts. This

underlines the immense value of the Medline

collection. Its size has passed the count of 12

million citations, most of which include ab-

stracts. Our hope is that in future years, more

and more initiatives will and can be directed

towards the full-text of articles. A number of

publishers now offer free on-line access to full

articles and standards in web lay-out and

metatagging are finding their acceptance.

Algorithms that scale up better and a con-

tinuous increase in affordable computing

power are*/or will be*/ready to tackle that.

Free availability of material is at this

moment trapped between two forces. There

is the growing pressure from the (noncom-

mercial) scientific community to freely share

material. On the other end of the see-saw sits

the growing pressure on companies to make a

profit on the web and, therefore, to regulate

access to material.
In biomedicine, the efforts of the US

National Library of Medicine are once more

invaluable on this matter. PubMed Central

aims to facilitate and/or host full-text access

to participating journals in a common format,

and requires that access is free at least 1 year

after publication and preferably sooner than

that. Currently, more than 25 journals have

committed to this initiative.
This article reviews a number of studies on

literature mining applied to biomedicine, and

takes a look at the range of techniques that

have been (or could be) applied to modules

within the literature mining process. The

nature of an article such as this, is that it

can only present a snapshot of the state of the

art at one point in time. For a more up-to-

date overview of NLP studies applied to

molecular biology and other biomedical do-

mains see our on-line, partially annotated,

extensive bibliography at http://texto-

my.iit.nrc.ca/cgi-bin/BNLPB_ix.cgi.
Very recently, an overview on Genomics

and NLP appeared [23]. That article is written

from a genomics perspective, and as such

concentrates partly on Information Retrieval

(IR) techniques (possibly including a litera-

ture corpus) to support sequence finding and

annotation. Our article is written from an

NLP researchers’ point of view, and reviews in

what ways recent studies*/notably in the area

of molecular biology and literature

searching*/have added to the field of NLP

in Biomedicine. We see both articles comple-

menting each other.
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2. Natural language processing in biomedicine:
a brief overview

The application of NLP for molecular
biology might be relatively new, but NLP
has been applied to biomedical text for
decades, in fact, soon after computerized
clinical record systems were introduced in
the mid 1960s [24]. The computerization of
clinical records increased the tension in the
field of medical reporting and recording.
Structured reporting, on the one hand, en-
sures rigidity and optimal retrievability of
records. Natural language narrative, on the
other hand, ensures flexibility and allows
unequaled representation of detail and free-
dom of expression. NLP techniques were
adopted to pursue a ‘best of both worlds’
setting with as little tension as possible.

Spyns [25] wrote a broad overview of NLP
in medicine, giving ample attention to mile-
stone projects and systems such as the Lin-
guistic String Project, Specialist, Recit,
MedLEE, and Menelas. The overview of
Friedman and Hripcsak [26] also concentrates
on NLP with clinical narrative, giving a short
summary of earlier projects and the state of
the art at that point in time. We refer the
reader to these studies for a complete over-
view, and concentrate in this section on newer
articles, emerging trends, and developments
that are directly relevant to the discussion in
the remainder of this article.

In recent years, research has continued to
focus on text indexing and document coding
to allow powerful, meaningful retrieval of
documents. Document indexing uses terms
from a glossary or ontology (MeSH, UMLS,
SNOMED) or text features such as words or
phrases. The parameters of the feature selec-
tion algorithm can be used to tune a system
towards higher precision, for instance by
using multi-word phrases [27,28], or better
recall, for instance by using sub-word strings

[29,30]. Various methods have been applied to

medical scientific literature [31�/34] and to

clinical narrative [35�/37].
One major contrast between most NLP

research in clinical medicine and the more

recent ones in molecular biology is the type of

language material: patient records versus

scientific articles. Most NLP systems in clin-

ical medicine work with text from patient

records such as discharge summaries and

diagnosis reports. NLP systems in bioinfor-

matics use mostly articles or abstracts from

the scientific medical literature. Differences

between these two types of text affect the

choice of techniques for NLP. Biomedical

literature is carefully constructed and meticu-

lously proof-read, so spelling errors and

incomplete parses are less of a problem. On

the other hand, new concepts may be intro-

duced, such as a newly unraveled molecule.

The bulk of literature is in English. Clinical

narrative, on the other hand, might be more

colloquial with the use of ungrammatical

constructs and unstandardized abbreviations.

It is more likely to contain segments of

‘canned text’*/longer phrases or possibly

entire paragraphs that are repeatedly encoun-

tered between records. Unknown words are, if

not spelling errors, often proper names such

as patient names, doctor names, addresses or

institution names. Work on clinical narrative

includes methods that handle other languages

than English, or do cross language operations

such as retrieval from multilingual collections,

or interlingual translation [38�/40].
In recent years, knowledge intense NLP

methods have kept their ground and fortified

it. Knowledge structures such as UMLS and

Galen have grown and have become better

accessible for NLP systems. Methodologies

for using knowledge structures have become

more refined [33,34,41]. Moreover, there is a

circular amplification effect: better language
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processing systems help in the construction of
better knowledge structures [22,42].

At the same time, statistical methods for
language processing have gained ground in
recent years. Better availability of sizable
corpora, combined with affordable hardware
to store and process large amounts of text;
have certainly fed this development. Examples
of recent studies are: Chapman et al. [43]
applied Bayesian networks for text categor-
ization, Wilbur et al. [44] used a Bayes
classifier for spotting chemical names in text;
Taira et al. [45] used statistical machine
learning methods to structure the contents of
radiology reports. De Bruijn et al. [30,35]
introduced nearest neighbor classification
techniques for assigning SNOMED terms to
diagnostic narrative.

In recent years, many interesting and new
applications for NLP have been presented.
We mention a few of them here. Ruch et al.
[46] used NLP to scrub patient names (and
names of providers, institutions) from clinical
reports so that anonymized reports can be
used for research while observing the patient’s
privacy. Zweigenbaum and Grabar [47]
showed that French texts that accidentally
lost their accents, for instance after electronic
processing, could be automatically re-ac-
cented with high accuracy despite various
pitfalls. Liu et al. [48] applied unsupervised
learning to disambiguate biomedical terms.

In the mean time, work on large scale
projects has been going on, and new large
scale projects have emerged. Hahn [22,49] at
Freiburg University describes MedSynDi-
KaTe, the member of the SynDiKaTe family
of knowledge-acquisition-from-text systems
that is targeted towards medicine. The knowl-
edge-rich infrastructure on which the SynDi-
KaTe systems rely are incrementally
augmented from text and from external
knowledge structures, such as UMLS. The
NLM Indexing Initiative (IND, see [31])

integrates a number of earlier approaches
with the purpose of automatically proposing
MeSH indexing terms for citation titles and
abstracts. MetaMap [50] is part of IND.
UMLS is used to bridge the gap between
free text and the MeSH lexicon. Apart from
lexical and semantic analysis of the text itself,
additional candidate MeSH terms are found
by searching for textually similar documents
in Medline (k-Nearest Neighbor classifica-
tion). Future work in the IND includes
incorporation of new methods such as various
machine learning techniques, word sense dis-
ambiguation, full-text processing and subdis-
cipline indexing based on journal descriptors.

3. Text mining as a modular process

Text mining is a process very similar to
reading. A reader first selects what they will
read, then identifies important entities and
relations between those entities, and finally
combines this new information with other
articles and other knowledge. This reading
process (see Fig. 1) forms the backbone of this
article. In the following sections, the various
studies on text mining applied to molecular

Fig. 1. Text mining as a modular process.
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biology literature are aligned with this mod-
ular view of the reading process.

4. Document categorization

Document categorization, at its most basic,
divides a collection of documents into disjoint
subsets. This is also known as Document or
Text Classification, but categorization is the
most common term. The categories are
usually predefined; if they are not, the process
is actually document clustering (grouping
documents through their superficial charac-
teristics, e.g. [51]). By this definition IR is one
form of categorization: the collection is di-
vided into two categories of documents, one
relevant to the query and one irrelevant. IR
algorithms, however, differ from more specia-
lized categorization algorithms as they use
queries rather than teaching from examples.

Document categorization is useful primarily
for efficiency reasons. Automated readers,
just like human readers, cannot usually spend
the time to read all available documents.
Having a relevant subset in an early phase
can direct subsequent efforts, especially those
that are computationally expensive. For ex-
ample, a text mining system that hunts for
subcellular localizations of proteins, might
need 1 min of processing time per Medline
abstract. One can apply that system to all 12
million Medline abstracts and find in retro-
spect that only, say, 8900 abstracts returned a
valid finding. One could also use a document
categorizer that finds, say, 10 000 promising
abstracts, and see in retrospect that 8800
abstracts were useful. A researcher might
accept a slight loss of 100 documents with
the huge reduction in processing time.

Document categorization can be used to aid
human readers by providing a much more
accurate, but slower and less flexible, alter-
native to search engines (e.g. [52]). Other

projects explicitly include document categor-
ization but as a module in a larger system
[12,53,54]. Raychaudhuri et al. [55] used
document categorization methods for
finding*/and so labeling*/gene functions.

The methods used for document categor-
ization can be borrowed from Machine Learn-
ing. Popular methods include Naive Bayes
[52,56], Decision Trees [57], Neural Networks,
Nearest Neighbor [58] and Support Vector
Machines (SVM) [52,59]. In all these methods,
a collection of precategorized documents is
used to train a statistical model of word or
phrase use and then the statistical model is
applied to uncategorized documents.

Before the training and the actual categor-
ization, there are two preliminary steps: (1)
feature extraction, and (2) feature set trans-
formation. The characterizing features of
documents can be based on words (most
often), word combinations, character se-
quences or (more rarely) concepts associated
with word occurrences. Feature set transfor-
mation has two purposes: reducing the size of
the feature set, hoping that that will improve
efficiency as well as effectiveness, and scaling
or weighting the feature set with the purpose
of improving the document representation
relative to the entire collection. Reduction of
the feature set is often done by stemming,
eliminating stop words, and eliminating very
rare words that burden the classifier more
than that they add discrimination power. See
for instance [52].

As one example, the SVM is a relatively
new but promising technique for pattern
categorization and it has been successfully
applied to text (e.g. [59]). In an SVM, docu-
ments are represented as points in a vector
space, where the dimensions are the selected
features. Based on the training document
vectors, the SVM finds the (unique) hyper-
plane that minimizes the expected general-
ization error. It does this by maximizing the
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shortest distance between any of the training
examples and the hyperplane. Only some of
the training vectors will finally define the
position of the hyperplane so these are called
the ‘support vectors’. After the training phase,
classification of new documents is a fast
process. For biological literature, only few
results have been reported. Wilbur [52] used
an SVM in combination with a Naive Bayes
classifier to construct a boosted system for
text categorization. In our own project, we
have been applying an SVM to various classes
of abstracts and sentences from Medline with
good results [60]. Advantages of SVM include
its good and robust performance with typical
accuracies of up to around 90% (precision�/

recall cut-off point), and resistance to over-
fitting the data.

The usual evaluation metric for document
categorization tasks is accuracy (in multi-class
systems), and the twin-metrics recall and
precision (for binary class systems). It is often
possible to tweak the system for better preci-
sion at the cost of recall or better recall at the
cost of precision, so that a task-specific setting
can be reached. In evaluation, this makes it
possible to plot results in ROC curves. N-fold
cross validation is the method of choice for
evaluation.

5. Named entity tagging

The main reason to read an article is to find
out what it says. Similarly, the goal of
Information Extraction is to fill in a database
record with specific information from the
article. The first level of this task is to identify
what entities or objects the article mentions.
This is called named entity tagging, where the
beginning and end of entities might be marked
with SGML or XML tags*/see Fig. 2.

In molecular biology, most of the entities
are molecules, such as RNA, genes and

proteins, and these entities have many aliases.
The lack of naming conventions makes this
task more difficult. Molecule names are
invented on a daily basis and conventions, if
they exist, may differ between subdisciplines.
Two molecules may share names, with only
the context to distinguish between the gene
and the protein. Even if names are not shared,
a substring of an entity name might be a
legitimate, but different entity. For example,
tagging ‘protein kinase 2’ might be an ade-
quate tag in a certain sentence, but ‘protein
kinase 2 alpha’ might be even better. In
medicine, an example of named entity tagging
is identifying person names to ensure anon-
ymity [46]. Such a ‘scrubbing’ system should
be able to distinguish between ‘Parkinson’ as
the name of a patient and as the reference to
Parkinson’s Disease.

All techniques suggested for finding named
entities use some form of character-by-char-
acter or word-by-word pattern to identify the
entities. In some of these techniques, the
patterns are designed by hand. In others, the
patterns are learned from examples that are
provided by an expert. Then when a new
article is encountered, each string of charac-
ters or words is scanned looking for close
matches to the learned patterns.

The simplest, manual, approach is to take
advantage of string regularity and write
patterns to capture the known naming con-
ventions, such as a ‘p’ preceding or succeeding
a gene name [61]. Other reliable rules are
possible that identify certain words with
letters and digits.

A second approach is lexicon based that
uses name lists to tag terms, or likely compo-
nents of entity names [2,62]. The success of
this approach depends on the availability and
the coverage of such lists, as well as on their
stability over time.

A final manual approach is context based.
In this method, a dictionary of sentence
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contexts is compiled that suggest likely mole-

cule names. For instance, in a sentence that

shows the pattern ‘�protein A� inhibits

�unknown string�’, a rule can dictate that

the unknown string is a candidate protein

name.
The learning methods, on the other hand,

are applied when it is deemed impossible,

inaccurate or too slow to manually compile

the string regularities and lexicon and context

dictionaries. Hishiki et al. [63] use a machine

learning module to identify which sequences

of n characters are likely to be a part of a

molecule name. The most likely ones are the

string regularities. New sequences are then

scored by the system’s past experience with

such sequences.
Hidden Markov Models (HMMs) [64] can

learn a lexicon and context as well by

computing the probability that a sequence of

specific words surround or constitute a mole-

cule name. The expert just has to identify

examples, while the HMM learns the patterns

to apply to new sequences of words.
Above methods do not have to be used in

isolation. Friedman et al. [10] used string

regularity as well as a lexicon to tag protein

and gene names. Also, the methods can be

improved by filtering the text. Some research-

ers prefer to apply part-of-speech tagging to

help the Named entity tagging task, so that

only (whole) noun phrases are considered as

candidate molecule names. The popular part-

of-speech taggers or shallow parsers appear to

be flexible enough to handle the specialized

biological language. For instance, EngCG was

used by Hishiki et al. [63] and by Yakushiji et
al. [65]. Erikson et al. [66] combine an off-the-
shelf syntactic parser (FDG) with hand writ-
ten rules and a local dynamic dictionary.

For protein name tagging, accuracies as
high as around 95% have been reported [67],
but care should be given to the test set
composition. It is known that for some
organisms or some protein subdomains, the
nomenclature is fairly rigidly standardized
and excellent tagging accuracy can be reached
there. Likewise, experiments with lower re-
sults should not be discarded without close
scrutiny of the application domain: it might be
that the study concentrates on a trickier
problem.

6. Fact extraction

Readers do not understand text if they
merely know the entities. They must also
grasp the interactions or relationships be-
tween those entities. Fact extraction is the
identification of entities and their relations.
To have a machine do this correctly for
arbitrary relationships would require a full
natural language intelligence, something that
is many years away. There are several approx-
imations that have been tried, from purely
statistical co-occurrence to imperfect parsing
and coreference resolution.

The simplest approach to capture entity
relationships is to search for sentences that
mention two entities of the right sort fre-
quently enough. For example, the frequent co-

Fig. 2. An example of named entity tagging on protein and organism names.
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occurrence of two specific protein names with
a verb that indicates a molecular interaction
might be enough to guess the existence of such
an interaction. Craven [5] had his system find
sentences where a protein name occurred
together with a subcellular location. The effect
of accidental co-occurrence could be mini-
mized by requiring frequent corroboration of
any pairing. Using a similar co-occurrence
approach, Ding et al. [67] found that precision
and recall traded off when the length of the
used text segment was varied. Working with
phrases gave generally better precision, while
working with entire abstracts gave best recall;
sentences scored in between. Jenssen et al. [68]
searched for gene name co-occurrence in
abstracts and then added more meaning to
the relation by annotating it with selected
MeSH terms from the document.

Another approach that increases the relia-
bility of discovered relationships searches for
fixed regular linguistic templates [2,3,69]. For
example, the system might search for a
specific interaction verb while verifying that
the surrounding context is parsable in a
correct syntactic structure and with entity
names in the allocated positions*/taking any
(negative) modifiers into account*/and only
then assume the interaction between the sub-
stances to be sufficiently proven. The main
disadvantage of this approach is that usually
the templates must be constructed by hand.
Also, many relationships that do not match
the template will be missed, but a few good
patterns (even when they have low recall)
might extract a good number of facts out of a
large corpus.

Some linguistic templates can be learned,
for instance using a HMM [70]. This requires
a corpus with annotated patterns*/something
that is harder to find or more labor-intensive
to construct than a named entity annotated
corpus. The expert must mark both the
entities and which of several relations applies

between those entities. There are clear advan-
tages, no need to explicitly craft rules, better
‘portability’, and possibly greater overall re-
call.

Finally, even though automated under-
standing is not fully possible, important
relationships can be discovered by performing
a full syntactic parse, where relations between
syntactic components are inferred [65,71,72].
This approach is similar to the template
searching except that it is not domain specific
and attempts to identify many or all relation-
ships in a sentence. Park [73] illustrates the
syntactical complexities and pitfalls of sen-
tences in biomedical documents.

As an alternative to developing a literature
mining system from scratch, some groups
have adapted systems or modules of earlier
developed systems. They were originally con-
ceived for other bioinformatics tasks (Jake,
Kleisli [11,54]), for other medical domains
(e.g. MedLEE [10], MedSynDiKaTe [49]) or
for general use (e.g. Highlight [3], LaSIE [74]).

7. Collection-wide analysis

Thinking new thoughts and using what is
known, requires integrating information be-
tween documents. This opens the door to
knowledge discovery, where combined facts
form the basis of a novel insight. The well-
known Swanson study [19,20] on the relation
between Raynauds disease and fish oil, was a
starting point of formal literature-based
knowledge discovery. Weeber et al. [21] dis-
cuss an automated replication of that study
and similar ones.

Other studies have addressed knowledge
discovery in molecular biology (see [5,10]).
As an example: from document 1 you were
able to extract the relation ‘A implies B’; from
document 2 you deduced that ‘B implies C’.
So you might want to study whether ‘A
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implies C’, for which you have found no
previous evidence in the literature.

Blaschke et al. [1] used a large number of
automatically extracted facts on protein�/pro-
tein interactions to graph an interaction map
for the drosophila cell cycle. This is one
illustration where the system abstracts many
articles and leaves it to the researcher to make
inferences based on the output graph. Leroy
and Chen [75] sketch the architecture of
GeneScene, a system under development that
aims to assist researchers in reviewing large
numbers of articles by extracting information
and thus interconnecting the literature.
Krauthammer et al. [76] use bibliometrical
methods to portray the development of re-
search ideas in literature, as well as to expand
a biological knowledge base. A NLP module
in the core of their system collects the
elementary statements from publications. Wil-
bur [18] discusses the possibilities of automa-
tically carving up the literature on a certain
subject*/his example is the literature on
AIDS with over 50 000 Medline abstracts*/

into coherent clusters. Every cluster is then
labeled with a thematic summary. Such algo-
rithms can improve access to a document
collection and improve human comprehension
of a subject. Srinivasan [77] introduces tools
to explore the literature through contingency
tables on MeSH term co-occurrence.
Although the study uses MeSH terms rather
than free text, it ties in well with the other
studies on text mining.

Less ambitious goals have still benefitted
from collection-wide analyses. One notable
application is using collection redundancy to
compensate for recall limitations of both
statistical and structural methods (e.g.
[5,68]). A high precision/fair recall algorithm
such as the typical structural one should have
a pretty good confidence in any fact that did
get extracted. Facts that were missed in one
document might get extracted from another if

the fact is redundant. If higher recall with fair
precision algorithm is achieved*/something
that statistical methods tend to do*/the
combined confidence from various redundant
instances might be enough to accept an
extracted fact (e.g. [8]).

Apart from findings from other documents
in the collection, external sources might help
the text analysis. Analogous to clinical set-
tings where medical thesauri and classification
schemes (MeSH, ICD, SNOMED, ULMS)
are used to support text algorithms, database
structures in biology (such as GenBank,
SwissProt) can be applied towards the correct
analysis of abstracts or full-text. Craven [5]
used Yeast Protein Database data, Krautham-
mer [62] used BLAST for protein name
tagging; Hatzivassiloglou [78] mentions vali-
dation across other publications and existing
knowledge. Such an integration of knowledge
and cross referencing of literature can ulti-
mately lead to a tight ontological structure
[34,79]. Yandell and Mandoros [23] see the
synergistic tie between language processing
systems and ontologies as a main promise for
the future.

With higher hopes on collection-wide ana-
lyses, the scalability of algorithms becomes a
more urgent issue. Considering the current
size of Medline (close to 12 million articles)
and its growth rate, and considering that full-
text articles are getting more and more avail-
able in electronic form, practical algorithms
should scale up well. The ever-increasing
power of computers helps in that respect too.

8. Concluding remarks

This overview showed a very wide variety of
current applications and techniques for litera-
ture mining on biomedical text. The field is
likely to become only wider in the future. On-
line access of molecular databases and medi-

B. de Bruijn, J. Martin / International Journal of Medical Informatics 67 (2002) 7�/18 15



cal knowledge structures will augment the
knowledge component in literature mining
systems. Large-scale statistical methods will
continue to challenge the position of the more
syntax-semantics oriented approaches,
although both will hold their own place.
Literature mining systems will move closer
towards the human reader, supporting sub-
tasks of reading in a more interactive and
flexible way. Such support could, for instance,
consist of doing text categorization and
named entity tagging on-the-fly, working
with training material that can easily be edited
and augmented.

Written language will always remain only
semistructured*/and we see that as a benefit.
Literature mining adds to written language
the promise of making translations onto
structures that we do not yet foresee. There-
fore, these methods will continue to be fruitful
even when some of the molecular biology
challenges are solved.
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