
Information Sciences 363 (2016) 8–23

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Genie: A new, fast, and outlier-resistant

hierarchical clustering algorithm

Marek Gagolewski a , b , ∗, Maciej Bartoszuk

b , c , Anna Cena

a , c

a Systems Research Institute, Polish Academy of Sciences ul. Newelska 6, Warsaw 01-447, Poland
b Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, Warsaw 00-662, Poland
c International PhD Studies Program, Institute of Computer Science, Polish Academy of Sciences, Poland

a r t i c l e i n f o

Article history:

Received 29 December 2015

Revised 10 March 2016

Accepted 8 May 2016

Available online 12 May 2016

Keywords:

Hierarchical clustering

Single linkage

Inequity measures

Gini-index

a b s t r a c t

The time needed to apply a hierarchical clustering algorithm is most often dominated by

the number of computations of a pairwise dissimilarity measure. Such a constraint, for

larger data sets, puts at a disadvantage the use of all the classical linkage criteria but the

single linkage one. However, it is known that the single linkage clustering algorithm is

very sensitive to outliers, produces highly skewed dendrograms, and therefore usually does

not reflect the true underlying data structure – unless the clusters are well-separated. To

overcome its limitations, we propose a new hierarchical clustering linkage criterion called

Genie. Namely, our algorithm links two clusters in such a way that a chosen economic in-

equity measure (e.g., the Gini- or Bonferroni-index) of the cluster sizes does not increase

drastically above a given threshold. The presented benchmarks indicate a high practical

usefulness of the introduced method: it most often outperforms the Ward or average link-

age in terms of the clustering quality while retaining the single linkage speed. The Genie

algorithm is easily parallelizable and thus may be run on multiple threads to speed up its

execution further on. Its memory overhead is small: there is no need to precompute the

complete distance matrix to perform the computations in order to obtain a desired clus-

tering. It can be applied on arbitrary spaces equipped with a dissimilarity measure, e.g., on

real vectors, DNA or protein sequences, images, rankings, informetric data, etc. A reference

implementation of the algorithm has been included in the open source genie package

for R.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cluster analysis, compare [31] , is one of the most commonly applied unsupervised machine learning techniques. Its aim

is to automatically discover an underlying structure of a given data set X = { x (1) , x (2) , . . . , x (n) } in a form of a partition

of its elements: disjoint and nonempty subsets are determined in such a way that observations within each group are

“similar” and entities in distinct clusters “differ” as much as possible from each other. This contribution focuses on classical

hierarchical clustering algorithms [10,14] which determine a sequence of nested partitions, i.e., a whole hierarchy of data

set subdivisions that may be cut at an arbitrary level and may be computed based on a pairwise dissimilarity measure
∗ Corresponding author at: Systems Research Institute, Polish Academy of Sciences ul. Newelska 6, 01-447 Warsaw, Poland. Tel.: +48 22 3810 378; fax:

+48 22 3810 105.

E-mail address: gagolews@ibspan.waw.pl (M. Gagolewski).

http://dx.doi.org/10.1016/j.ins.2016.05.003

0020-0255/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2016.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.05.003&domain=pdf
mailto:gagolews@ibspan.waw.pl
http://dx.doi.org/10.1016/j.ins.2016.05.003

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 9

C

d : X × X → [0 , ∞] that fulfills very mild assumptions : (a) d is symmetric, i.e., d (x , y) = d (y , x) and (b) (x = y) ⇒ d (x , y) = 0

for any x , y ∈ X . This group of clustering methods is often opposed to – among others – partitional schemes which require

the number of output clusters to be set up in advance: these include the k -means, k -medians, k -modes, or k -medoids

algorithms [34,40,56,59] and fuzzy clustering schemes [6,46–48] , or the BIRCH (balanced iterative reducing and clustering

using hierarchies) method [60] that works on real-valued vectors only.

In the large and big data era, one often is faced with the need to cluster data sets of considerable sizes, compare, e.g.,

[30] . If the (X , d) space is “complex”, we observe that the run-times of hierarchical clustering algorithms are dominated

by the cost of pairwise distance (dissimilarity measure) computations. This is the case of, e.g., DNA sequences or ranking

clustering, where elements in X are encoded as integer vectors, usually of considerable lengths. Here, one often relies on

such computationally demanding metrics as the Levenshtein or the Kendall one. Similar issues appear in numerous other

application domains, like pattern recognition, knowledge discovery, image processing, bibliometrics, complex networks, text

mining, or error correction, compare [10,15,16,18,29] .

In order to achieve greater speed-up, most hierarchical clustering algorithms are applied on a precomputed distance

matrix, (d i , j) i < j , d i, j = d (x (i) , x (j)) , so as to avoid determining the dissimilarity measure for each unique (unordered) pair

more than once. This, however, drastically limits the size of an input data set that may be processed. Assuming that d i , j
is represented with the 64-bit floating-point (IEEE double precision) type, already the case of n = 10 0 , 0 0 0 objects is way

beyond the limits of personal computers popular nowadays: the sole distance matrix would occupy ca. 40GB of available

RAM. Thus, for “complex” data domains, we must require that the number of calls to d is kept as small as possible. This

practically disqualifies all popular hierarchical clustering approaches other than the single linkage criterion, for which there

is a fast O (n 2)-time and O (n)-space algorithm, see [41,42,56] , that requires each d i , j , i < j , to be computed exactly once, i.e.,

there are precisely (n 2 − n) / 2 total calls to d .

Nevertheless, the single linkage criterion is not eagerly used by practitioners. This is because it is highly sensitive to

observations laying far away from clusters’ boundaries (e.g., outliers). Because of that, it tends to produce highly skewed

dendrograms: at its higher levels one often finds a single large cluster and a number of singletons.

In order to overcome the limitations of the single linkage scheme, in this paper we propose a new linkage criterion

called Genie . It not only produces high-quality outputs (as compared, e.g., to the Ward and average linkage criteria) but is

also relatively fast to compute. The contribution is set out as follows. In the next section, we review some basic properties

of hierarchical clustering algorithms and introduce the notion of an inequity index, which can be used to compare some

aspects of the quality of clusterings obtained by means of different algorithms. The new linkage criterion, together with

its evaluation on diverse benchmark sets, is introduced in Section 3 . In Section 4 we propose an algorithm to compute

the introduced clustering scheme and test its time performance. Please note that a reference implementation of the Genie

method has been included in the genie package for R [52] . Finally, Section 5 concludes the paper and provides future

research directions.

2. A discussion on classical linkage criteria

While a hierarchical clustering algorithm is being computed on a given data set X = { x (1) , x (2) , . . . , x (n) } , there are n − j

clusters at the j -th step of the procedure, j = 0 , . . . , n − 1 . It is always true that C (j) = { C (j)
1

, . . . , C
(j)
n − j

} with C
(j)
u ∩ C

(j)
v = ∅ for

u 	 = v , C (j)
u 	 = ∅ , and

⋃ n − j
u =1

C
(j)
u = X . That is, C (j) is a partition of X .

Initially, we have that C (0) = {{ x (1) } , . . . , { x (n) }} , i.e., C (0)
i

= { x (i) } , i = 1 , . . . , n . In other words, each observation is the sole

member of its own cluster. When proceeding from step j − 1 to j , the clustering procedure decides which of the two clusters

(j−1)
u and C

(j−1)
v , u < v , are to be merged so that we get C

(j)
i

= C
(j−1)
i

for u 	 = i < v , C (j)
u = C

(j−1)
u ∪ C

(j−1)
v , and C

(j)
i

= C
(j−1)
i +1

for i > v . In the single (minimum) linkage scheme, u and v are such that:

arg min

(u, v) ,u< v

(
min

a ∈ C (j−1)
u , b ∈ C (j−1)

v

d (a , b)

)
.

On the other hand, the complete (maximum) linkage is based on:

arg min

(u, v) ,u< v

(
max

a ∈ C (j−1)
u , b ∈ C (j−1)

v

d (a , b)

)
,

the average linkage on:

arg min

(u, v) ,u< v

⎛

⎝

1

| C (j−1)
u || C (j−1)

v |
∑

a ∈ C (j−1)
u , b ∈ C (j−1)

v

d (a , b)

⎞

⎠ ,

and Ward’s (minimum variance) method, compare [41] and also [44] , on:

10 M. Gagolewski et al. / Information Sciences 363 (2016) 8–23

0.0

0.5

1.0

1.5
H

ei
gh

t

Fig. 1. Dendrogram for the single linkage clustering of the Iris data set.

arg min

(u, v) ,u< v

1

| C (j−1)
u | + | C (j−1)

v | ×
(∑

a ∈ C (j−1)
u , b ∈ C (j−1)

v

2 d 2 (a , b) − | C (j−1)
v |

| C (j−1)
u |

∑

a , a ′ ∈ C (j−1)
u

d 2 (a , a ′) − | C (j−1)
u |

| C (j−1)
v |

∑

b , b ′ ∈ C (j−1)
v

d 2 (b , b

′)
)

,

where d is a chosen dissimilarity measure.

2.1. Advantages of single-linkage clustering

The main advantage behind the single linkage clustering lies in the fact that its most computationally demanding part

deals with solving the minimum spanning tree (MST, see [27]) problem, compare, e.g., the classical Prim’s [51] or Kruskal’s

[37] algorithms as well as a comprehensive historical overview by Graham and Hell [28] . In particular, there is an algorithm

[45] which can be run in parallel and which requires exactly (n 2 − n) / 2 distance computations. Moreover, under certain

assumptions on d (e.g., the triangle inequality) and the space dimensionality, the Kruskal algorithm may be modified so as

to make use of some nearest-neighbor (NN) search data structure which enables to speed up its computations further on

(the algorithm can also be run in parallel). Having obtained the MST, a single linkage clustering may then be computed very

easily, compare [54] .

For the other three mentioned linkage schemes there is, e.g., a quite general nearest-neighbor chains algorithm [43] ,

as well as some other methods which require that, e.g., X is a subset of the Euclidean space R

d , see [41,42] for a survey.

Unfortunately, we observe that all these algorithms tend to quite frequently refer to already computed dissimilarities; it

may be shown that they use up to 3 n 2 distance computations. Practically, the only way to increase the performance of

these algorithms [45] is to pre-compute the whole distance matrix (more precisely, the elements either above or below

its diagonal). However, we already noted that such an approach is unusable for n already of moderate order of magnitude

(“large data”).

2.2. Drawbacks of single-linkage clustering

Nevertheless, it may be observed that unless the underlying clusters are very well-separated, the single linkage approach

tends to construct clusters of unbalanced sizes, often resulting – at some fixed dendrogram cut level – in a single large

cluster and a number of singletons or ones with a very low cardinality.

For instance, Fig. 1 depicts a dendrogram resulting in applying the single linkage clustering on the famous Fisher’s Iris

data set [19] (available in the R [52] datasets package, object name iris) with respect to the Euclidean distance. At the

highest level, there are two clusters (50 observations corresponding to iris setosa and 100 both to virginica and versicolor)

– these two point groups are well-separated on a 4-dimensional plane. Here, high skewness may be observed in the two

subtrees, e.g., cutting the left subtree at the height of 0.4 gives us a partition consisting of three singletons and one large

cluster of size 47. These three observations lay slightly further away from the rest of the points. When the h = 0 . 4 cut of the

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 11

whole tree is considered, there are sixteen singletons, three clusters of size 2, one cluster of size 4, and three large clusters

of sizes 38, 39, and 47 (23 clusters in total).

In order to quantitatively capture the mentioned dendrogram skewness , we may refer to the definition of an inequity

(economic inequality, poverty) index, compare [2,8,24] and, e.g., [35,36] for a different setting.

Definition 1. For a fixed n ∈ N , let G denote the set of all non-increasingly ordered n -tuples with elements in the set of

non-negative integers, i.e., G = { (x 1 , . . . , x n) ∈ N

n
0

: x 1 ≥ · · · ≥ x n } . Then F : G → [0 , 1] is an inequity index, whenever:

(a) it is Schur-convex, i.e., for any x , y ∈ G such that
∑ n

i =1 x i =

∑ n
i =1 y i , if it holds for all i = 1 , . . . , n that

∑ i
j=1 x j ≤

∑ i
j=1 y j ,

then F (x) ≤ F (y) ,

(b) inf x ∈G F (x) = 0 ,

(c) sup x ∈G F (x) = 1 .

Notice that, under the current assumptions, if we restrict ourselves to the set of sequences with elements summing up

to n , the upper bound (meaning complete inequality) of each inequity index is obtained for (n, 0 , 0 , . . . , 0) and the lower

bound (no inequality) for the (1 , 1 , 1 , . . . , 1) vector.

Every inequity index like F fulfills a crucial property called the Pigou-Dalton principle (also known as progressive trans-

fers). Namely, for any x ∈ G, i < j , and h > 0 such that x i − h ≥ x i +1 and x j−1 ≥ x j + h, it holds that:

F (x 1 , . . . , x i , . . . , x j , . . . , x n) ≥ F (x 1 , . . . , x i − h, . . . , x j + h, . . . , x n) .

In other words, any income transfer from a richer to a poorer entity never increases the level of inequity. Notably, such

measures of inequality of wealth distribution are not only of interest in economics: it turns out, see [3,4] , that they can be

related to ecological indices of evenness [49] , which aim to capture how evenly species’ populations are distributed over a

geographical region, compare [11,32,50] or measures of data spread [23] .

Among notable examples of inequity measures we may find the normalized Gini-index [25] :

G (x) =

∑ n −1
i =1

∑ n
j= i +1 | x i − x j |

(n − 1)
∑ n

i =1 x i
(1)

or the normalized Bonferroni-index [7] :

B (x) =

n

n − 1

(
1 −

∑ n
i =1

1
n −i +1

∑ n
j= i x j ∑ n

i =1 x i

)
. (2)

Referring back to the above motivational example, we may say that there is often a high inequality between cluster

sizes in the case of the single linkage method. Denoting by c i = | C (j)
i

| the size of the i th cluster at the j th iteration of the

algorithm, F (c (n − j) , . . . , c (1)) tends to be very high (here c (i) denotes the i th smallest value in the given sequence, obviously

we always have
∑ n

i =1 c i = n .).

Fig. 2 depicts the Gini-indices for the cluster size distributions as a function of the number of clusters in the case of the

Iris data set and the Euclidean distance. The outputs of four clustering methods are included: single, average, complete, and

Ward linkage. The highest inequality is of course observed in the case of the single linkage algorithm. For instance, if the

dendrogram is cut at height of 0.4 (23 clusters in total, their sizes are provided above), the Gini-index is as high as � 0.76

(the maximum, 0.85, is obtained for 10 clusters). In this example, the Ward method keeps the Gini-index relatively low.

Similar behavior of hierarchical clustering algorithms may be observed for other data sets.

3. The Genie algorithm and its evaluation

3.1. New linkage criterion

In order to compensate the drawbacks of the single linkage scheme, while retaining its simplicity, we propose the fol-

lowing linkage criterion which from now on we refer to as the Genie algorithm . Let F be a fixed inequity measure (e.g., the

Gini-index) and g ∈ (0, 1] be some threshold. At step j :

1. if F (c (n − j) , . . . , c (1)) ≤ g, c i = | C (j)
i

| , apply the original single linkage criterion:

arg min

(u, v) ,u< v

(
min

a ∈ C (j)
u , b ∈ C (j)

v

d (a , b)

)
,

2. otherwise, i.e., if F (c (n − j) , . . . , c (1)) > g, restrict the search domain only to pairs of clusters such that one of them is of

the smallest size:

arg min

(u, v) ,u< v ,
| C (j)

u | = min i | C (j)
i

| or
(j) (j)

(
min

a ∈ C (j)
u , b ∈ C (j)

v

d (a , b)

)
.
| C v | = min i | C i |

12 M. Gagolewski et al. / Information Sciences 363 (2016) 8–23

Number of clusters

G
in

i i
nd

ex
 (

cl
us

te
r

si
ze

s)

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 70 90 110 130 150

single
complete
average
Ward

Fig. 2. The Gini-indices for the cluster size distributions in the case of the Iris data set: single, average, complete, and Ward linkage.

Number of clusters

G
in

i i
nd

ex
 (

cl
us

te
r

si
ze

s)

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 70 90 110 130 150

gini_0.3
gini_0.4
gini_0.5
gini_0.6

Fig. 3. The Gini-indices for the cluster size distributions in the case of the Iris data set: the Genie algorithm; the Gini-index thresholds are set to 0.3, 0.4,

0.5, and 0.6.

This modification prevents drastic increases of the chosen inequity measure and forces early merges of small clusters

with some other ones. Fig. 3 gives the cluster size distribution (compare Fig. 2) in case of the proposed algorithm and the

Iris data set. Here, we used four different thresholds for the Gini-index, namely, 0.3, 0.4, 0.5, and 0.6. Of course, whatever

the choice of the inequity index, if g = 1 , then we obtain the single linkage scheme.

On a side note, let us point out a small issue that may affect the way the dendrograms resulting in applying the Genie

algorithm are plotted. As now the “heights” at which clusters are merged are not being output in a nondecreasing order,

they should somehow be adjusted when drawing such diagrams. Yet, the so-called reversals (inversions, departures from

ultrametricity) are a well-known phenomenon, see [39] , and may also occur in other linkages too (e.g., the nearest-centroid

one).

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 13

3.2. Benchmark data sets description

In order to evaluate the proposed Genie linkage scheme, we shall test it in various spaces (points in R

d for some d ,

images, character strings, etc.), on balanced and unbalanced data of different shapes. Below we describe the 29 benchmark

data sets used, 21 of which are in the Euclidean space and the remaining 8 ones are non-Euclidean. All of them are available

for download and inspection at http://www.gagolewski.com/resources/data/clustering . Please notice that most of the data

sets have already been used in the literature for verifying the performance of various other algorithms.

In each case below, n denotes the number of objects and d – the space dimensionality (if applicable). For every data

set its author(s) provided a vector of true (reference) cluster labels. Therefore, we below denote with k the true number

of underlying clusters (resulting dendrograms should be cut at this very level during the tests). Moreover, we include the

information on whether the reference clusters are of balanced sizes. If this is not the case, the Gini-index of cluster sizes is

reported.

Character strings.

• actg1 (n = 2500 , mean string length d = 99 . 9 , k = 20 , balanced), actg2 (n = 2500 , mean d = 199 . 9 , k = 5 , the Gini-

index of the reference cluster sizes is equal to 0.427), actg3 (n = 2500 , mean d = 250 . 2 , k = 10 , Gini-index 0.429) –

character strings (of varying lengths) over the { a , c , t , g } alphabet. First, k random strings (of identical lengths) were

generated for the purpose of being cluster centers. Each string in the data set was created by selecting a random cluster

center and then performing many Levenshtein edit operations (character insertions, deletions, substitutions) at randomly

chosen positions. For use with the Levenshtein distance.
• binstr1 (n = 2500 , d = 100 , k = 25 , balanced), binstr2 (n = 2500 , d = 200 , k = 5 , Gini-index 0.432), binstr3 (n =

2500 , d = 250 , k = 10 , Gini-index 0.379) – character strings (each of the same length d) over the {0,1} alphabet. First,

k random strings were generated for the purpose of being cluster centers. Each string in the data set was created by

selecting a random cluster center and then modifying its digits at randomly chosen positions. For use with the Hamming

distance.

Images. These are the first 20 0 0 digits from the famous MNIST database of handwritten digits by Y. LeCun et al., see http:

//yann.lecun.com/exdb/mnist/ ; clusters are approximately balanced.

• digits2k_pixels (n = 20 0 0 , d = 28 × 28 , k = 10) – data consist of 28 × 28 pixel images. For testing purposes, we

use the Hamming distance on corresponding monochrome pixels (color value is marked with 1 if the gray level is in the

(32, 255] interval and 0 otherwise).
• digits2k_points (n = 20 0 0 , d = 2 , k = 10) – based on the above data set, we represent the contour of each digit as

a set of points in R

2 . Brightness cutoff of 64 was used to generate the data. Each digit was shifted, scaled, and rotated if

needed. For testing, we use the Hausdorff (Euclidean-based) distance.

SIPU benchmark data sets. Researchers from the Speech and Image Processing Unit, School of Computing, University of East-

ern Finland prepared a list of exemplary benchmarks, which is available at http://cs.joensuu.fi/sipu/datasets/ . The data sets

have already been used in a number of papers. Because of the problems with computing the other linkages in R as well

as in Python, see the next section for discussion, we chose only the data sets of sizes ≤ 10 0 0 0. Moreover, we omitted the

cases in which all the algorithms worked flawlessly, meaning that the underlying clusters were separated too well. In all the

cases, we rely on the Euclidean distance.

• s1 (n = 50 0 0 , d = 2 , k = 15), s2 (n = 50 0 0 , d = 2 , k = 15), s3 (n = 50 0 0 , d = 2 , k = 15), s4 (n = 50 0 0 , d = 2 , k = 15) – S-

sets [21] . Reference clusters are more or less balanced.
• a1 (n = 30 0 0 , d = 2 , k = 20), a2 (n = 5250 , d = 2 , k = 35), a3 (n = 7500 , d = 2 , k = 50) – A-sets [38] . Classes are fully

balanced.
• g2-2-100 (n = 2048 , d = 2 , k = 2), g2-16-100 (n = 2048 , d = 16 , k = 2), g2-64-100 (n = 2048 , d = 64 , k = 2) – G2-

sets. Gaussian clusters of varying dimensions, high variance. Clusters are fully balanced.
• unbalance (n = 6500 , d = 2 , k = 8). Unbalanced clusters, the Gini-index of reference cluster sizes is 0.626.
• Aggregation (n = 788 , d = 2 , k = 7) [26] . Gini-index 0.454.
• Compound (n = 399 , d = 2 , k = 6) [58] . Gini-index 0.440.
• pathbased (n = 300 , d = 2 , k = 3) [12] . Clusters are more or less balanced.
• spiral (n = 312 , d = 2 , k = 3) [12] . Clusters are more or less balanced.
• D31 (n = 3100 , d = 2 , k = 31) [55] . Clusters are fully balanced.
• R15 (n = 600 , d = 2 , k = 15) [55] . Clusters are fully balanced.
• flame (n = 240 , d = 2 , k = 2) [22] . Gini-index 0.275.
• jain (n = 373 , d = 2 , k = 2) [33] . Gini-index 0.480.

Iris. The Fisher’s Iris [19] data set, available in the R [52] datasets package. Again, the Euclidean distance is used.

• iris (n = 150 , d = 4 , k = 3) – the original data set. Fully balanced clusters.

http://www.gagolewski.com/resources/data/clustering
http://yann.lecun.com/exdb/mnist/
http://cs.joensuu.fi/sipu/datasets/

14 M. Gagolewski et al. / Information Sciences 363 (2016) 8–23

• iris5 (n = 105 , d = 4 , k = 3) – an unbalanced version of the above one, in which we took only five last observations

from the first group (iris setosa). Gini-index 0.429.

3.3. Benchmark results

In order to quantify the degree of agreement between two k -partitions of a given set, the notion of the FM-index [20] is

very often used.

Definition 2. Let C = { C 1 , . . . , C k } and C ′ = { C ′ 1 , . . . , C ′ k } be two k -partitions of the set { x (1) , . . . , x (n) } . The Fowlkes–Mallows

(FM) index is given by:

FM-index (C , C ′) =

∑ k
i =1

∑ k
j=1 m

2
i, j

− n √ (∑ k
i =1

(∑ k
j=1 m i, j

)2 − n

)(∑ k
j=1

(∑ k
i =1 m i, j

)2 − n

) ∈ [0 , 1] ,

where m i, j =

∣∣∣C i ∩ C ′
j

∣∣∣.
If the two partitions are equivalent (equal up to a permutation of subsets in one of the k -partitions), then the FM-index

is equal to 1. Moreover, if each pair of objects that appear in the same set in C appear in two different sets in C ′ , then the

index is equal to 0.

Let us compare the performance of the Genie algorithm (with F set to be the Gini-index; five different thresholds, g ∈
{ 0 . 2 , 0 . 3 , . . . , 0 . 6 } , are used) as well as the single, average, complete, and Ward linkage schemes (as implemented in the

hclust() function from the R [52] package stats). In order to do so, we compute the values of FM-index (C , C ′) , where

C denotes the vector of true (reference) cluster labels (as described in Section 3.2), while C ′ is the clustering obtained by

cutting at an appropriate level the dendrogram returned by a hierarchical clustering algorithm being investigated. However,

please observe that for some benchmark data sets the distance matrices consist of non-unique elements. As a result, the

output of the algorithms may vary slightly from call to call (this is the case of all the tested methods). Therefore, we shall

report the median FM-index across 10 runs of randomly permuted observations in each benchmark set.

Table 1 gives the FM-indices for the 9 clustering methods and the 29 benchmark sets. Best results are marked with bold

font. Aggregated basic summary statistics (minimum, quartiles, maximum, arithmetic mean, and standard deviation) for all

the benchmark sets are provided in Table 2 . Moreover, Fig. 4 depicts violin plots of the FM-index distribution

1 .

The highest mean and median FM scores were obtained for the Genie algorithm with a threshold of g = 0 . 2 . This setting

also leads to the best minimal (worst-case) FM-index. A general observation is that all the tested Gini-index thresholds gave

the lowest variance in the FM-indices.

It is of course unsurprising that there is no free lunch in data clustering – no algorithm is perfect on all the data

sets. All the tested hierarchical clustering algorithms were far from perfect (FM < 0.7) on the digits2k_pixels ,
digits2k_points , and s4 data sets. However, in overall, the single linkage clustering is particularly bad (except for

the unbalance and spiral data sets). Among the other algorithms, the complete linkage and the Genie algorithm for g

≥ 0.5 give the lowest average and median FM-index. All the other methods (Genie with thresholds of g < 0.5, Ward, average

linkage) are very competitive. Also please keep in mind that for the Genie algorithm with a low inequity index threshold

we expect a loss in performance for unbalanced clusters sizes

Finally, let us compare the performance of the 9 hierarchical clustering algorithms as well as the k -means and

BIRCH (threshold = 0.5 , branching_factor = 10) procedures (both implemented in the scikit-learn package for

Python). Now we are of course limited only to data in the Euclidean space, therefore the number of benchmark data sets

reduces to 21. Table 3 gives basic summary statistics of the FM-index distributions. We see that in this case the Genie

algorithm (g < 0.5) outperforms all the methods being compared too.

Taking into account our algorithm’s out-standing performance and – as it shall turn out in the next section – relatively

low run-times (especially on larger data sets and compared with the average or Ward linkage), the proposed method may

be recommended for practical use.

4. Possible implementations of the Genie linkage algorithm

Having shown the high usability of the new approach, let us discuss some ways to implement the Genie clustering

method in very detail. We have already stated that the most important part of computing the single linkage algorithm con-

sists of determining a minimal spanning tree (this can be non-unique if there are pairs of objects with identical dissimilarity

degrees) of the complete undirected weighted graph corresponding to objects in X and the pairwise dissimilarities. It turns

out that we have what follows.
1 A violin depicts a box-and-whisker plot (boxes range from the 1st to the 3rd quartile, the median is marked with a white dot) together with a kernel

density estimator of the empirical distribution.

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 15

Table 1

FM-indices for the 29 benchmark sets and the 9 hierarchical clustering methods studied.

Benchmark Single Complete Ward Average gini_0.2 gini_0.3 gini_0.4 gini_0.5 gini_0.6

actg1 0.222 0.997 0.998 0.998 0.996 0.941 0.947 0.905 0.624

actg2 0.525 1.0 0 0 1.0 0 0 1.0 0 0 0.975 0.975 0.976 1.0 0 0 1.0 0 0

actg3 0.383 1.0 0 0 1.0 0 0 1.0 0 0 0.884 0.975 0.975 1.0 0 0 0.840

binstr1 0.198 0.874 0.942 0.947 0.952 0.908 0.863 0.749 0.542

binstr2 0.525 0.989 0.994 0.994 0.907 0.909 0.965 0.965 0.819

binstr3 0.368 0.946 0.969 0.971 0.832 0.931 0.937 0.811 0.692

digits2k_pixels 0.315 0.310 0.561 0.326 0.584 0.473 0.473 0.368 0.321

digits2k_points 0.315 0.256 0.458 0.280 0.671 0.601 0.559 0.438 0.405

s1 0.589 0.973 0.984 0.983 0.989 0.989 0.989 0.989 0.989

s2 0.257 0.807 0.912 0.918 0.921 0.921 0.791 0.804 0.767

s3 0.257 0.548 0.699 0.636 0.708 0.690 0.610 0.609 0.559

s4 0.257 0.468 0.585 0.546 0.644 0.620 0.563 0.529 0.482

a1 0.564 0.920 0.918 0.929 0.940 0.905 0.901 0.849 0.776

a2 0.480 0.911 0.924 0.936 0.951 0.925 0.903 0.843 0.703

a3 0.449 0.919 0.939 0.945 0.958 0.940 0.923 0.836 0.743

g2-2-100 0.707 0.586 0.598 0.706 0.601 0.602 0.637 0.648 0.648

g2-16-100 0.707 0.897 0.923 0.707 0.842 0.697 0.697 0.697 0.704

g2-64-100 0.707 1.0 0 0 1.0 0 0 0.707 0.999 0.999 0.999 0.999 0.999

unbalance 0.999 0.775 1.0 0 0 1.0 0 0 0.723 0.730 0.775 0.844 0.911

Aggregation 0.861 0.833 0.842 1.0 0 0 0.582 0.657 0.816 0.908 0.894

Compound 0.830 0.855 0.653 0.862 0.638 0.649 0.637 0.708 0.889

pathbased 0.573 0.595 0.674 0.653 0.751 0.751 0.751 0.751 0.751

spiral 1.0 0 0 0.339 0.337 0.357 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0

D31 0.349 0.926 0.923 0.910 0.937 0.903 0.828 0.742 0.695

R15 0.637 0.980 0.983 0.990 0.987 0.987 0.987 0.823 0.637

flame 0.730 0.623 0.624 0.731 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0

jain 0.804 0.922 0.790 0.922 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0

iris 0.764 0.769 0.822 0.841 0.923 0.923 0.923 0.923 0.754

iris5 0.691 0.665 0.738 0.765 0.764 0.764 0.764 0.886 0.673

FM-index ≥ 0.95 2 7 9 9 11 8 9 8 6

FM-index ≥ 0.9 2 13 16 16 16 18 15 11 7

FM-index < 0.7 19 9 9 6 6 8 7 6 11

FM-index < 0.5 12 4 2 3 0 1 1 2 3

Table 2

Basic summary statistics of the FM-index distribution over the 29 benchmark sets.

Single Complete Ward Average gini_0.2 gini_0.3 gini_0.4 gini_0.5 gini_0.6

Min 0.198 0.256 0.337 0.280 0.582 0.473 0.473 0.368 0.321

Q1 0.349 0.623 0.674 0.707 0.723 0.697 0.751 0.742 0.648

Median 0.564 0.874 0.918 0.918 0.921 0.909 0.901 0.843 0.751

Q3 0.707 0.946 0.983 0.983 0.975 0.975 0.975 0.965 0.894

Max 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0

Mean 0.554 0.782 0.820 0.812 0.850 0.840 0.834 0.815 0.752

St.Dev. 0.235 0.225 0.188 0.215 0.147 0.156 0.159 0.172 0.185

Table 3

Basic summary statistics of the FM-index distribution over the 21 Euclidean benchmark sets.

Single Complete Ward Average gini_0.2 gini_0.3 gini_0.4 gini_0.5 gini_0.6 BIRCH k-means

Min 0.257 0.339 0.337 0.357 0.582 0.602 0.563 0.529 0.482 0.350 0.327

Q1 0.480 0.623 0.674 0.707 0.723 0.697 0.751 0.742 0.695 0.653 0.701

Median 0.691 0.833 0.842 0.862 0.923 0.905 0.828 0.843 0.754 0.894 0.821

Q3 0.764 0.920 0.924 0.936 0.987 0.987 0.987 0.923 0.911 0.924 0.969

Max 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0

Mean 0.629 0.777 0.803 0.812 0.850 0.841 0.833 0.828 0.789 0.801 0.816

St.Dev. 0.224 0.187 0.177 0.172 0.150 0.146 0.145 0.138 0.156 0.183 0.177
Theorem 1. The Genie linkage criterion can be implemented based on an MST.

16 M. Gagolewski et al. / Information Sciences 363 (2016) 8–23

Fig. 4. Violin plots of the FM-index distribution over the 29 benchmark sets.

Sketch of the proof. By [51, Principle 2] , in order to construct a minimal spanning tree, it is sufficient to connect any two

disconnected minimal spanning subtrees via an edge of minimal weight and iterate such a process until a single connected

tree is obtained. As our linkage criterion (Section 3.1) always chooses such an edge, the proof is complete. �

Please note that, by definition, the weighted edges appear in an MST in no particular order – for instance, the Prim

[51] algorithm’s output depends on the permutation of inputs. Therefore, having established the above relation between

the Genie clustering and an MST, in Fig. 5 we provide a pseudocode of the algorithm that guarantees the right cluster

merge order. The procedure resembles the Kruskal [37] algorithm and is fully concordant with our method’s description in

Section 3.1 .

Observe that the very same algorithm can be used to compute the single linkage clustering (in such a case, step 5.1 –

in which we compute a chosen inequity measure – as well as step 5.1.2 – in which we test whether the inequity measure

raises above a given threshold – are never executed).

Example 1. Let us consider an exemplary data set consisting of 5 points in the real line: x (1) = 0 , x (2) = 1 , x (3) = 3 , x (4) =
6 , x (5) = 10 and let us set d to be the Euclidean distance. The minimum spanning tree – which, according to Theorem 1 gives

us complete information needed to compute the resulting clustering – consists of the following edges: { x (1) , x (2) }, { x (2) , x (3) },

{ x (3) , x (4) }, { x (4) , x (5) }, with weights 1, 2, 3, and 4, respectively.

Let the inequity measure F be the Gini-index. If the threshold g is set to 1.0 (the single linkage), the merge steps are as

follows. Please note that the order in which we merge the clusters is simply determined by sorting the edges in the MST

increasingly by weights, just as in the Kruskal algorithm.

Step Current partitioning MST edge Gini-index

0. { x (1) } , { x (2) } , { x (3) } , { x (4) } , { x (5) } { x (1) , x (2) } 1 0.0

1. { x (1) , x (2) } , { x (3) } , { x (4) } , { x (5) } { x (2) , x (3) } 2 0.2

2. { x (1) , x (2) , x (3) } , { x (4) } , { x (5) } { x (3) , x (4) } 3 0.4

3. { x (1) , x (2) , x (3) , x (4) } , { x (5) } { x (4) , x (5) } 4 0.6

4. { x (1) , x (2) , x (3) , x (4) , x (5) } — —

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 17

Fig. 5. A pseudocode for the Genie algorithm.

Fig. 6. A simple (n 2 − n) / 2 algorithm to determine an MST.

However, if the threshold is set to g = 0 . 3 , then when proceeding form step 2 to step 3, we need to link { x (4) } and

{ x (5) } instead of { x (1) , x (2) , x (3) } and { x (4) } – that is, the merge is based now on a different MST edge: { x (4) , x (5) } 4 instead of

{ x (3) , x (4) } 3 . Therefore, the resulting 2-partition will be different than the above one: we obtain { x (1) , x (2) , x (3) }, { x (4) , x (5) }
(Gini-index = 0.2).

18 M. Gagolewski et al. / Information Sciences 363 (2016) 8–23

Fig. 7. A getNextNearestNeighbor ()-based algorithm to determine an MST.

4.1. Implementation details

In this study, we decided to focus on the Gini-index. In order to make the algorithm time-efficient, this inequity

index must be computed incrementally. Let g j denote the Gini-index value at the time when there are n − j clusters,

j = 0 , 1 , . . . , n − 1 . Initially, when each cluster is of size 1, the Gini-index is of course equal to 0, hence g 0 = 0 . Assume

that when proceeding from step j − 1 to j we link clusters of sizes c s 1 and c s 2 . It can easily be shown that:

g j =

(n − j) n g j−1 +

∑ n − j+1
i =1

(
| c i − c s 1 − c s 2 | − | c i − c s 1 | − | c i − c s 2 |

)
− c s 2 − c s 1 + | c s 1 − c s 2 |

(n − j − 1) n

.

In other words, after each merge operation, the index is updated, which requires O (n) operations instead of O (n 2) when the

index is recomputed from scratch based on the original formula (1) . On a side note, it might be shown that the Gini-index

can be written as a linear combination of order statistics (compare, e.g., the notion of an OWA operator), but the use of

such a definition would require sorting the cluster size vector in each iteration or relying on an ordered search tree-like

data structure.

Moreover, please note that the algorithm is based on a non-standard implementation of the disjoint sets data structure.

Basically, the required extension that keeps track of cluster counts can be implemented quite easily.

The implementation of the pop_conditional () method in the priority queue pq (we used a heap-based data structure)

can be done by means of an auxiliary queue, onto which elements not fulfilling the logical condition given in step 5.1.2 are

temporarily moved. If, after a merge operation, the inequity index is still above the desired threshold and the minimal

cluster size did not change since the previous iteration, the auxiliary priority queue is kept as-is and we continue to seek

a cluster of the lowest cardinality from the same place. Otherwise, the elements must go back to pq and the search must

start over.

To conclude, the cost of applying the cluster merge procedure (O (n 2) pessimistically for g < 1 and O (n log n) for g = 1) is

not dominated by the cost of determining an MST (O (Cn 2) pessimistically, under our assumptions this involves a function C

of data dimensionality and reflects the cost of computing a given dissimilarity measure d). Hence, the new clustering scheme

shall give us run-times that are comparable with the single linkage method. It is worth noting that the time complexity

(�(n 2)) as well as the memory complexity (�(n)) of the algorithm is optimal (as far as the whole class of hierarchical

clustering algorithms is concerned, compare [41]).

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 19

On a side note, the NN-chains algorithm, which is suitable for solving – among others – the complete, average, and Ward

linkage clustering also has a time complexity of O (n 2) [41,43] , but, as we shall see in further on, it requires computing at

least 2–5 times more pairwise distances.

For the sake of comparison, let us study two different algorithms to determine an MST.

1. An MST algorithm based on Prim’s one. A first algorithm, sketched in [45, Fig. 8] , is quite similar to the one by Prim [51] . Its

pseudocode is given in Fig. 6 . Note that the algorithm guarantees that exactly (n 2 − n) / 2 pairwise distances are computed.

Moreover, the inner loop can be run in parallel. In such a case, M should be a vector of indices not yet in the MST – due to

that the threads may have random access to such an array – and step 6.2.3 should be moved to a separate loop – so as to

a costly critical section is avoided.

2. An MST algorithm based on Kruskal’s one. The second algorithm considered is based on the one by Kruskal [37] and its

pseudocode is given in Fig. 7 . It relies on a method called getNextNearestNeighbor (), which fetches the index j of the

next not-yet considered nearest (in terms of increasing d) neighbor of an object at index i having the property that j > i .

If such a neighbor does not exist anymore, the function returns ∞ . Please observe that in the prefetch phase the calls to

getNextNearestNeighbor() can be run in parallel.

A naïve implementation of the getNextNearestNeighbor() function requires either O (1) time and O (n) memory for each

object (i.e., O (n 2) in total – the lists of all neighbors can be stored in n priority queues, one per each object) or O (n) time and

O (1) memory (i.e., O (n) in total – no caching done at all). As our priority is to retain total O (n) memory use, the mentioned

approach is of course expected to have a much worse time performance than the Prim-based one.

However, now let us assume that a dissimilarity measure d : X × X → [0 , ∞] is in fact a pseudometric, i.e., it addition-

ally fulfills the triangle inequality: for any x , y , z ∈ X we have d (x , y) ≤ d (x , z) + d (z , y) – such a setting often occurs in

practice.

In such a case, a significant speed up may be obtained by relying on some nearest-neighbor search data struc-

ture supporting queries like “fetch a few nearest-neighbors of the i th object within the distance in range [r min , r max)”,

for some r min < r max . Of course, it is widely known that – due to the so-called curse of dimensionality, compare

[1,5,9,13,53] – there is no general-purpose algorithm which always works better than the naïve method in spaces of high

dimension. Nevertheless, in our case, some modifications of a chosen data structure may lead to improvements in time

performance.

Our carefully tuned-up reference implementation (discussed below) is based on a vantage point (VP)-tree, see [57] . The

most important modifications applied are as follows.

• Each tree node stores an information on the maximal object index that can be found in its subtrees. This speeds up the

search for NNs of objects with higher indices. No distance computation are performed for a pair of indices (i , j) unless

i < j .
• Each tree node includes an information whether all its subtrees store elements from the same set in the disjoint sets

data structure ds . This Boolean flag is recursively updated during a call to getNextNearestNeighbor (). Due to that, a

significant number of tree nodes during the merge phase can be pruned.
• An actual tree query returns a batch of nearest-neighbors of adaptive size between 20 and 256 (the actual count is de-

termined automatically according to how the underlying VP-tree prunes the child nodes during the search). The returned

set of nearest-neighbors is cached in a separate priority queue, one per each input data point. Note that the size of the

returned batch guarantees asymptotic linear total memory use.

4.2. The genie package for R

A reference implementation of the Genie algorithm has been included in the genie package for R [52] . This software

is distributed under the open source GNU General Public License, version 3. The package is available for download at the

official CRAN (Comprehensive R Archive Network) repository, see https://cran.r-project.org/web/packages/genie/ , and hence

can be installed from within an R session via a call to install.packages("genie") . All the core algorithms have been

developed in the C++11 programming language; the R interface has been provided by means of the Rcpp [17] package.

What is more, we decided to rely on the OpenMP API in order to enable multi-threaded computations.

A data set’s clustering can be determined via a call to the genie::hclust2() function. The objects argument,

with which we provide a data set to be clustered, may be a numeric matrix, a list of integer vectors, or an R character

vector. The dissimilarity measure is selected via the metric argument, e.g., "euclidean" , "manhattan" , "maximum" ,
"hamming" , "levenshtein" , "dinu" , etc. The thresholdGini argument can be used to define the threshold for the

Gini-index (denoted with g in Fig. 5). Finally, the useVpTree argument can be used to switch between the MST algorithms

given in Figs. 6 (the default) and 7 . For more details, please refer to the function’s manual page (?genie::hclust2).

https://cran.r-project.org/web/packages/genie/

20 M. Gagolewski et al. / Information Sciences 363 (2016) 8–23

Table 4

Relative number of pairwise distance computations (as compared to (n 2 − n) / 2) together with FM-indices

(in parentheses).

σ d n gini_0.3 gini_1.0 Complete Ward Average

(single)

0.50 2 10 0 0 0 4.8% (0.76) a 100% (0.38) 476% (0.72) 204% (0.80) 484% (0.78)

0.50 5 10 0 0 0 22.0% (1.00) a 100% (0.86) 493% (1.00) 221% (1.00) 496% (1.00)

1.50 10 10 0 0 0 30.3% (0.96) a 100% (0.32) 496% (0.98) 240% (0.98) 499% (0.91)

1.50 15 10 0 0 0 58.3% (1.00) a 100% (0.42) 497% (1.00) 253% (1.00) 498% (0.98)

1.50 20 10 0 0 0 84.9% (1.00) a 100% (0.69) 497% (1.00) 261% (1.00) 498% (1.00)

3.50 100 10 0 0 0 101.8% (1.00) a 100% (0.32) 498% (1.00) 299% (1.00) 499% (1.00)

5.00 250 10 0 0 0 100.9% (0.99) a 100% (0.32) 498% (1.00) 312% (1.00) 499% (1.00)

1.5 10 10 0 0 0 0 14.1% (0.94) a 100% (0.32) — 241% (0.98) —

3.5 100 10 0 0 0 0 104.0% (0.98) a 100% (0.32) — 321% (0.99) b —

a – a VP-tree used (Fig. 7) to determine an MST; the (n 2 − n) / 2 algorithm (Fig. 6) could always be used

instead.
b – only one run of the experiment was conducted.

Here is an exemplary R session in which we compute the clustering of the flame data set.

4.3. Number of calls to the dissimilarity measure

Let us compare the number of calls to the dissimilarity measure d required by different clustering algorithms. The mea-

sures shall be provided relative to (n 2 − n) / 2 , which is denoted with “100%”.

The benchmark data sets are generated as follows. For a given n , σ , and d , k = 10 cluster centers μ(1) , . . . , μ(k) are picked

randomly from the uniform distribution on [0, 10] d . Then, each of the n observations is generated as μ(j) + y , where y l for

each l = 1 , . . . , d is a random variate from the normal distribution with expectation of 0 and standard deviation of σ and

j is a random number distributed uniformly in { 1 , 2 , . . . , k } . In other words, such a data generation method is more or less

equivalent to the one used in case of the g2 data sets in the previous section. Here, d is set to be the Euclidean metric.

In each test case (different choices of n , d , σ), we randomly generated ten different data sets and averaged the resulting

FM-indices and relative numbers of calls to d . Table 4 compares:

• the Genie algorithm (genie::hclust2() , package version 1.0.0) based on each of the aforementioned MST algorithms

(useVpTree equals either to TRUE or FALSE); the Gini-index threshold of 0.3 and 1.0, the latter is equivalent to the

single linkage criterion,
• the Ward linkage (the hclust.vector() function from the fastcluster 1.1.16 package [42] – this implementation

works only in the case of the Euclidean distance but uses O (n) memory),
• the complete and average linkage (fastcluster::hclust() – they use an NN-chains-based algorithm, and require

a pre-computed distance matrix, therefore utilizing O (n 2) memory).

We observe a positive impact of using a metric tree data structure (useVpTree = TRUE) in low-dimensional spaces.

In high-dimensional spaces, it is better to rely on the (n 2 − n) / 2 (Prim-like) algorithm. Nevertheless, we observe that

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 21

Table 5

Exemplary run-times (in seconds) for different thread numbers, n = 10 0 , 0 0 0 .

data MST algorithm g Number of threads

1 2 4

d = 10 , σ = 1 . 5 Fig. 7 with a VP-tree 0.3 46.5 33.4 28.2

Fig. 6 0.3 91.5 59.9 44.8

Fig. 7 with a VP-tree 1.0 32.0 19.1 13.4

Fig. 6 1.0 77.5 47.7 31.6

d = 100 , σ = 3 . 5 Fig. 7 with a VP-tree 0.3 1396 740 456

Fig. 6 0.3 743 413 293

Fig. 7 with a VP-tree 1.0 1385 717 454

Fig. 6 1.0 734 396 281

in high dimensional spaces the relative number of calls to the dissimilarity measure is 2–5 times smaller than in

the case of other linkages. Please note that an NN-chains-based version of the Ward linkage (not listed in the table;

fastcluster::hclust()) gives similar results as the complete and average ones and that its Euclidean-distance specific

version (fastcluster::hclust.vector()) seems to depend on the data set dimensionality.

4.4. Exemplary run-times

Let us inspect exemplary run-time measurements of the genie::hclust2() function (genie package version 1.0.0).

The measurements were performed on a laptop with a Quad-core Intel ® Core TM i7-4700HQ @ 2.40GHz CPU and 16

GB RAM. The computer was running Fedora 21 Linux (kernel 4.1.13–100) and the gcc 4.9.2 compiler was used (-O2
-march = native optimization flags).

Table 5 summarizes the results for n = 10 0 , 0 0 0 and 1, 2, as well as 4 threads (set up via the OMP_THREAD_LIMIT
environmental variable). The experimental data sets were generated in the same manner as above. The reported times are

minimums of 3 runs. Note that the results also include the time needed to generate some additional objects, so that the

output is of the same form as the one generated by the stats::hclust() function in R.

We note that running 4 threads at a time (on a single multi-core CPU) gives us a 2–3-fold speed-up. Moreover, a VP-tree-

based implementation (Fig. 7 , useVpTree = TRUE) is twice as costly as the other one in spaces of high dimensions. How-

ever, in spaces of low dimension it outperforms the (n 2 − n) / 2 approach (Fig. 6). Nevertheless, if a user is unsure whether

he/she deals with a high- or low-dimensional space and n is of moderate order of magnitude, the simple approach should

rather be recommended, as it gives much more predictable timings. This is why we have decided that the useVpTree
argument should default to FALSE .

For a point of reference, let us note that a single test run of the Ward algorithm (fastcluster::hclust.vector() ,
single-threaded) for n = 10 0 , 0 0 0 , d = 10 , σ = 1 . 5 required 1452.8 seconds and for d = 100 , σ = 3 . 5 – as much as 18433.7

seconds (which is almost 25 times slower than the Genie approach).

5. Conclusions

We have presented a new hierarchical clustering linkage criterion which is based on the notion of an inequity (poverty)

index. The performed benchmarks indicate that the proposed algorithm – unless the underlying cluster structure is drasti-

cally unbalanced – works in overall better not only than the widely used average and Ward linkage scheme, but also than

the k -means and BIRCH algorithms which can be applied on data in the Euclidean space only.

Our method requires up to (n 2 − n) / 2 distance computations, which is ca. 2–5 times less than in the case of the other

popular linkage schemes. Its performance is comparable with the single-linkage clustering. As there is no need to store the

full distance matrix, the algorithm can be used to cluster larger (within one order of magnitude) data sets than with the

Ward and average linkage schemes.

Nevertheless, it seems that we have reached a kind of general limit of an input data set size for “classical” hierarchical

clustering, especially in case of multidimensional data. Due to the curse of dimensionality, we do not have any nearest-

neighbor search data structures that would enable us to cluster data sets of sizes greater than few millions of observations

in a reasonable time span. What is more, we should keep in mind that the lower bound for run-times of all the hierarchical

clustering methods is �(n 2) anyway. However, let us stress that for smaller (non-big-data) samples, hierarchical clustering

algorithms are still very useful. This is due to the fact that they do not require a user to provide the desired number of

clusters in advance and that only a measure of objects’ dissimilarity – fulfilling very mild properties – must be provided in

order to determine a data partition.

Further research on the algorithm shall take into account the effects of, e.g., choosing different inequity measures or

relying on approximate nearest-neighbors search algorithms and data dimension reduction techniques on the clustering

22 M. Gagolewski et al. / Information Sciences 363 (2016) 8–23

quality. Moreover, in a distributed environment, one may consider partitioning subsets of input data individually and then

rely on some clustering aggregation techniques, compare, e.g., [26] .

Finally, let us note that the Genie algorithm depends on a free parameter, namely, the inequity index merge threshold, g .

The existence of such a tuning parameter is an advantage, as a user may select its value to suit her/his needs. In the case of

the Gini-index, we recommend the use of g ∈ [0.2, 0.5), depending on our knowledge of the underlying cluster distribution.

Such a choice led to outstanding results during benchmark studies. However, we should keep in mind that if the threshold

is too low, the algorithm might have problems with correctly identifying clusters of smaller sizes in case of unbalanced data.

On the other hand, g cannot be too large, as the algorithm might start to behave as the single-linkage method, which has

a very poor performance. A possible way to automate the choice of g could consist of a few pre-flight runs (for different

thresholds) on a randomly chosen data sample, a verification of the obtained preliminary clusterings’ qualities, and a choice

of the best coefficient for the final computation.

Acknowledgments

We would like to thank the Anonymous Reviewers for the constructive comments that helped to significantly improve the

manuscript’s quality. Moreover, we are indebted to Łukasz Błaszczyk for providing us with the scikit-learn algorithms

performance results.

This study was supported by the National Science Center , Poland, research project 2014/13/D/HS4/01700 . Anna Cena and

Maciej Bartoszuk would like to acknowledge the support by the European Union from resources of the European Social Fund ,

Project PO KL “Information technologies: Research and their interdisciplinary applications”, agreement UDA-POKL.04.01.01-

0 0-051/10-0 0 via the Interdisciplinary PhD Studies Program.

References

[1] C.C. Aggarwal , A. Hinneburg , D.A. Keimn , On the surprising behavior of distance metric in high-dimensional space, in: Lecture Notes in Computer

Science, 1973, 2001, pp. 420–434 .
[2] O. Aristondo , J. García-Lapresta , C. Lasso de la Vega , R. Marques Pereira , Classical inequality indices, welfare and illfare functions, and the dual decom-

position, Fuzzy Sets Syst. 228 (2013) 114–136 .
[3] G. Beliakov , S. James , Unifying approaches to consensus across different preference representations, Appl. Soft Comput. 35 (2015) 888–897 .

[4] G. Beliakov , S. James , D. Nimmo , Can indices of ecological evenness be used to measure consensus? in: Proceedings of IEEE International Conference

on Fuzzy Systems’15, Beijing, China, 2014, pp. 1–8 .
[5] K. Beyer , J. Goldstein , R. Ramakrishnan , U. Shaft , When is nearest neighbor meaningful? in: C. Beeri, P. Buneman (Eds.), Proceedings of ICDT,

Springer-Verlag, 1998, pp. 217–235 .
[6] J.C. Bezdek , Pattern Recognition with Fuzzy Objective Function Algorithms, Springer, 1981 .

[7] C. Bonferroni , Elementi di statistica generale, Libreria Seber, Firenze, 1930 .
[8] S. Bortot , R. Marques Pereira , On a new poverty measure constructed from the exponential mean, in: Proceedings of IFSA/EUSFLAT’15, Gij €on, Spain,

2015, pp. 333–340 .
[9] S. Brin , Near neighbor search in large metric spaces, Proceedings of the 21th International Conference on Very Large Data Bases, Morgan Kaufmann

Publishers, 1995, pp. 574–584 .

[10] R. Cai , Z. Zhang , A.K. Tung , C. Dai , Z. Hao , A general framework of hierarchical clustering and its applications, Inf. Sci. 272 (2014) 29–48 .
[11] J. Camargo , Must dominance increase with the number of subordinate species in competitive interactions? J. Theor. Biol. 161 (1993) 537–542 .

[12] H. Chang , D. Yeung , Robust path-based spectral clustering, Pattern Recognit. 41 (2008) 191–203 .
[13] E. Chavez , G. Navarro , R. Baeza-Yates , J.L. Marroquin , Searching in metric spaces, ACM Comput. Surv. 33 (2001) 273–321 .

[14] S. Dasgupta , Performance guarantees for hierarchical clustering, in: Proceedings of the Conference on Learning Theory, 2002, pp. 351–363 .
[15] I. Dimitrovski , D. Kocev , S. Loskovska , S. Džeroski , Improving bag-of-visual-words image retrieval with predictive clustering trees, Inf. Sci. 329 (2016)

851–865 .

[16] L.P. Dinu , R.T. Ionescu , Clustering methods based on closest string via rank distance, Proceedings of 14th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, IEEE, 2012, pp. 207–213 .

[17] D. Eddelbuettel , Seamless R and C++ Integration with Rcpp , Springer, New York, 2013 .
[18] L.N. Ferreira , L. Zhao , Time series clustering via community detection in networks, Inf. Sci. 326 (2016) 227–242 .

[19] R. Fisher , The use of multiple measurements in taxonomic problems, Ann. Eugen. 7 (1936) 179–188 .
[20] E. Fowlkes , C. Mallows , A method for comparing two hierarchical clusterings, J. Am. Stat. Assoc. 78 (1983) 553–569 .

[21] P. Fränti , O. Virmajoki , Iterative shrinking method for clustering problems, Pattern Recogni. 39 (2006) 761–765 .

[22] L. Fu , E. Medico , FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data, BMC Bioinform. 8 (2007) 3 .
[23] M. Gagolewski , Spread measures and their relation to aggregation functions, Eur. J. Oper. Res. 241 (2015) 469–477 .

[24] J. García-Lapresta , C. Lasso de la Vega , R. Marques Pereira , A. Urrutia , A new class of fuzzy poverty measures, in: Proceedings of IFSA/EUSFLAT 2015,
Gijón, Spain, 2015, pp. 1140–1146 .

[25] C. Gini , Variabilità e mutabilità, C. Cuppini, Bologna, 1912 .
[26] A. Gionis , H. Mannila , P. Tsaparas , Clustering aggregation, ACM Trans. Knowl. Discov. Data 1 (2007) 4 .

[27] J. Gower , G. Ross , Minimum spanning trees and single linkage cluster analysis, J. R. Stat. Soc.. Ser. C (Appl. Stat.) 18 (1969) 54–64 .

[28] R. Graham , P. Hell , On the history of the minimum spanning tree problem, Ann. Hist. Comput. 7 (1985) 43–57 .
[29] D. Gómez , E. Zarrazola , J. Yáñez , J. Montero , A divide-and-link algorithm for hierarchical clustering in networks, Inf. Sci. 316 (2015) 308–328 .

[30] Z. Halim , M. Waqas , S.F. Hussain , Clustering large probabilistic graphs using multi-population evolutionary algorithm, Inf. Sci. 317 (2015) 78–95 .
[31] T. Hastie , R. Tibshirani , J. Friedman , The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2013 .

[32] C. Heip , A new index measuring evenness, J.Mar. Biol. Assoc. U. K 54 (1974) 555–557 .
[33] A. Jain , M. Law , Data clustering: A user’s dilemma, in: Lecture Notes in Computer Science, 3776, 2005, pp. 1–10 .

[34] F. Jiang , G. Liu , J. Du , Y. Sui , Initialization of k-modes clustering using outlier detection techniques, Inf. Sci. 332 (2016) 167–183 .

[35] M. Kobus , Attribute decomposition of multidimensional inequality indices, Econ. Lett. 117 (2012) 189–191 .
[36] M. Kobus , P. Miło ́s , Inequality decomposition by population subgroups for ordinal data, J. Health Econ. 31 (2012) 15–21 .

[37] J.B. Kruskal , On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc. 7 (1956) 48–50 .
[38] I. Kärkkäinen , P. Fränti , Dynamic local search algorithm for the clustering problem, Proceedings of 16th International Conference on Pattern Recogni-

tion’02, 2, 2002, pp. 240–243 .
[39] P. Legendre , L. Legendre , Numerical Ecology, Elsevier Science BV, Amsterdam, 2003 .

http://dx.doi.org/10.13039/100000170
http://dx.doi.org/10.13039/501100004895
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0039

M. Gagolewski et al. / Information Sciences 363 (2016) 8–23 23

[40] J.B. MacQueen , Some methods for classification and analysis of multivariate observations, Proceedings of Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1, University of California Press, Berkeley, 1967, pp. 281–297 .

[41] D. Müllner, Modern hierarchical, agglomerative clustering algorithms, (2011). arXiv: 1109.2378 [stat.ML].
[42] D. Müllner , fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python, J. Stat. Softw. 53 (2013) 1–18 .

[43] F. Murtagh , A survey of recent advances in hierarchical clustering algorithms, Comput. J. 26 (1983) 354–359 .
[44] F. Murtagh , P. Legendre , Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? J. Classif. 31 (2014)

274–295 .

[45] C.F. Olson , Parallel algorithms for hierarchical clustering, Parallel Comput. 21 (1995) 1313–1325 .
[46] W. Pedrycz , Conditional fuzzy c-means, Pattern Recognit. Lett. 17 (1996) 625–631 .

[47] W. Pedrycz , A. Bargiela , Granular clustering: a granular signature of data, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 32 (2002) 212–224 .
[48] W. Pedrycz , J. Waletzky , Fuzzy clustering with partial supervision, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 27 (1997) 787–795 .

[49] E. Pielou , An Introduction to Mathematical Ecology, Wiley-Interscience, New York, 1969 .
[50] E. Pielou , Ecological Diversity, Wiley, New York, 1975 .

[51] R. Prim , Shortest connection networks and some generalizations, Bell Syst. Tech. J. 36 (1957) 1389–1401 .
[52] R. Development Core Team, R : A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2016.

http://www.R-project.org .

[53] M. Radavanovic , A. Nanopoulos , M. Ivanovic , Hubs in space: Popular nearest neighbors in high-dimensional data, J. Mach. Learn. Res. 11 (2010)
2487–2531 .

[54] F. Rohlf , Hierarchical clustering using the minimum spanning tree, Comput. J. 16 (1973) 93–95 .
[55] C. Veenman , M. Reinders , E. Backer , A maximum variance cluster algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 1273–1280 .

[56] R. Xu , D.C. WunschII , Clustering, Wiley-IEEE Press, 2009 .
[57] P.N. Yianilos , Data structures and algorithms for nearest neighbor search in general metric spaces, Proceedings of the Fourth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’93, Society for Industrial and Applied Mathematics, 1993, pp. 311–321 .

[58] C. Zahn , Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans. Comput. C-20 (1971) 68–86 .
[59] S. Zahra , M.A. Ghazanfar , A. Khalid , M.A. Azam , U. Naeem , A. Prugel-Bennett , Novel centroid selection approaches for kmeans-clustering based recom-

mender systems, Inf. Sci. 320 (2015) 156–189 .
[60] T. Zhang , R. Ramakrishnan , M. Livny , BIRCH: an efficient data clustering method for very large databases, Proceedings of ACM SIGMOD’96 International

Conference Management of Data, ACM, 1996, pp. 103–114 .

http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0040
arxiv:1109.2378
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0050
http://www.R-project.org
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30319-X/sbref0058

	Genie: A new, fast, and outlier-resistant hierarchicalclusteringalgorithm
	1 Introduction
	2 A discussion on classical linkage criteria
	2.1 Advantages of single-linkage clustering
	2.2 Drawbacks of single-linkage clustering

	3 The Genie algorithm and its evaluation
	3.1 New linkage criterion
	3.2 Benchmark data sets description
	3.3 Benchmark results

	4 Possible implementations of the Genie linkage algorithm
	4.1 Implementation details
	4.2 The genie package for R
	4.3 Number of calls to the dissimilarity measure
	4.4 Exemplary run-times

	5 Conclusions
	 Acknowledgments
	 References

