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A B S T R A C T

Fuzzy Petri nets (FPNs) are a potential modeling technique for knowledge representation and reasoning of rule-
based expert systems. To date, many studies have focused on the improvement of FPNs and various new
algorithms and models have been proposed in the literature to enhance the modeling power and applicability of
FPNs. However, no systematic and comprehensive review has been provided for FPNs as knowledge
representation formalisms. Giving this evolving research area, this work presents an overview of the improved
FPN theories and models from the perspectives of reasoning algorithms, knowledge representations and FPN
models. In addition, we provide a survey of the applications of FPNs for solving practical problems in variety of
fields. Finally, research trends in the current literature and potential directions for future investigations are
pointed out, providing insights and robust roadmap for further studies in this field.

1. Introduction

Fuzzy Petri nets (FPNs) are a modification of classical Petri nets
(PNs) for dealing with imprecise, vague or fuzzy information in
knowledge based systems, which have been extensively used to model
fuzzy production rules (FPRs) and formulate fuzzy rule-based reason-
ing automatically. An FPN is a marked graphical system containing
places and transitions, where graphically circles represent places, bars
depict transitions, and directed arcs denote the incidence relationships
from places to transitions or from transitions to places. The main
characteristics of an FPN are that it supports structural organization of
information, provides visualization of knowledge reasoning, and facil-
itates design of efficient fuzzy inference algorithms. All these render
FPNs a potential modeling methodology for knowledge representation
and reasoning in expert systems (Chen et al., 1990; Liu et al., 2013a;
Yeung and Tsang, 1994a).

Since the introduction of FPNs for supporting approximate reason-
ing in a fuzzy rule-based system (Looney, 1988), they have received a
great deal of attention from academics and practitioners in the domain
of artificial intelligence. However, the earlier FPNs, as indicated in the
academic literature, are plagued by a number of shortcomings, and are
not suitable for increasingly complex knowledge-based systems.
Therefore, a variety of alternative models have been put forward in

the literature to enhance the knowledge representation power of FPNs
and to implement the rule-based reasoning more intelligently. Besides,
FPNs have been widely used by researchers and practitioners to
manage different kinds of engineering problems in many fields. To
the best of our knowledge, however, no research is found to present a
thorough review on FPNs as a knowledge representation formalism.
This paper aims to summarize and analyze the existing approaches to
enhance the performance of FPNs, and further introduce in depth the
applications of FPNs to solve real-world problems. Related articles
published in international journals between 1988 and 2016 are
gathered and reviewed. The specific objectives of this review are:

• To establish sources of improvements around FPNs and identify
those aspects that attract the most attention in the FPN literature.

• To describe the development of FPNs and find the approaches that
are prevalently applied.

• To uncover gaps and trends in the current FPN literature and
highlight future directions for research.

This study not only provides evidence that some alternative models
are better than former FPNs, but also aids both practitioners and
researchers in applying FPNs more effectively. The paper's goal is to
also provide a spur to further study this area in depth and develop
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richer knowledge on FPNs to help industrialists build effective expert
systems for intelligent decision making.

The rest of this paper is organized in the following way. First, some
background knowledge regarding FPRs and FPNs, and the major
aspects of research on FPNs are presented in Section 2. Section 3
reviews the improved FPN approaches from the perspectives of
reasoning algorithms, knowledge representations and FPN models. In
Section 4 we introduce the applications of FPNs in different engineer-
ing areas. Section 5 describes some general observations based on
statistical analysis results of this review. Section 6 discusses the main
findings of this literature survey and gives suggestions for the future
work. Finally, Section 7 concludes the paper.

2. FPRs and FPNs

2.1. FPRs

FPRs have been comprehensively used to represent, capture and
store vague expert knowledge in decision systems. Each rule is usually
expressed in the form of a fuzzy if-then rule in which both the
antecedent and the consequent are fuzzy terms expressed by fuzzy
sets. If an FPR consists of either AND or OR connectors, then it is
called a composite or compound FPR (Chen, 1996).

To enhance the representation and reasoning capabilities of FPRs,
the weight parameter (Tsang et al., 2004; Yeung and Tsang, 1997) has
been incorporated into fuzzy if-then rules, obtaining the weighted FPRs
(WFPRs). Let R be a set of WFPRs, i.e.,R R R R= { , , ... , }n1 2 , the form of
the ith rule can be presented as

R a c μ Th w: IF THEN (CF = ), ,i (1)

where a and c are the antecedent and consequent parts of the rule,
respectively, which comprise one or more propositions with fuzzy
variables. The parameter μ μ( ∈ [0, 1]) is the certainty factor indicating
the belief strength of the rule,Th λ λ λ= { , , ..., }m1 2 is a set of threshold
values specified for each of the propositions in the antecedent, and
w w w w= { , , ... , }m1 2 is a set of weights assigned to all propositions in the
antecedent, showing the relative importance of each proposition in the
antecedent contributing to the consequent.

In general, WFPRs can be divided into five types as listed below (Ha
et al., 2007; Liu et al., 2013a; Yeung and Ysang, 1998):

Type 1. A simple weighted fuzzy production rule

R: IF a THEN c μ λ w( ; ; )

Type 2. A composite weighted fuzzy conjunctive rule in the ante-
cedent

R: IF a1 AND a2 AND…AND am THEN c
μ λ λ λ w w w( ; , , ..., ; , , ..., )m m1 2 1 2

Type 3. A composite weighted fuzzy conjunctive rule in the
consequent

R: IF a THEN c1 AND c2 AND…AND cm μ λ w( ; ; )

Type 4. A composite weighted fuzzy disjunctive rule in the ante-
cedent

R: IF a1 OR a2 OR…OR am THEN c μ λ λ λ w w w( ; , , ..., ; , , ..., )m m1 2 1 2

Type 5. A composite weighted fuzzy disjunctive rule in the conse-
quent

R: IF a THEN c1 OR c2 OR…OR cm μ λ w( ; ; ).
In many practical applications, the rules of Types 4 and 5 are not

allowed to appear in a knowledge base since they can be transferred
into several rules of Type 1. The following rules are several typical
examples of WFPRs:

R1: IF it is hot THEN the humidity is low (μ=0.9);
R2: IF John is fat AND John is tall AND John is a man THEN he is
heavy (μ=1.0);
R3: IF fever is high AND cough is heavy AND blood pressure is
normal THEN pneumonia (μ=0.8);
R4: IF regulator semiconductor is broken THEN exciter is not
enough (μ=0.9; λ=0.2; w =1.0);
R5: IF frequency is higher than normal value AND double frequency
is smaller than normal value AND amplitude changes obviously as
the loads change THEN rotor is hot bending (μ=0.9; λ1 =0.3, λ2 =0.3,
λ3 =0.2; w1 =0.5, w2 =0.3, w3 =0.2).

It is worth noting that R4 and R5 are WFPRs derived from the fault
diagnosis of aircraft generator (Liu et al., 2016a).

2.2. PNs and FPNs

PNs are a graphical and mathematical modeling method used to
model and analyze discrete event systems (Cassandras and Lafortune,
2008; Li et al., 2012a, 2012b) such as communication, manufacturing
and transportation systems. Tokens in the places represent the state of
a system (Chen et al., 2014b; Li and Zhao, 2008; Zhang et al., 2015). A
PN is formally defined as a 5-tuple (Murata, 1989):

P T F W MPN = ( , , , , )0 (2)

where P and T are finite sets of places and transitions, respectively, the
flow relation between P and T is denoted by F P T T P⊆ ( × ) ∩ ( × ),
W F: → {0, 1, 2, ...} is a weight function, and M P: → {0, 1, 2, ...}0 is
the initial marking. A PN example is shown in Fig. 1(a), where
P p p T t= { , }, = { },1 2 1 F p t t p= {( , ), ( , )}1 1 1 1 and its initial marking is
M = [3 0]T0 at which t1 is enabled. After t1 fires, one token is removed
from its input place, i.e., p1, and deposited into its output place, i.e., p2.

To deal with uncertainty in knowledge representation and reasoning,
FPNs have been developed from the PN theory, where tokens representing
the state of propositions are marked by a truth value between 0 and 1. By
applying a PN formalism to fuzzy rule-based systems, it is able to visualize
the structure of an expert system and express its dynamic proposition logic
reasoning behavior efficiently. For example, in Fig. 1(b), we have
P p p T t I t p= { , }, = { }, ( ) = { },1 2 1 1 1 O t p f t μ α p α( ) = { }, ( ) = , ( ) = ,1 2 1 1 1 1

and α p( ) = 02 based on the basic FPN defined in Eq. (3). For an FPN, a
transition is said to be enabled if all of its input places are marked by a
token and its real value is greater than or equal to a threshold value. The
reasoning process of an FPN is executed by firing the rules and updating
the truth degree vector at each reasoning step.

Due to the features of fuzzy rule-based systems, the major
differences between PNs and FPNs are as follows (Gao et al., 2003;
Hanna et al., 1996; Hu et al., 2011):

(1) In FPNs, the number of tokens in a place cannot be greater than
one since a token is associated with a truth value between 0 and 1.
A token does not represent an “object,” whereas it may likely do so
in PNs.

(2) FPNs are always conflict-free nets because there is no “resource”
concept in FPNs and a proposition may be shared by different rules
at the same time. For example, in Fig. 2, the proposition d3 is
shared by two rules R1 and R2, which can utilize proposition d3
simultaneously and reason in parallel.

(3) The tokens are not removed from the input places of a transition
after it fires since the evaluation of the rules means the truth
propagation of the propositions only. That is, the antecedent part
remains verified although its consequent part may already be
proved in the knowledge reasoning.
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2.3. Definitions of FPNs

In 1988, Looney (1988) pioneered the concept of FPNs to represent
the FPRs of a rule-based decision making system. In a later work, Chen
et al. (1990) proposed a more generic FPN model to model knowledge
representation and described a fuzzy algorithm to perform knowledge
reasoning automatically.

According to (Chen et al., 1990), an FPN structure is defined as an
8-tuple:

P T D I O f α βFPN = ( , , , , , , , ) (3)

where

P p p p= { , , ... , }m1 2 is a finite set of places,
T t t t= { , , ... , }n1 2 is a finite set of transitions,
D d d d= { , , ... , }m1 2 is a finite set of propositions with
P T D P D∩ ∩ = ∅, = ,
I T P: → ∞ denotes the input function, a mapping from transitions to
the bags of places,
O T P: → ∞ denotes the output function, a mapping from transitions
to the bags of places,
f T: → [0, 1] denotes an association function, a mapping from
transitions to real values between 0 and 1,
α P: → [0, 1] is an association function, a mapping from places to
real values between 0 and 1,
β P D: → is an association function, a bijective mapping between
places and propositions.

To capture more information of WFPRs, Yeung and Ysang (1998)
improved the above FPN model by introducing the knowledge para-
meters of threshold values and weights, and an improved FPN can be
presented as follows:

P T D Th I O F W f α β γ θFPN = ( , , , , , , , , , , , , ) (4)

where

P T D I O f, , , , , and β are defined as in (3).
Th λ λ λ= { , , ..., }m1 2 is a set of threshold values,
F f f f= { , , ... , }m1 2 is a set of fuzzy sets,
W w w w= { , ... , }m1, 2 is a set of weights of WFPRs,
α P F: → is an association function which assigns a fuzzy set to a
place,
γ P Th: → is an association function, a mapping from places to
threshold values,
θ P W: → is an association function which assigns a weight to a
place.

In an FPN, propositions are represented by places; the certainty
factor of a rule is associated with its corresponding transition; the
mutual causality interconnections between the propositions and rea-
soning rules are expressed by the arcs between places and transitions.
A place may or may not contain a token associated with a truth value
between 0 and 1. The token is pictorially represented by a dot. The
knowledge reasoning processes are modeled through the firing of the
transitions in FPNs. Based on the above specification, the three type of
WFPRs can be graphically represented with FPN structures as depicted
in Fig. 3.

2.4. Sources of FPN improvements

FPNs have been proven to be one of the most important knowledge
representation tools; however, the original FPNs have been criticized
extensively in the literature for various reasons. Generally, FPNs have
been improved from the perspectives of reasoning algorithms, knowl-
edge representations, and FPN models. First, the reasoning algorithms
based on the classical FPNs were improved to be suitable for more
generic FPN forms. Then, the FPN model has been enhanced to carry
more knowledge information. In recent years, various versions of FPN
models have been developed considering the increasing complexity of
expert systems. Based on the reviewed papers, a variety of disadvan-
tages of FPNs, depending on specific applications, are gradually
recognized (See Table A1) and the most important ones are stated as
follows:

(1) The fuzzy reasoning algorithms of many FPNs are implemented

Fig. 1. An illustration of PN and FPN.

Fig. 2. An FPN example with a shared proposition.
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using a reachability tree-based method such that they are not
suitable for parallel reasoning (Chun and Bien, 1993; Gao et al.,
2003; Liu et al., 2013a, 2013c, 2016a). Such methods often
require the enumeration of all possible paths in order that the
final truth degrees can be properly evaluated, which, however,
leads to less efficient reasoning algorithms. Large reachability sets
and adjacent places tables may be generated when applying the
reachability tree-based model to represent a rather complex
expert system (Yeung and Tsang, 1994a).

(2) Some FPNs lack an adjustment (learning) mechanism according
to the system's changes (Amin and Shebl, 2014; Feng et al., 2012;
Li and Lara-Rosano, 2000; Li et al., 2000; Pedrycz and Gomide,
1994; Wang et al., 2014). The parameters (or weights) in the FPN
model of (Yeung and Ysang, 1998) are fixed. The restrictions of
the learning algorithm in (Li and Lara-Rosano, 2000) are overly
strict for an expert system. The lack of an adjustment (learning)
mechanism in FPNs cannot cope with potential changes of actual
systems. FPNs are not adaptable according to the changes of the
arc weight.

(3) A proposition is assigned to only one weight and the weight is
assigned to its place in the FPN model (Ha et al., 2007; Liu et al.,
2013a, 2013c), which is unreasonable in the situation that a
proposition is shared by different rules at the same time.
Accordingly, the same place with different transitions has the
same weight after mapping FPRs into FPNs. The relative weight
of each proposition in the antecedent contributing to the con-
sequent is ignored or assumed to be equal (Li and Lara-Rosano,
2000; Yeung and Ysang, 1998).

(4) A proposition or rule is generally assigned to only one threshold
value and the threshold value is assigned to its place or transition
in the FPN model (Liu et al., 2013a, 2013c, 2016a; Yeung and
Tsang, 1994b; Yeung and Ysang, 1998). Some FPN models even
do not consider threshold values or only assign a single value to
all FPRs.

(5) The backward reasoning is not handled (Chen, 2000; Chun and
Bien, 1993; Hu et al., 2011; Liu et al., 2013b) using FPN theory.
The original fuzzy reasoning methods can deal with fuzzy forward
reasoning only and cannot deal with fuzzy backward reasoning.

(6) The fuzzy reasoning algorithm in (Chen et al., 1990) is unable to
carry out weighted fuzzy reasoning (Chen, 2002). Fuzzy reasoning
algorithms proposed in the literature are unable to perform
ordered weighted linguistic reasoning (Liu et al., 2016b). The
algorithm presented in (Liu et al., 2013a) does not consider the
global weights of FPRs (Liu et al., 2016a, 2016b). A rule-based

expert system will be more flexible if both local and global
weights are considered in knowledge inference.

(7) Time factor is not introduced in previous FPNs (Liu et al., 2016a,
2016b, 2011; Suraj and Fryc, 2006), which plays a vital role in
developing real-time expert systems.

(8) In the situation that the consequent part has two or more
propositions in a rule, the whole rule assigns only one certainty
factor to its transition in the FPN model (Ha et al., 2007; Liu
et al., 2013a, 2013c). In fact, when a rule contains two or more
conclusions, the influence of the transition to its output places
may be different.

(9) The knowledge representation parameters, such as the truth
degrees of propositions and the certainty factors of fuzzy rules,
are restricted to be real values between 0 and 1 (Chen, 2002; Liu
et al., 2016b). However, knowledge parameter values often take
the form of intuitionistic fuzzy information (Liu et al., 2016a).

(10) The multiplication rule evaluation method may result in no
conclusion for complicated expert systems (Yeung and Tsang,
1994a; Yeung and Ysang, 1998). In the reasoning algorithm
proposed in (Chen et al., 1990), the dependence of the truth
degree of the concluding place on the length of the reasoning
paths is undesirable (Konar and Mandal, 1996).

3. Approaches to FPNs

In this section, we present the results of a comprehensive literature
search on FPNs for knowledge representation and reasoning. The
database used for our study is Scopus (http://www.scopus.com) in
which the articles published between 1988 and 2016 were searched.
The database search was limited to peer-reviewed articles appearing in
academic journals, since the acceptance of the scientific community is
most convincingly guaranteed via the peer-review process (Schmoch
and Schubert, 2008). Publications in languages other than English and
non-refereed professional publications, such as textbooks, doctoral
dissertations and conference proceedings, are excluded from our
examination. Furthermore, we only include articles that report on an
algorithm or a model to represent inexact knowledge and approximate
reasoning, or studies applying the existing FPN models for dealing with
practical problems. This implies that articles reporting on FPN models
which are not used as decision support or monitoring systems (e.g.,
(Gniewek, 2013; Gniewek and Kluska, 2004)) are excluded. Also, more
complex, higher-level net-based structures applied to model knowledge
reasoning by using high-level FPNs (HLFPNs) (Scarpelli et al., 1996;
Shen, 2006) have not been considered within this study, since they are

Fig. 3. FPN representations of WFPRs.
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another trend of research on Petri nets. The literature analysis begins
by identifying 546 published studies with reference to FPNs, which are
then distilled down to 99 papers satisfying the selection criteria.

To enhance the performance of existing FPNs, a number of studies
have been conducted in the literature through improving knowledge
representation and reasoning abilities of FPNs or developing new
versions of FPN models. Therefore we propose a framework for
classifying the reviewed papers from the perspectives of reasoning
algorithms, knowledge representations and new FPN models. Among
the reviewed papers, some studies improved the reasoning algorithms
of FPNs for modeling complex rule-based decision making systems
(seven papers). Also, the ability of FPNs in knowledge representation
has been enhanced by incorporating more knowledge parameters (six
papers). In addition, different types of FPN models have been devel-
oped to meet the requirements of their problems (29 papers). In what
follows, we more specifically go into the references and show what has
been done.

3.1. Reasoning algorithms

3.1.1. Reachability tree-based algorithms
Yeung and Tsang (1994a) proposed a modified fuzzy reasoning

algorithm to enhance the reasoning capability of Chen's algorithm
(Chen et al., 1990). Two additional algorithms were also proposed by
the authors for building reachability sets and adjacent places tables
when applying the proposed fuzzy reasoning algorithm. To deal with
the problems with Chen's algorithm, Manoj et al. (1998) proposed a
modified fuzzy reasoning algorithm and the concept of hierarchical
FPNs for data abstraction. Yeung and Ysang (1998) devised an FPR
evaluation method (FPREM) by taking the weight factors into con-
sideration, and developed a multilevel weighted fuzzy reasoning
algorithm incorporating the FPREM for expert systems. In (Chen,
2000), the author extended the work of (Chen et al., 1990) to describe a
fuzzy backward reasoning algorithm for knowledge based systems,
where FPNs are used for representing FPRs in the knowledge base of
an expert system.

3.1.2. Algebraic representation-based algorithms
In (Fryc et al., 2004), the authors proposed an algebraic (matrix)

representation of FPNs and provided a parallel algorithm for the fuzzy
reasoning process in knowledge based systems. Suraj (2013) extended
the FPNs by introducing three operators in the form of triangular
norms as substitutes of min, max and algebraic product operators, and
demonstrated a new class of Petri nets called generalized FPNs
(GFPNs) for knowledge representation and inexact reasoning in
decision support systems. To overcome the issue of state space
explosion, Zhou et al. (2015) proposed a biphasic decomposition
algorithm that includes a backward search stage and a forward strategy
for the FPN model. This algorithm is able to divide a large-scale FPN
model into a series of completed reasoning paths (sub-FPN models) via
an index function and an incidence matrix.

3.2. Knowledge representations

In Yeung and Tsang (1994b), the authors proposed an enhanced
FPN model to accommodate the possibility of mapping an FPR having
different threshold values in their propositions into an FPN. The model
proposed is able to represent more information of an FPR. By assigning
a different threshold value for each proposition, misfiring of rules can
be prevented. Chen (2002) presented a weighted FPN (WFPN) model
and a weighted fuzzy reasoning algorithm for rule-based systems using
WFPNs. The FPRs in the knowledge base of a rule-based expert system
are modeled by WFPNs, where the weights of the propositions in the
rules are represented by fuzzy numbers. Ha et al. (2007) developed two
types of knowledge representation parameters, i.e., input weights and
output weights, and introduced a generalized FPN (GFPN) to enhance

the representation capability of WFPRs in a rule-based system.
Furthermore, the evaluation method of the multilevel fuzzy reasoning
in (Yeung and Ysang, 1998) was improved by using these parameters
and a similarity measure.

Shih et al. (2007) reported a modified PN model, associative Petri
net (APN), to represent the associative production rules of a rule-based
system and developed an efficient reasoning algorithm based on the
APN model. In the APNs, a novel associated parameter of every
transition production rule was introduced, which generalizes the
notion of certainty factor of a rule by measuring the associative degree
between different propositions. The work in (Liu et al., 2013c)
introduced a knowledge acquisition and representation approach using
a fuzzy evidential reasoning (FER) approach and dynamic adaptive
FPNs (DAFPNs). In the DAFPNs, the weights of propositions are
assigned to each input arc of a transition, the rule certainty factor is
replaced by several output certainty factors given to the output arcs of a
transition, and different threshold values are assigned to each proposi-
tion in the consequent part of a composite production rule. Based on
the work in (Liu et al., 2013c), Liu et al. (2013a) further presented an
improved DAFPN model for knowledge representation and reasoning,
in which distinct threshold values are assigned not only to the
consequent propositions of a composite production rule but also to
each antecedent proposition of the rule. Furthermore, a max-algebra
based parallel reasoning algorithm was proposed based on the DAFPNs
to implement approximate reasoning process automatically.

3.3. New FPN models

3.3.1. FPNs combing PNs and fuzzy logic
Garg et al. (1991) investigated a new type of FPNs as a knowledge

representation formalism, and reported an algorithm to check the
consistency of a fuzzy knowledge base by a set of reduction rules that
preserve the properties of the established FPN. Based on the PN
formalism, Bugarin and Barro (1994) developed a model for the
representation of fuzzy production systems with rule chaining, which
permits the development of algorithms for an efficient and flexible
execution of knowledge bases. Cao and Sanderson (1995a) presented a
generalized definition of FPNs using three types of fuzzy variables (i.e.,
local fuzzy variables, fuzzy marking variables, and global fuzzy vari-
ables) to model discrete event systems with vague, random, and
approximate information. Konar and Mandal (1996) discussed two
distinct models of FPNs for reasoning in expert systems in presence of
imprecision and inconsistency of data and uncertainty of knowledge:
One model deals with the computation of precision degree of any
proposition based on the fuzzy beliefs of independent starting proposi-
tions; the other is concerned with the computation of steady-state fuzzy
beliefs of the propositions in the given network from their initial fuzzy
beliefs. By combining PN theory and fuzzy sets, Koriem (2000)
presented a formal technique called modified FPNs (MFPNs) for
automated modeling and verification of ruled-based decision making
systems. Bostan-Korpeoglu and Yazici (2007) proposed an FPN model
to represent imprecise knowledge and the behavior of an intelligent
object-oriented database environment. This model is capable of dealing
with both active and deductive rules along with the compositions
(either event or condition), and performing some required computa-
tions, such as fuzzification, concurrent execution, and combination, in
addition to the sup-min composition.

3.3.2. FPNs considering time factor
In (Pang et al., 1995), the authors proposed a continuous FPN

(CFPN) by integrating fuzzy control, PNs and real-time expert systems.
The CFPN approach can handle real-time continuous inferencing for
the purpose of process monitoring, control and diagnostics. In
(Carinena et al., 1999), the authors introduced an enhanced model of
fuzzy temporal knowledge bases (FTKBs) including time as a variable
in their fuzzy temporal rules, and presented its projection and
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execution onto the formalism of FPNs. The model proposed can
enhance the expressive capability of the rules making up the FTKB
and keep the computation cost within the limits to work on-line in
dynamic environments. Suraj and Fryc (2006) proposed a new class of
timed approximate Petri nets (TAP-nets) by combining FPNs with time
and uncertain information, which can be used for representing
uncertain knowledge and for evaluating inexact reasoning in decision
systems. For knowledge representation of chemical abnormality, a
novel temporal version of FPNs, designated timed FPN (tFPN), was
introduced in (Liu et al., 2011). In the tFPN approach, a timing factor
was assigned to each transition and a reliability degree was associated
with each place to capture the dynamic nature of fuzzy knowledge
pertaining to abnormal events. Following a procedure towards abnor-
mal event monitoring, two efficient algorithms for abnormality prog-
nostication and diagnosis were also proposed by reachability analysis
of tFPN.

3.3.3. FPNs based on possibility logic
Cardoso et al. (1999) combined possibility logic with PN theory and

proposed possibilistic PNs (PPN) for the qualitative representation of
uncertain knowledge about a system state. Lee et al. (2003) dealt with a
PPN model that integrated PNs with possibilistic reasoning to lead to a
tool for model uncertainty reasoning in rule-based expert systems. A
reasoning algorithm based on PPNs was also outlined to improve the
efficiency of possibilistic reasoning. In (Lee et al., 1998), the authors
put forward a novel version of FPNs for modeling fuzzy rule-based
reasoning that brings together the possibilistic entailment and the
fuzzy reasoning to handle uncertain and imprecise information. A
reasoning algorithm consistent with both the rule-based reasoning and
the execution of PNs was presented to improve the efficiency of vague
reasoning.

3.3.4. FPNs using neural networks
Li and Lara-Rosano (2000) formulated an FPN model called

adaptive FPNs (AFPNs) and developed its weight learning algorithm
for dynamic knowledge representation and inference. This model has
learning ability like neural networks, by learning the weights from the
data given by experts. In (Li et al., 2000), the authors relaxed the
restrictions of the AFPN model and introduced a modified back
propagation learning algorithm for knowledge learning under general-
ized conditions. Feng et al. (2012) proposed a learning model tool,
namely learning FPN (LFPN), for the construction of knowledge
systems, in which the truth degree of a proposition can be learned by
adjusting the arc's weight function. Also, a leaning algorithm that
enables the LFPN to obtain the capability of learning FPRs through
truth degree updating was proposed. In (Amin and Shebl, 2014), the
authors developed an adaptive fuzzy higher order PN (AFHOPN)
considering the weight changes of the arc in fuzzy reasoning process,
which has the learning ability as neural networks and can be used for
knowledge representation and dynamic reasoning. Instead of using
neural networks, Wang et al. (2014) proposed a dynamic representa-
tion of fuzzy knowledge (DRFK) model based on FPNs and particle
swarm optimization for knowledge representation and inference. In
this model, an efficient genetic particle swarm optimization learning
algorithm was used for self-learning of fuzzy knowledge representation
parameters. In addition, other neural network-based FPNs also ap-
peared in other literatures such as Pedrycz and Gomide (1994), Ahson
(1995), and Konar et al. (2005).

3.3.5. FPNs based on matrix operations
Chun and Bien (1993) proposed an FPN model for a rule-based

decision making system which contains uncertain conditions and vague
rules, and presented a matrix representation and state equation for the
FPN. The reasoning method introduced in this paper can not only
implement both forward and backward reasoning but also perform
real-time decision making under a parallel rule firing scheme. In (Wang

et al., 2001), the authors defined an extended FPN model (EFPN)
based on generating rules of knowledge base and presented two
concurrent reasoning algorithms based on multitask schedule by
considering the reasoning patterns of forward reasoning and backward
reasoning. An efficient algorithm was also designed for automated
reasoning and decision making. Gao et al. (2003) elaborated upon a
fuzzy reasoning PN (FRPN) model to represent a fuzzy rule-based
system and designed a fuzzy reasoning algorithm to perform knowledge
reasoning automatically. In the proposed FRPN, the negation issues in
FPNs for knowledge reasoning are addressed and the algorithm
exhibits fully parallel reasoning ability via adopting the operators in
max-algebra. Lehocki et al. (2008) proposed logical PNs (LPNs) and
FPNs as models for knowledge representation, based on which, the
authors introduced a matrix-based algorithm for knowledge propaga-
tion in decision support systems. In (Hu et al., 2011), the authors
proposed a particular kind of FPNs, namely reversed PNs, for solving
the backward reasoning problems, and presented a max-algebra based
iterative algorithm such that the backward reasoning can be imple-
mented efficiently and automatically.

Recently, Liu et al. (2016b) extended the FPN model presented in
(Liu et al., 2013a) to propose a linguistic reasoning PN (LRPN) model
and developed an ordered weighted linguistic reasoning algorithm for
knowledge representation and reasoning of a rule-based expert system,
where the linguistic production rules in the knowledge base were
modeled by LRPNs, and the truth degrees of the proposition appearing
in the rules were represented by linguistic 2-tuples. Furthermore, both
local and global weights of knowledge rules are included so as to
enhance the representation power of FPNs. Liu et al. (2016a) presented
a new type of FPNs, namely intuitionistic FPNs (IFPNs), by using
intuitionistic fuzzy sets (IFSs) and ordered weighted averaging (OWA)
operators to enhance the knowledge representation and reasoning
capability of FPNs. Besides, a max-algebra-based reasoning algorithm
was proposed in order to execute the intuitionistic fuzzy reasoning
formally and automatically. Meng et al. (2016) also constructed an
IFPN model for knowledge representation and reasoning by combining
IFSs with PN theory, and the reasoning process based on IFPNs was
carried out by matrix operation.

4. Applications of FPNs

Due to the graphical representation and dynamic processing ability,
FPNs have been extensively employed to address various engineering
problems over the past several decades. Therefore, practical applica-
tions of FPNs have been comprehensively investigated, and in the
following, we describe the results in detail.

4.1. Operational management

4.1.1. Disassembly process planning
Gao et al. (2004) utilized an FRPN model to represent related

disassembly rules in a product with uncertainty, and the proposed
model can be used to efficiently attain the next operation on the
product at each disassembly step based on the product's current status
and disassembly rules. Considering human factors in manufacturing
systems, Tang et al. (2006) developed a fuzzy attributed PN (FAPN)
model to mathematically represent the uncertainty in disassembly
process due to a large amount of human intervention. An algorithm
was also proposed for obtaining the optimal disassembly planning for
an obsolete product. Tang and Turowski (2007) proposed a fuzzy
disassembly PN (F-DPN) model for modeling uncertain product/
component conditions, and designed an adaptive fuzzy system with
an iterative learning mechanism to dynamically estimate their impact
on a disassembly process. Building upon the works of (Tang and
Turowski, 2007; Tang et al., 2006), Tang (2009) further introduced an
FPN model to explicitly represent and effectively analyze involved
uncertainty in disassembly. Instead of presuming that the pertinent
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data is already known, the authors designed a self-adaptive disassem-
bly process planner to accumulate the past experience of predicting
such data and exploit the “knowledge” captured in the data to
determine the best disassembly plan. In addition, Zhao et al. (2014)
also applied the FRPNs to disassembly sequence decision making for
the end-of-life product recycling and remanufacturing.

4.1.2. Operation planning and process control
Cao and Sanderson (1995b) discussed the problem of representa-

tion and planning of operations in a robotic assembly system by
employing an FPN mapping strategy. In the FPN representation, the
objects whose properties are altered are labeled ‘soft’ objects, the
process steps where alternations may occur are termed ‘key’ transi-
tions, and a prime number marking algorithm is used to guarantee
consistent sequencing of operations. Wu et al. (2002) presented a
modified FPN, named OPN, for optimal operation planning with
resource constraints, which can model the knowledge for operation
selection and yield feasible and optimal operation plans by the T-
invariant property of FPNs. Hanna et al. (1996) proposed an intelligent
process control architecture based on FPNs with neural networks for
the modeling of product quality from a computer numerical control
(CNC)-milling machining center, in which two fuzzy input variables
(spindle speed and feed rate) are utilized to monitor and control the
surface roughness quality of products manufactured by a milling
operation. Kasirolvalad et al. (2006) presented an AND/OR nets
approach for planning of a CNC machining operation and then
employed adaptive FPNs (AFPNs) with learning capability to model
the activities and events and improve the product and machining
process quality within CNC machine tools.

4.1.3. Rescheduling, workflow management and product ecosystem
design

Qiao et al. (2011) proposed an FPN-based model for describing the
rescheduling strategy problem (FPN-R) and discussed a fuzzy reason-
ing approach for rescheduling start-up decision making and reschedul-
ing methodology adoption. Ye et al. (2011) reported a knowledge-based
hybrid exception handling approach for workflow management using
two extended knowledge models: generalized fuzzy event-condition-
action (GFECA) rule and typed FPN extended by process knowledge
(TFPN-PK). Based on the TFPN-PK, a weighted fuzzy reasoning
algorithm was designed to realize integrated representation and
reasoning of fuzzy and non-fuzzy knowledge as well as application
domain knowledge and workflow process knowledge. Zhou et al. (2012)
developed an FRPN framework to deal with the uncertainty, complex-
ity, and dynamics associated with user experience (UX) modeling for
product ecosystem design. Reasoning of diverse constructs of UX was
embedded in the FPRs derived from self-report UX data, and a fuzzy
reasoning algorithm was proposed to perform parallel inference and to
simulate most likely UX under different ambient factors.

4.2. Fault diagnosis and risk assessment

4.2.1. Electric power system
Sun et al. (2004) used FPNs as a modeling technique to construct

fault diagnosis models of electric power systems, which aims to
accurately diagnose faults when some incomplete and uncertain alarm
information of protective relays and circuit breakers is detected. Luo
and Kezunovic (2008) implemented FRPNs to tackle the complexity of
power system fault section estimation and addressed several key issues
including optimal structure design of diagnosis models to avoid a large
matrix size, utilization of fuzzy logic parameters to effectively handle
uncertainties, realization of a matrix execution algorithm to achieve
parallel reasoning capability, and integration of more reliable input
data to enhance estimation accuracy. He et al. (2014) exposed a
dynamic fault diagnosis reasoning model based on AFPNs to solve
the complex power system fault-section estimation problem, in which

the weights in fuzzy reasoning are decided by the incomplete and
uncertain alarm information of protective relays and circuit breakers.
In (Zhang et al., 2016), the authors investigated the temporal con-
straint between event occurrences in power systems and introduced a
temporal reasoning FPN (TRFPN) approach for fault diagnosis. The
work in (Cheng et al., 2015a) presented a fault diagnosis method based
on FPNs considering service feature of information source devices and
applied it to diagnose faults of power supply system devices. To
efficiently detect fraudulent and abnormal consumption, Chen et al.
(2015) employed fractional-order self-synchronization error (FOSE)-
based FPNs to locate nontechnical losses and outage events in
microdistribution systems dealing with power utilities. Yang and
Huang (2002) introduced an FPN knowledge representing approach
to achieve the on-line service-restoration plan of distribution systems.
In their study, an FPN model was built to represent the knowledge and
inference scheme about the service restoration and tested on a practical
distribution system of Taiwan Power Company.

4.2.2. Mechanical and manufacturing systems
To address the impact of solar array anomalies, Wu et al. (2011)

established a model using fault tree analysis (FTA) and FRPNs to
perform reliability analysis of a solar array mechanical system, which
can be used to find the most important root causes and put forward
propositions to improve reliability of the solar array. Wu et al. (2012)
also developed a reliability apportionment approach which combines
fuzzy comprehensive evaluation with FRPNs to accomplish the relia-
bility apportionment of spacecraft solar array. In (Wu and Hsieh,
2012), the authors explored a real-time FPN (RTFPN) approach to
diagnose progressive faults in programmable logic controllers (PLC)-
based discrete manufacturing systems. In this approach, a real-time PN
(RTPN) model was used to monitor a running status on the manu-
facturing plant and the FPN diagnoser was utilized to isolate the fault
root causes when a fault happens. An and Liang (2013) put forward an
FPN framework with unobservable transitions to resolve the fault
diagnosis problem of discrete event systems with inaccuracy and
unobservable events such as Hall thruster. A two-directional reasoning
strategy was proposed for computing certain factor values of diagnosis
results, which are forward reasoning and backward reasoning. Liu et al.
(2013b) presented a fault diagnosis and cause analysis approach based
on the FER approach and DAFPNs, which is able to capture all types of
abnormal event information provided by experts, and identify the root
causes and determine the consequences of the identified abnormal
events by combining forward reasoning and backward reasoning.

4.2.3. ERP implementation and pipeline transportation
Guo et al. (2016) established a comprehensive risk evaluation

framework based on an FPN model for long-distance oil and gas
transportation pipelines, in which the analytic hierarchy process
(AHP), entropy method (EM), and cloud model are adopted to improve
the evaluation accuracy. Pramod et al. (2014) brought out an FPN-
based risk assessment model by selecting certain critical pitfalls in the
implementation of enterprise resource planning (ERP) in small and
medium enterprises.

4.3. Wireless sensor networks

To increase the reliability during routing selection, Hu et al. (2005)
proposed a reliable routing algorithm in mobile ad hoc networks
(MANETs) based on FPNs with their reasoning mechanism. The
algorithm allows the structured representation of network topology
and can compute the most reliable route by comparing the degree of
reliability in the routing sprouting tree. In (Yu et al., 2011), the authors
presented a reliable energy-efficient multi-level routing algorithm for
wireless sensor networks using FPNs. The algorithm considered the
residual energy, number of the neighbors and centrality of each node
for cluster formation, which not only balances the energy load of each
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node but also provides global reliability for the whole network.
Khoukhi et al. (2014) proposed a model, namely FuzzyWMN, which

uses FPNs to realize traffic adaptation in wireless mesh networks
characterized by information uncertainty and imprecision. Based on
the secure ad hoc on-demand distance vector (SAODV), Pouyan and
Yadollahzadeh Tabari (2015) used FPNs to propose a secure routing
protocol in MANET, which is called FPN-SAODV. In the FPN-SAODV
routing protocol, a type of bidirectional node-to-node fuzzy security
verification was carried out for sending and receiving packets between
each pair of nodes. A through route security verification was used for
selecting the most secure route among candidate path through sources
to destination. In (Chiang et al., 2009), the authors focused on a
dynamic knowledge inference approach using AFPNs to discover the
best routing path for multicast routing protocols in a highly bandwidth-
scarce environment. The work in (Tan et al., 2015) found a trust based
routing mechanism to defend against attacks in both data plane and
routing plane in optimized link state routing (OLSR)-based MANET, in
which a trust reasoning model based on FPNs is used to evaluate trust
values of mobile nodes and avoid malicious or compromised nodes,
and a trust based routing algorithm is utilized to select a path with the
maximum path trust value among all possible paths.

4.4. Transportation systems

4.4.1. Bridge damage assessment
Based on the FPNs presented in (Lee et al., 1998), Lee et al. (1999)

proposed a framework of integrated expert systems, called FPN-based
expert system (FPNES), and applied it to damage assessment of a
bridge in Taiwan. Major features of the FPNES are: knowledge
representation through the use of hierarchical FPNs, a reasoning
mechanism based on FPNs, and transformation of modularized fuzzy
rule bases into hierarchical FPNs. Chiang et al. (2000) also developed
an expert system for bridge damage assessment through the FPNES.

4.4.2. Railway operation control and traffic congestion control
Fay (2000) developed a fuzzy knowledge-based system for use in

railway operation control systems and described an FPN notion to
model rule-based expert knowledge in the dispatching support system.
Cheng and Yang (2009) utilized an FPN approach to formulate the
decision processes based on the train dispatching rules transformed
from dispatchers in the case of disturbance, so as to obtain any possible
dispatching option in railway traffic control. In (Milinković et al.,
2013), an FPN model with characteristics of hierarchy, color, time, and
fuzzy reasoning was proposed to simulate traffic processes and train
movements in a railway system for estimating train delays. In this
research, the data detected from the real system was used to train the
neuro-fuzzy adaptive network fuzzy inference system (ANFIS) model,
which was then replicated by an FPN after the results of the fuzzy logic
system were verified. Yin et al. (2015) improved the FPNs to strengthen
their ability of knowledge expression and reasoning, and then estab-
lished an intelligent decision making model for traffic congestion
control.

4.5. Biological and healthcare systems

4.5.1. Gene regulatory networks
Hamed et al. (2010a) proposed an FPN approach to design genetic

regulatory networks and describe the dynamical behavior of gene, and
introduced an efficient reasoning algorithm based on the FPN model to
automatically reason about imprecise and fuzzy information. The
proposed approach is able to obtain results with fuzzy intervals rather
than point values, thus offering more flexible reasoning capability.
Hamed et al. (2010b) further presented a fuzzy reasoning model based
on FPNs for modeling gene regulatory networks, which considers the
regulatory triplets by means of predicting changes in expression level of
the target gene based on input expression level. In (Hamed and Ahson,

2011), an FPN approach for modeling fuzzy rule-based reasoning was
proposed to predict the confidence values for each base called in DNA
sequencing, and was validated by comparing the results produced with
the FPN model and fuzzy logic using the MATLAB Toolbox.

4.5.2. Disease assessment and diagnosis
Hamed (2015) developed an AFPN reasoning algorithm as a

prognostic system to determine the predictive value of risk degree for
esophageal cancer based on the serum concentrations of C-reactive
protein (CRP) and albumin as a set of input data. Chen et al. (2014a,
2014b) used FPNs to propose a rule-based decision making diagnosis
system to evaluate arteriovenous shunt (AVS) stenosis for long-term
hemodialysis treatment of patients. Chiang (2015) created a rule-based
reasoning model by combining fuzzy computing and APN for electro-
cardiograms (ECG)-based mental stress assessment, and Chiang and
Pao (2016) described an EEG-based fuzzy probability model using
fuzzy and APN methodologies for early diagnosis of Alzheimer's
disease.

4.6. Others

4.6.1. System control
Andreu et al. (1997) developed an FPN-based PLC based on a

combination of PNs with possibility theory (PNs with fuzzy markings).
The proposed approach is able to directly integrate continuous control
within discrete-event models, and to implement symbolic specifica-
tions. Dimirovski (2005) proposed a novel approach to FPN reasoning,
generating a solution to initial or another state in Markov-chain
models. In this work, the reasoning was performed by an FPN super-
visory controller by using a fuzzy-rule production system design and a
fuzzy reasoning algorithm. Maeda (1998) dwelled on a method for the
evaluation of ambiguity in a fuzzy algorithm using FPNs, which makes
possible the discrete expression of ambiguity changing, the global
recognition of ambiguities in the whole algorithm with a marking
matrix and easy tracing of state transition by matrix operations.

4.6.2. Computing with words, web learning, and service composition
Since impreciseness and uncertainty are often involved in comput-

ing with words (CWs), Cao and Chen (2010) developed a concurrency
computational model of CW by exploiting FPNs, which is called FPNs
for CWs (FPNCWs). To make the model robust for CWs, a faithful
extension was further made by employing the methodology of fuzzy
reasoning. Chen et al. (2005) applied a dynamic FPN (DFPN) model to
web learning systems to increase the flexibility of the tutoring agent's
behavior and thus provide an appropriate dynamic learning content
structure for a lecture course. In (Huang et al., 2008), a complete
course generation platform was developed to facilitate efficient course
design and management in e-Learning, in which the DFPN was
adopted to dynamically organize courses for lecturers. Cheng et al.
(2015b) presented a fuzzy semantic-based automatic Web service
composition method, in which a fuzzy predicate PN (FPPN) is applied
to model the Horn clause set, and a T-invariant technique is used to
determine the existence of composite services fulfilling the user input/
output requirements.

4.6.3. Formal analysis, real-time decision making, and image
annotation

Shen and Lai (1998) proposed a hybrid model composed of FPNs
and marked PNs for formal specification and verification of digital
systems, in which fuzzy reduction rules and a consistency checking
algorithm are employed to check the consistency of a knowledge base.
Peters et al. (1999) presented an approach to construct PNs for a real-
time decision system and used rough FPNs to create highly parallel
programs to simulate reasoning system computations. The constructed
nets are able to evaluate the design of decision system tables and trace
computations in rules derived from decision tables. Ivasic-Kos et al.
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(2015) defined a fuzzy knowledge-representation based on FPN
(KRFPN) formalism to represent knowledge concepts in an image
and put forward an intelligent system for multi-layered image annota-
tion.

5. Bibliometric analysis

Based on the collected papers on FPN improvements and applica-
tions, a bibliometric analysis is conducted in this section regarding the
quantity of articles published per year and the journals in which the
articles appeared. First, the distribution of the 99 reviewed articles is
shown in Fig. 4.

As we can see, there is a significant growth in the studies concerning
FPNs from the first 5 years (1988–1992) to the recent 5 years (2008–
2012), 3 vs. 20. Particularly, in the last 4 years (2013–2016), 29 papers
have been published on the topic. The growth could also mark a
movement away from the proposition of new FPN models and towards
the use of FPNs for solving real-life engineering problems. Specifically,
the above review indicates that FPNs have been widely implemented in
the fields of fault diagnosis, operational management, wireless sensor
networks, transportation system, and biological and healthcare sys-
tems. Moreover, the FRPN model proposed by Gao et al. (2003) is
found to be the most frequently used FPN approach. It is anticipated
that the trend of FPN publications may be expected to continue
increasing in the coming years because of the distinguished power
and efficiency of FPNs in knowledge representation and reasoning and
the increased interest in knowledge management and artificial intelli-
gence by both researchers and practitioners.

To arrive at an understanding of what outlets most artificial
intelligence scholars publish their work in—that is, academic peer-
reviewed journals—we have further conducted an analysis of the
reviewed articles based on their published journals (see Fig. 5). Note
that only journals in which three or more articles appeared are
analyzed and marked in Fig. 5. The result shows that, there are eight
main journals publishing studies on FPNs within the artificial intelli-
gence community: Expert Systems with Applications (10, 10.1%), IEEE
Transactions on Systems Man and Cybernetics Part B (9, 9.1%), IEEE
Transactions on Systems Man and Cybernetics Part A (8, 8.1%), IEEE
Transactions on Knowledge and Data Engineering (5, 5.1%), and IEEE
Transactions on Fuzzy Systems (4, 4.0%). Apart from these main
journals, 48 journals covered the remaining 54.5% reviewed papers.

6. Observations and future work

6.1. Main findings

6.1.1. Reasoning algorithms
For the convenience of reading and comparison, we summarize the

reviewed reasoning algorithms in Table A2, where the knowledge

reasoning algorithms are generally classified into two types, i.e.
reasoning based on reachability tree and that by algebraic representa-
tion. The two reasoning mechanisms have different advantages and
disadvantages and the details for each one are given in Table 1. Note
that both of the two reasoning mechanisms suffer the state space
explosion issue. That is, dimensions of the sprouting tree or related
matrices depend on the scale of the created FPN model and, with the
increased scale of FPNs, algorithm complexity will increase rapidly.

6.1.2. Knowledge representations
To facilitate the reading and understanding, Table A3 summarizes

the knowledge representation methods discussed in the cited studies.
From Table A3, we can observe that the representation ability of FPNs
is normally improved by considering more knowledge parameters and
assigned them to the arcs of an FPN, e.g., the work by Ahson (1995)
and Carinena et al. (1999). Besides, as far as knowledge acquisition is
concerned, extracting knowledge from domain experts is a time-
consuming and painstaking job; it is very difficult to determine
accurately the knowledge representation parameters in the first place.
Therefore, several studies suggested using uncertainty theories, such as
fuzzy numbers (Chen, 2002), IFSs (Liu et al., 2016a) and linguistic 2-
tuples (Liu et al., 2016b), to acquire vague or imprecise expert
knowledge more naturally.

6.1.3. New FPN models
To improve readability, the comparison table of the different

categories of new FPN models are summarized in Table A4. As shown
in Table A4, lots of alternative FPN modes have been developed for
enhancing knowledge representation and logic reasoning of FPNs, and
each approach has its own characteristics. Especially, four of the
reviewed studies introduced time factors into FPNs so as to represent
the dynamic nature of uncertain knowledge (Carinena et al., 1999; Liu
et al., 2011; Pang et al., 1995; Suraj and Fryc, 2006), and eight papers
present dynamic FPN frameworks which have the learning ability in
real-world applications (Ahson, 1995; Amin and Shebl, 2014; Feng
et al., 2012; Konar et al., 2005; Li and Lara-Rosano, 2000; Li et al.,
2000; Pedrycz and Gomide, 1994; Wang et al., 2014).

6.2. Future research

Based on this particular literature review, we conclude the following
possible directions for future research:

First, it is observed that the FPNs based on reachability tree
analysis is not supportive and robust enough in knowledge representa-
tion and reasoning. Especially, the sources of improvements of FPNs
that have received great attention from the literature are inference
algorithm and knowledge representation related issues. For example,
the fuzzy reasoning algorithms are not suitable for parallel reasoning

Fig. 4. Distribution of the reviewed articles by published years.
Fig. 5. Distribution of articles in terms of published journals.
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and lack of learning mechanism; the knowledge representation para-
meters (e.g. weight and threshold value) are unable to express various
kinds of expert knowledge accurately. Therefore, developing more
advanced vague reasoning algorithms which can not only learn from
the data but also perform knowledge reasoning efficiently should be
explored in the future. For example, additional research on the
reasoning algorithm to detect and recover errors in practical knowl-
edge-based systems is a worthwhile effort. To handle complex systems,
hierarchical structure based reasoning algorithms are expected to
explore such that the complexity for the whole system can be reduced
through decomposition and reuse. Besides, for solving the knowledge
representation issues of FPNs, consideration of more knowledge
representation parameters, such as time factors, is another important
topic that should be tackled. By incorporating the FPN paradigm into a
real-time expert system environment, it is possible to describe a
continuous industrial process.

Second, it has been found that a lot of research efforts have been
devoted on the modification of FPNs in knowledge representation and
reasoning. However, in most FPNs, the knowledge parameters are
restricted to be crisp values between 0 and 1. Only a few uncertainty
methodologies have been incorporated into FPNs in order to arrive at
conclusions based on imprecise rules and facts (Chen, 2002; Liu et al.,
2016a, 2016b). Thus, investigating how to deal with inexact, uncertain
and vague nature of knowledge information is another avenue of
potential research. For instance, the combination of FPNs with other
uncertainty theories (e.g., type-2 fuzzy sets, hesitant fuzzy sets, and
cloud model, etc.) should be examined in the further such that the FPN
model is more powerful in representing domain expert knowledge. In
addition, although many FPN approaches have been adopted to solve
practical problems, there are still some FPN models proposed in the
literature which have not been applied in practice. The applications of
more theoretical models to real-word problems should be investigated
for future research. Furthermore, researchers have mainly applied
FPNs to disassembly process planning, electric power systems, and
mobile ad hoc networks. There are ample opportunities to implement
the FPNs or develop more generic FPNs to solve complex issues in
other fields.

Third, although some comparison results of FPN models have been
presented in preceding studies, different FPN methods have different
advantages and drawbacks. The existing studies did not make sufficient
comparisons among various FPN models. As a result, it is difficult for
the practitioners and engineers to select a suitable FPN model in real
applications. Therefore, in future research, it is necessary to conduct a
detailed comparative study to adequately evaluate and compare the
advantages and disadvantages of different FPNs or to develop some
programs to carry out the evaluation and comparison to aid the
practitioners and scholars in finding out the most suitable ones for
the problem to be solved. Moreover, the development of computer-
aided tools to execute the FPNs given in the literature is certainly an
important direction in order that FPNs can be easily utilized by

practitioners to manage complex problems at higher speed.
Fourth, the continuous increase in the amount and detail of data

captured by organizations nowadays has produced an overwhelming
flow of data in either structured or unstructured format, which are
referred to as big data. Big data are characterized by three aspects
(Hashem et al., 2015): (a) data are numerous, (b) data cannot be
categorized into regular relational databases, and (c) data are gener-
ated, captured, and processed rapidly. However, existing FPN models
have limitations and are inapplicable to the representation and
management of big data. Therefore, novel FPN models that can deal
with big data and real-time applications should be developed in the
future such that the expert system is able to perform large-scale and
complex knowledge inference for decision support. The new opportu-
nity for researchers is to match the accuracy of state-of-the-art models
while reducing reasoning efficiency and computational cost.

7. Conclusions

FPNs are one of the most popular and applicable class of PNs in the
domain of artificial intelligence, which have been widely studied by
researchers and practitioners. In this paper, we have conducted a
systematic literature review of the state of the art literature on FPN
models and their applications from 1988 to 2016 to present the
available body of knowledge and to analyze the trends in considering
FPNs as expert systems involving fuzzy-based reasoning. To our best
knowledge, this is the first comprehensive study reviewing the litera-
ture that improves the capabilities of FPNs and apply FPNs to solve
real-world engineering problems. This paper has set out to provide a
framework of the FPN literature as an aid to the categorization of
studies in this area. Overall, the FPN-based artificial intelligence field is
growing and maturing. Significant room still exists for development
given the small number of reviewed articles and that there are only 99
papers relatively close-related. We believe that this number will
continue to increase given the solid foundation provided by the existing
research, a foundation that did not exist a decade ago. Particularly,
opportunities abound for additional research in formal modeling of
FPNs with practical applications.
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Table 1
Advantages and disadvantages of the two types of knowledge reasoning algorithms.

Advantages Disadvantages

Reachability tree A complex expert system reasoning path can be reduced to a simple
sprouting tree

Large reachability sets and adjacent places tables may result for a complex
expert system

A graphical representation of the inference process can be given for
visual appraisal

The sprouting tree becomes complex as the number of places and transitions
increase

Easy to follow and find inference path Reasoning speed and efficacy is low
Hard to be stored and processed by computer

Algebra representation A complex fuzzy expert system reasoning path can be reduced to
simple matrix operations

The dimensions of these matrices and vectors are increased with the growing
of the scale of the FPN model

Ease in computer processing
Reasoning speed and efficacy is high
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Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.engappai.2017.01.012.
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