

available at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/funeco

Commentary Fungal under-representation is (indeed) diminishing in the life sciences

SUMMARY

A commentary in Fungal Ecology (Pautasso 2013) reported a significant (although shallow) increase through time in the proportion of papers mentioning fungi for 25 out of 30 keywords (ranging, e.g., from ecology to mountain, from agriculture to disease). Dam (2013) complains in his commentary about the rounding-off of the parameter estimates in the scatterplots of Pautasso (2013) and suggests the use of relative years. When repeating the analyses starting to count years from 1990, the regression lines have exactly the same p values, r squares and slopes. Dam (2013) also offers an alternative explanation for the decrease in fungal under-representation in terms of increased use of diverse keywords by researchers, potentially due to the increased importance of the h-index in evaluating scientists. One problem with this explanation is that the h-index was invented in 2005, whereas the observed decrease in fungal underrepresentation has occurred gradually over the period 1991–2010. Additional evidence provided here confirms the decrease in the under-representation of fungi, because 'fungal' papers have increased in proportion over the last years for the literature mentioning antibiotics, endophytes, pharmacology, patents, old-growth, humans, taxonomy, phylogeny, evolution, biochemistry, chemistry, nanotechnology, cells, microbes, metaanalysis, bioinformatics, biomaterials, biotechnology, long-term, boreal, tropical, Mediterranean and gardens.

A commentary in *Fungal Ecology* reported that fungal underrepresentation is diminishing, albeit slowly, in the life sciences (Pautasso 2013). That study investigated whether there is a temporal trend over the period 1991–2010 in the proportion of papers mentioning fungi out of papers retrieved from Web of Science using various keywords. A significant (although shallow) increase through time in the proportion of 'fungal' papers was found for 25 out of 30 keywords (ranging, e.g., from biodiversity to climate change, from urban to network and health).

Dam (2013) complains in his commentary about the rounding-off of the parameter estimates in the scatterplots of Pautasso (2013) and suggests the use of relative years. When repeating the analyses replacing 1991 with 1, 1992 with 2, etc., the regression lines have exactly the same *p* values, *r* squares

and slopes (Table 1). This is because subtracting 1990 from the values on the x-axis corresponds to moving the y-axis to the right by 1990 in the Cartesian space, without distorting it. In other words, if the rate of increase for, e.g., the proportion of 'fungal' papers on grasslands is 1.5% per decade (0.15% per year), this is the case both if we start counting years from 1990 or from year 0. Providing additional precision to such an estimate may not help our understanding much: if the rate is 0.153% per year, at the end of the decade the proportion will still only have increased by roughly 1.5%.

What differs when using absolute versus relative years is the intercept, which in Pautasso (2013) corresponded to the proportion of 'fungal' papers published back in Ancient Roman Times (can we really be precise in such estimates?), whereas the intercept in Table 1 is the estimated proportion of 'fungal' papers published in 1990, which could be easily gauged from the scatterplots in Pautasso (2013). May I add that the intercept of regression lines is immaterial when trying to assess whether their slope is significantly different from zero.

Table 1 also provides standard errors for intercepts and slopes, as requested by Dam (2013). Significant trends as assessed from the p values in Pautasso (2013) are still significant when assessing them using the standard errors. For the epidemi* scatterplot, Pautasso (2013) used a quadratic function because it explains 76% of the variance, whereas a linear regression only explains 58%. It would also have been possible to fit a linear increase for the first decade and no (or a constant?) relationship for the second one. In all cases, it is clear from a visual inspection of the scatterplot that, unlike for the other topics, there has been a change in the trend towards the middle of the studied period.

Dam (2013) also criticizes the lack of information about how many papers in total were retrieved for each keyword. This information is now provided in Table 1, for each keyword on its own and when combined with 'fung*' and 'insect*'. There is no significant association of such numbers with neither r2 nor slopes of the regressions (unpubl. observations). I agree with Dam (2013) that, given the quantities of papers on each studied topic, it was "effectively impossible to judge how many papers really dealt in depth with fungi and the chosen keywords". However, this was acknowledged by Pautasso (2013): "Whilst for example not all ecological papers will be

Table I – Falailletei est	innates of the	regression	5 III Faulasso (2013) v	viteli usilig 1991 – 1		
Keyword (tot papers)		R ²	Intercept (±s.e.)	Slope (±s.e.)	P value	N papers
ecolog*	Fungi	0.74	2.26 (±0.09)	0.055 (±0.008)	< 0.001	5 722
188 985	Insects	0.19	5.33 (±0.14)	0.024 (±0.012)	0.06	9 661
biodiversity	Fungi	0.44	3.20 (±0.37)	0.117 (±0.031)	0.001	1 787
36 832	Insects		· · · ·	, , , , , , , , , , , , , , , , , , ,	n.s.	2 170
"species richness"	Fungi	0.51	2.42 (±0.24)	0.085 (±0.020)	< 0.001	780
21 391	Insects	0.31	11.7 (±0.9)	-0.201 (±0.071)	0.01	1 912
biolog*	Fungi	0.65	2 34 (+0.06)	0.039(+0.005)	< 0.001	16 472
607 668	Insects	0.05			ns	15 518
environment	Fungi	0.93	0.98 (+0.03)	0.033 (+0.002)	< 0.001	12 663
895 856	Insects	0.55	0.50 (±0.05)	0.000 (±0.002)	n s	12 003
soil	Fungi	0.51	6.06 (+0.12)	0.042 (+0.010)	<0.001	10 237
202 227	Insects	0.20	2 32 (±0.09)	0.012 (±0.010)	0.05	6 274
molecular	Fungi	0.20	$0.77 (\pm 0.03)$	$-0.013 (\pm 0.007)$	<0.001	16 420
1 104 420	Incocto	0.57	$0.77 (\pm 0.03)$	$0.049 (\pm 0.002)$	<0.001	10 +20
1 194 429	Funci	0.72	0.71 (±0.05)	0.020 (±0.003)	<0.001	0.222
	Fuligi	0.05		0.008 (1.0.002)	11.5.	9 2 3 3
588 330	Insects	0.25	1.75 (±0.04)	$-0.008 (\pm 0.003)$	0.02	9/18
Tandscape	Fungi	0.69	0.30 (±0.06)	$0.031 (\pm 0.005)$	<0.001	538
72 203	Insects	0.77	1.30 (±0.17)	0.111 (±0.014)	<0.001	2 065
biogeogr*	Fungi	0.22	1.32 (±0.24)	0.045 (±0.020)	0.04	357
18 366	Insects				n.s.	917
mountain*	Fungi	0.50	0.78 (±0.12)	0.016 (±0.010)	<0.001	924
68 341	Insects				n.s.	1 663
"climate change*"	Fungi	0.72	0.05 (±0.10)	0.057 (±0.008)	<0.001	455
48 880	Insects	0.47	1.02 (±0.18)	0.060 (±0.015)	<0.001	953
marine	Fungi	0.88	0.80 (±0.07)	0.069 (±0.001)	<0.001	2 389
142 416	Insects				n.s.	1 015
freshwater	Fungi				n.s.	610
37 509	Insects	0.26	2.39 (±0.12)	0.025 (±0.010)	0.02	1 023
forest*	Fungi	0.83	2.82 (±0.14)	0.110 (±0.011)	< 0.001	6 782
160 617	Insects				n.s.	7 423
grassland*	Fungi	0.71	2.79 (±0.28)	0.153 (±0.023)	< 0.001	1 214
25 194	Insects		. ,	. ,	n.s.	981
agric*	Fungi	0.79	2.39 (±0.12)	0.084 (±0.010)	< 0.001	3 875
110 945	Insects	0.78	3.14 (±0.12)	0.084 (±0.010)	<0.001	4 697
urban*	Fungi	0.71	0.22 (±0.03)	0.014 (±0.002)	< 0.001	539
133 731	Insects	0.49	0.51 (±0.08)	0.028 (±0.007)	< 0.001	1 188
seed*	Fungi	0.36	5.61 (+0.12)	-0.031 (+0.010)	0.005	10 565
201 877	Insects	0.26	3 57 (+0.09)	-0.019(+0.008)	0.02	6 734
fruit*	Fungi	0.20	5157 (±0105)		ns	6 301
102 258	Insects	0.30	6 58 (+0 25)	-0.057 (+0.021)	0.01	5 985
food*	Fungi	0.93	$0.92 (\pm 0.23)$	$0.050 (\pm 0.021)$	<0.01	5 407
319 771	Insects	0.22	3 17 (±0.08)	-0.016 (+0.007)	0.04	9 471
wood	Fungi	0.22	5.17 (±0.00)	-0.010 (±0.007)	0.04	5 249
64 751	Incosts	0.55	1.07 (+0.14)	0.056 (+0.012)	<0.001	1 704
"now anorica"	Funci	0.55	$1.57 (\pm 0.14)$	$0.030 (\pm 0.012)$	<0.001	2 201
new species	Fuligi	0.45	3.00 (±0.33)	$0.112 (\pm 0.029)$	< 0.001	2 201
43 083	Insects	0.46	$3.03 (\pm 0.22)$	$0.073 (\pm 0.019)$	<0.001	1/52
network	Fungi	0.43	0.21 (±0.02)	$0.007 (\pm 0.002)$	<0.001	1 544
512 346	Insects	0.59	0.19 (±0.02)	$0.007 (\pm 0.001)$	<0.001	1 464
epidemi*	Fungi	0.78	1.039 (±0.123)	$-0.0048 (\pm 0.0011) [x^2]$	<0.001	4 694
				0.1319 (±0.0235) [x]		
245 513	Insects	0.21	0.63 (±0.04)	0.007 (±0.003)	0.04	1 800
pathog*	Fungi	0.33	7.49 (±0.16)	0.040 (±0.013)	0.007	30 531
380 713	Insects	0.92	1.10 (±0.03)	0.034 (±0.002)	<0.001	5 882
disease*	Fungi	0.19	1.47 (±0.03)	0.006 (±0.003)	0.05	27 851
1 796 931	Insects	0.71	0.36 (±0.01)	0.007 (±0.001)	<0.001	7 967
health*	Fungi	0.38	0.55 (±0.23)	0.006 (±0.002)	0.003	6 492
1 027 192	Insects	0.71	0.27 (±0.01)	0.007 (±0.001)	< 0.001	3 726
infect*	Fungi	0.58	4.42 (±0.08)	0.034 (±0.007)	< 0.001	40 321
833 924	Insects				n.s.	11 866
immun*	Fungi	0.90	1.04 (±0.03)	0.032 (±0.002)	< 0.001	16 996
1 196 557	Insects				n.s.	10 210

Table 2 – As in Table 1, for an additional set of 30 keywords										
Keyword (Tot papers)		R ²	Intercept (±s.e.)	Slope (±s.e.)	P value	N papers				
fossil*	Fungi	0.18	0.92 (±0.09)	0.015 (±0.008)	0.06	448				
40 327	Insects	0.74	2.33 (±0.15)	0.088 (±0.012)	<0.001	1 391				
antibiot*	Fungi	0.32	3.42 (±0.15)	0.037 (±0.013)	0.009	5 472				
141 127	Insects				n.s.	949				
herbari*	Fungi				n.s.	319				
2 575	Insects				n.s.	42				
endophyt*	Fungi	0.55	63.69 (±3.06)	0.0960 (±0.0283) [x ²]	0.004,	3 450				
				-1.5240 (±0.5822) [x]	0.02, resp.					
5 644	Insects	0.35	9.85 (±0.95)	-0.247 (±0.080)	0.006	372				
pharmac*	Fungi	0.81	0.42 (±0.04)	0.026 (±0.003)	<0.001	2 792				
372 511	Insects				n.s.	1 773				
patent*	Fungi	0.40	0.21 (±0.01)	0.019 (±0.005)	0.003	151				
34 732	Insects	0.52	0.45 (±0.04)	-0.165 (±0.004)	<0.001	89				
old-growth	Fungi	0.47	3.80 (±0.74)	0.245 (±0.062)	<0.001	295				
4 211	Insects				n.s.	186				
sustainab*	Fungi				n.s.	815				
64 103	Insects				n.s.	920				
human*	Fungi	0.96	0.37 (±0.02)	0.029 (±0.001)	<0.001	12 502				
1 743 485	Insects	0.66	0.49 (±0.02)	0.009 (±0.001)	<0.001	10 556				
taxonom*	Fungi	0.21	5.34 (±0.25)	0.046 (±0.021)	0.04	4 256				
71 672	Insects	0.59	2.95 (±0.19)	0.082 (±0.016)	<0.001	2 876				
systematics	Fungi				n.s.	1 055				
24 689	Insects	0.56	1.86 (±0.22)	0.089 (±0.018)	<0.001	725				
phylogen*	Fungi	0.82	2.81 (±0.21)	0.163 (±0.018)	<0.001	5 756				
114 072	Insects	0.64	3.84 (±0.16)	0.077 (±0.014)	<0.001	5 576				
evolution*	Fungi	0.82	0.67 (±0.04)	0.028 (±0.003)	<0.001	6 281				
610 867	Insects	0.79	1.60 (±0.05)	0.036 (±0.004)	<0.001	12 558				
biochem*	Fungi	0.82	1.10 (±0.06)	0.048 (±0.005)	<0.001	3 852				
229 486	Insects		· · · ·	· · · ·	n.s.	3 671				
chem*	Fungi	0.80	0.90 (±0.03)	0.020 (±0.002)	<0.001	16 689				
1 451 717	Insects				n.s.	12 976				
botan*	Fungi				n.s.	437				
12 684	Insects	0.59	2.31 (±0.56)	0.239 (±0.047)	<0.001	677				
nano*	Fungi	0.60	0.451 (±0.056)	$0.0023 (\pm 0.0005) [x^2]$	<0.001	888				
	0			-0.0517 (+0.011) [x]						
485 370	Insects	0.25	0.19 (±0.02)	-0.005 (±0.002)	0.02	588				
cellular	Fungi	0.76	0.73 (+0.04)	0.023 (+0.003)	< 0.001	3 832				
377 909	Insects				n.s.	2 689				
neuro*	Fungi	0.20	0.53 (±0.01)	-0.0024 (±0.0011)	0.05	4 795				
963 768	Insects	0.87	1.13 (±0.02)	-0.019 (±0.002)	<0.001	8 706				
microb *	Fungi	0.84	6.49 (±0.15)	0.121 (±0.012)	<0.001	16 145				
199 877	Insects				n.s.	2 720				
meta-analysis	Fungi	0.58	-0.35 (±0.08)	0.033 (±0.007)	< 0.001	174				
39 258	Insects	0.58	0.03 (+0.06)	0.024 (+0.005)	< 0.001	142				
bioinformatic*	Fungi	0.66	-0.19 (+0.21)	0.104 (+0.018)	< 0.001	257				
17 423	Insects	0.85	-0.27 (+0.09)	0.079 (+0.008)	< 0.001	179				
biomaterial*	Fungi	0.63	$-0.02(\pm0.03)$	$0.032 (\pm 0.006)$	< 0.001	99				
22 078	Insects	0.61	-0.09 (+0.05)	$0.023 (\pm 0.004)$	<0.001	55				
hionhysic*	Fungi	0101	0.05 (±0.05)	0.020 (±0.001)	ns	143				
22 233	Insects	0.48	2 26 (+0 23)	-0.076 (+0.019)	< 0.001	268				
biotechnol*	Fungi	0.35	2.20 (±0.23) 3.11 (±0.37)	$0.010 (\pm 0.013)$	0.006	1 254				
28 310	Insects	0.55	5.11 (±0.57)	0.010 (±0.051)	0.000 n s	529				
long-term	Fungi	0.24	0.53 (+0.03)	0.006 (+0.002)	0.03	2 917				
481 868	Insects	0.21	0.49 (±0.03)	$0.005 (\pm 0.002)$	0.04	2 669				
boreal	Fungi	0.22	1 30 (±0.27)	0.257 (±0.022)	<0.01	730				
15 123	Insects	0.00	1.50 (±0.27)	0.237 (±0.022)	<0.001 n c	562				
tronical	Fungi	0.52	2 17 (+0 16)	0.060 (+0.014)	< 0.001	2 450				
83 959	Insects	0.52	2.17 (±0.10)	0.000 (±0.014)	_0.001 n s	2 430				
Mediterranean	Fungi	0 34	0.92 (+0.14)	0.037 (+0.012)	0.007	744				
52 734	Insects	0.54	0.52 (±0.14)	0.037 (±0.012)	n s	1 300				
garden*	Fungi	0.73	1 34 (+0 27)	0 160 (+0 023)	< 0.001	590				
18 104	Insects	0.75	$1.94(\pm 0.27)$ 1.99(± 0.32)	$0.100 (\pm 0.023)$ 0.097 (± 0.023)	0.002	570				
10 101	maeeta	0.42	1.55 (±0.52)	0.057 (±0.027)	0.002	512				

retrieved using the keyword 'ecolog'' (and some retrieved papers may not be strictly ecological), the procedure allows comparability among years."

Dam (2013) also offers an alternative explanation for the decrease in fungal under-representation in terms of increased use of diverse keywords by researchers, potentially due to the increased importance of the h-index in evaluating scientists. One problem with this explanation is that the h-index was invented in 2005, whereas the observed decrease in fungal under-representation has occurred gradually over the period 1991-2010. Moreover, not all countries may be evaluating researchers using the h-index or similar indicators. For example, in the country where I work now there are many researchers on fixed-term jobs with higher h-index than many researchers with permanent positions. As for an increased use of keywords, this is difficult to test because Web of Science does not seem to allow a search restricted to the keywords used by the authors. Moreover, this explanation overlooks the absence of an increasing trend in the proportion of papers mentioning insects in the literature on various topics for which papers mentioning fungi are proportionately increasing.

A similar difference between fungi and insects is found when repeating the analysis of Pautasso (2013) for another set of 30 keywords (Table 2): 'fungal' papers have increased in proportion over recent years for the literature mentioning antibiotics, endophytes, pharmacology, patents, old-growth, humans, taxonomy, phylogeny, evolution, biochemistry, chemistry, nanotechnology, cells, microbes, meta-analysis, bioinformatics, biomaterials, biotechnology, long-term, boreal, tropical, Mediterranean and gardens, whereas the proportion of papers mentioning insects has significantly increased for about 50% of these topics only (Table 2). Incidentally, for endophytes and nanotechnology, a quadratic function explained more variation in the proportion of 'fungal' papers than a linear regression, with an initial decrease and a recent increase.

These additional data are consistent with the (slow) decrease in fungal under-representation in the life sciences reported in Pautasso (2013). Anybody trying to keep up with the mycological literature (including literature reviews relevant to fungi) is likely to agree that papers relevant to mycologists are increasing in numbers. Nonetheless, to redress the traditional lack of attention to fungi compared to less diverse but more studied groups, papers on fungi have to increase in numbers proportionately more than the rest of the literature (which is also rapidly expanding). This is the pattern that appears to be

present in many (not all) cases in the life science literature, whether we use years relative to 1990 or to 2013 yr ago.

Acknowledgements

Many thanks to anonymous reviewers for helpful comments on a previous draft.

REFERENCES

Dam N, 2013. Comment on 'Fungal under-representation is (slowly) diminishing in the life sciences'. Fungal Ecology 6.

Pautasso M, 2013. Fungal under-representation is (slowly) diminishing in the, life sciences. Fungal Ecology 6: 129–135.

ARTICLE INFO

Accepted 25 February 2013

Corresponding editor: Lynne Boddy

KEYWORDS

Bibliometric analysis Biological sciences Citation databases Entomological literature H-index Keyword search Mycologists Scientometrics Temporal trend Web of Science

Marco PAUTASSO

Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 34293 Montpellier, France E-mail address: marco.pautasso@cefe.cnrs.fr

1754-5048/\$ — see front matter © 2013 Elsevier Ltd and The British Mycological Society. All rights reserved.

http://dx.doi.org/10.1016/j.funeco.2013.03.001