
Information and Software Technology 80 (2016) 73–88

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Functional size approximation based on use-case names

Mirosław Ochodek

∗

Faculty of Computing, Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, Pozna ́n 60-965, Poland

a r t i c l e i n f o

Article history:

Received 25 April 2016

Revised 16 August 2016

Accepted 19 August 2016

Available online 21 August 2016

Keywords:

Functional size measurement

Approximate software sizing methods

COSMIC

IFPUG Function Point Analysis

Size estimation methods

Use cases

a b s t r a c t

Context: Functional size measures, such as IFPUG Function Points or COSMIC, are widely used to sup-

port software development effort estimation. Unfortunately, applying the COSMIC or IFPUG Function Point

Analysis methods at early stages of software development is difficult or even impossible because avail-

able functional requirements are imprecise. Moreover, the resources that could be allocated to perform

such measurement are usually limited. Therefore, it is worth investigating the possibility of automating

the approximation of IFPUG Function Points or COSMIC early in software projects.

Objective: Given a UML use-case diagram or a list of use-case names, approximate COSMIC and IFPUG

FPA functional size in an automatic way.

Method: We propose a two-step process of approximating the functional size of applications based on

use-case goals. In the first step, we process the names of use cases, expressed in a natural language and

assign each of their goals into one of thirteen categories. In the second step, we employ information

about categories of use-case goals and historical data to construct prediction models and use them to

approximate the size in COSMIC and Function Points. We compare the accuracy of the proposed methods

to the average use-case approximation (AUC), which is their most intuitive counterpart, and the automatic

method proposed by Hussain, Kosseim and Ormandjieva (HKO).

Results: The prediction accuracy of the two proposed approximation methods was evaluated using a

cross-validation procedure on a data set of 26 software development projects. For both methods, the

prediction error was low compared to AUC and HKO.

Conclusion: Developers who document functional requirements in a form of use cases might use the

proposed methods to obtain an early approximation of the application size as soon as use-case goals are

identified. The proposed methods are automatic and can be considered as a replacement for AUC.

© 2016 Elsevier B.V. All rights reserved.

1

P

p

a

O

o

m

s

p

t

i

d

F

s

w

[

l

s

n

i

v

p

l

C

g

h

0

. Introduction

One of the most important problems considered in Project-

ortfolio Management (PPM) is the selection of projects to the

roject pipeline [1] . To make a good decision, one needs to know

t least the business value and effort associated with each project.

bviously, in the context of PPM exact values are not known, and

ne has to rely on their indicators. One of such indicators, com-

only accepted in software development projects, is the functional

ize of an application [2] .

Several functional size measurement (FSM) methods have been

roposed so far. The most recognized among them is IFPUG Func-

ion Point Analysis (FPA). The method was proposed by Albrecht

n 1979 [3] . It has been widely accepted by industry, and several

ifferent variants have been proposed so far, e.g., NESMA FPA [4] ,
∗ Corresponding author.

E-mail address: mochodek@cs.put.poznan.pl , Miroslaw.Ochodek@cs.put.poznan.pl

c

[

ttp://dx.doi.org/10.1016/j.infsof.2016.08.007

950-5849/© 2016 Elsevier B.V. All rights reserved.
ISMA FPA [5] . The IFPUG FPA method inspired other FSM methods

uch as Mark II FP [6] and COSMIC [7] .

In the context of PPM, the decision maker is often presented

ith a business problem description and outline of the solution

8,9] . As regards software projects, one method of presenting a so-

ution outline is a UML use-case diagram [10] , augmented with

ome comments. To ensure the usefulness of such diagrams, the

ames of use cases must correctly reflect the user goals. Therefore,

t would be beneficial to investigate if the names of use cases pro-

ide information that might be valuable in the context of size ap-

roximation

1 and effort estimation. Therefore, the following prob-

em can be formulated:

ore problem: Given a list of use-case names and historical data re-

arding functional size measurement, provide an approximation of the
1 To avoid confusion between the terms: effort estimation and size estimation , it is

ommonly accepted to use the term size approximation when referring to the latter

11] .

http://dx.doi.org/10.1016/j.infsof.2016.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.08.007&domain=pdf
mailto:mochodek@cs.put.poznan.pl
mailto:Miroslaw.Ochodek@cs.put.poznan.pl
http://dx.doi.org/10.1016/j.infsof.2016.08.007

74 M. Ochodek / Information and Software Technology 80 (2016) 73–88

Repository of scientific papers

UC1: Remove a paper

Actors: Author

Main scenario:
1. Author requests to view his/her papers.
2. System presents the author's papers.
3. Author selects a paper to be removed from the repository.
4. Author asks the system to remove the selected paper.
5. System removes the paper from the repository.
6. System informs the author that the paper has been removed.

Alternative scenarios:
1.A. Author does not have any papers in the repository.
 1.A.1. System informs the author that he/she does not have
 any papers in the repository.
 1.A.2. Use case finishes.

Author

Remove a paper

Repository of scientific papers

UC1: Remove a paper

Actors: Author

Main scenario:
1. Author requests to view his/her papers.
2. System presents the author's papers.
3. Author selects a paper to be removed from the repository.
4. Author asks the system to remove the selected paper.
5. System removes the paper from the repository.
6. System informs the author that the paper has been removed.

Alternative scenarios:
1.A. Author does not have any papers in the repository.
 1.A.1. System informs the author that he/she does not have
 any papers in the repository.
 1.A.2. Use case finishes.

Author

Remove a paper

Fig. 1. An example of a use case and use-case diagram.

p

b

p

a

p

s

t

u

t

(

i

u

o

b

T

s

a

c

functional size of an application, expressed in COSMIC or IFPUG Func-

tion Points.

There are two types of methods solving the above-stated

problem: (1) automatic and (2) requiring expert judgment. In

this paper, we are interested in the former ones. Investigating

this problem not only provides insight into how good computers

can be at solving AI-like problems, but it can also be useful in a

situation when there are many project proposals on the table, and

one needs to evaluate them quickly (as it is in the case of PPM).

As follows from the overview of functional size approximation

methods prepared by COSMIC Consortium [11] and from the lit-

erature review performed by the author, the methods applicable

to Core problem are the average use-case approximation (AUC)

[12,13] and the HKO method (Hussain–Kosseim–Ormandjieva) [14] .

The former ignores the names of use cases—it takes into account

only their number. It is interesting to see how taking into account

use-case names can improve the accuracy of functional size ap-

proximation. The HKO method is based on frequency of linguis-

tic features, and originally was proposed as a solution to a differ-

ent problem. However, it seems inappropriate to arbitrary reject it

from the set of possible approaches.

In this paper, we introduce a categorization scheme of use-case

goals reflected in use-case names. It aims at capturing the rela-

tionship between the goals of use cases and the semantics of use-

case scenarios. Similar approaches that rely on the categorization

of use-case transactions and actions have been successfully applied

to other problems, such as effort estimation based on use-case sce-

narios [15,16] and inferring about events in use cases [17] . The

approach seems promising also in the context of the considered

problem. Therefore, it seems beneficial to investigate the following

research questions:

RQ1: Is it possible to propose a categorization scheme of use-

case goals that would support functional size approximation

based on use-case names?

RQ2: How to automatically categorize use-case names (expressed

in a natural language) according to the proposed categories

of use-case goals?

RQ3: How to automatically approximate COSMIC and IFPUG FPA

functional size of an application based on use-case names

labeled with the categories of goals and historical data con-

cerning functional size measurement?

The paper is organized as follows. In Section 2 , we present

background information regarding use cases and the FSM meth-

ods considered in the study. We also discuss related studies con-

cerning functional size approximation. Section 3 presents the re-

search methodology, including the framework used to evaluate the

accuracy of the approximation methods. In Section 4 , we present

the data set of twenty-six software development projects consid-

ered in the study. Section 5 introduces thirteen categories of use-

case goals and discusses their usefulness in the context of size

approximation (RQ1). Section 6 addresses question RQ2. We pro-

pose a method for automatic classification of use-case goals, and

evaluate its prediction accuracy. Section 7 focusses on RQ3 and

proposes two functional approximation methods. Evaluation of the

prediction accuracy of these methods is presented in Section 8 .

Section 9 discusses the threats to validity of the study. Ths paper

is concluded in Section 10 .

2. Background and related work

2.1. Use cases

Use cases are a popular [18,19] scenario-based technique of de-

scribing the interaction between end-user (actors) and the sys-

tem; which leads to obtaining an important goal from the user’s
erspective. These are called user-level use cases (there are also

usiness-level use cases that describe the interaction between peo-

le and organizational units). The nature of user-level use cases is

ccurately captured by the OTOPOP rule (one time, one place, one

erson) [20] . The rule states that the goal of a user-level use case

hould be attainable by a single user during a single session with

he system.

State-of-the-art guidelines for writing use cases [21,22] advise

s to document use cases with:

• A name that accurately expresses the goal of an actor. It should

be formulated using a simple [verb + object] clause with an im-

plied subject being the actor of the use case (e.g., “submit a

paper”);

• Actors participating in the use case (people, devices, or external

systems);

• The main scenario , i.e. the most common sequence of steps al-

lowing the actor to obtain the goal; according to Övergaard and

Palmkvist [23] , use-case scenarios may present different levels

of details regarding the internal processing within the system,

i.e., black-box (only the interaction between the actor and the

system is described), gray-box (the most crucial system opera-

tions are presented that are important for the interaction with

the actor), and white-box (detailed information about the inter-

nal processing is revealed).

• Alternative scenarios that are executed in response to the occur-

rence of some specified events (e.g., a user provided an invalid

input).

An example of a use case specified according to the aforemen-

ioned guidelines is presented in Fig. 1 .

Use cases are often visualized using UML use-case diagrams

UCD), which show actors and their goals. An example of a UCD

s presented in Fig. 1 . This diagram helps to get an overview of a

se-case model without overwhelming the reader with the details

f use-case scenarios.

There are three main types of relationships that can be defined

etween use cases: inclusion, extension, and generalization [22] .

hey are introduced in use-case models to reduce redundancies of

cenarios between use cases. In the paper, we will reject included

nd specialized use cases from the analysis unless they represent

omplete, user-level use cases on their own.

M. Ochodek / Information and Software Technology 80 (2016) 73–88 75

2

M

t

f

2

A

U

a

i

T

s

I

e

t

D

n

f

i

p

m

t

[

t

p

b

m

s

e

c

t

v

s

u

p

t

t

f

l

t

a

c

s

o

o

w

l

2

m

m

t

m

i

A

r

(

c

E

m

r

s

t

a

p

a

i

s

I

t

w

2

[

f

l

a

&

t

r

t

i

i

u

p

w

c

c

c

t

i

l

m

b

F

T

o

p

E

t

E

f

e

r

t

b

M

i

m

a

t

w

o

o

.2. Functional size measurement

In this section, we will briefly present the IFPUG FPA and COS-

IC functional size measurement methods. We will also discuss

he existing approaches to approximate functional size, with the

ocus on use cases.

.2.1. Function Point Analysis

The Function Point Analysis (FPA) method was introduced by

lan Albrecht in 1979 [3] . In 1984, the International Function Point

ser Group (IFPUG) was founded, whose goal has been to maintain

nd popularize Albrecht’s method. Since 1988, it has been publish-

ng revised versions of the IFPUG FPA method on a regular basis.

he IFPUG FPA method has been also approved as an international

tandard (ISO/IEC 20926:2009) [24] . Parallel to the development of

FPUG FPA, several different variants of the method were proposed,

.g., NESMA FPA [4] , FISMA FPA [5] .

IFPUG FPA includes two main Basic Functional Component (BFC)

ypes, i.e., data functions (DF) and transactional functions (TF).

ata functions are classified as internal logical files (ILF) or exter-

al interface files (EIF). There are also three types of transactional

unctions: external inputs (EI), external outputs (EO), and external

nquiries (EQ). Each transactional function is a unique elementary

rocess (EP). EP is defined as “the smallest unit of activity that is

eaningful to the user, which must be self-contained and leaves

he business of the application being counted in a consistent state”

24] .

In order to calculate the functional size of an application, each

ransactional and data function is assigned into one of three com-

lexity classes (low, average, high). Data functions are classified

ased on the number of data element types (DET) and record ele-

ent types (RET). The complexity of transactional functions is as-

essed based on the number of DETs and logical file types refer-

nced (FTR). Depending on the type and complexity, a function

ontributes a certain amount of Function Points (FP) to the func-

ional size of the application, which is calculated as a sum of indi-

idual contributions of the functions included in the measurement

cope.

Several authors investigated the possibility of mapping between

se-case models and BFCs of the IFPUG FPA method [25–29] . In

articular, they proposed rules and guidelines on how to measure

he size of applications based on use-case models. Most of the au-

hors concluded that use-case scenarios are too abstract to be used

or identifying and measuring elementary processes. The same re-

ates to data functions. Use cases might help to identify poten-

ial logical files, but they should not provide detailed information

bout the data model.

Several authors investigated inter-correlations between the

omponents upon which the FP counting is based [30,31] . These

tudies suggest that it seems possible to simplify the method. One

f the simplifications proposed by Lavazza et al. [31] was to count

nly the size of transactional functions (FP TF). This variant seems

ell suited for use cases because it rules out the necessity of ana-

yzing data models.

.2.2. The COSMIC method

The COSMIC method is a popular, second generation FSM

ethod. It has been developed by the Common Software Measure-

ent International Consortium (COSMIC). The method has the sta-

us of an international standard (ISO/IEC 19761:2003) [7] .

The BFCs considered in the COSMIC method are data move-

ents (Entry, Exit, Read, or Write). The data movements are

dentified and counted within the scope of functional processeses .

 functional process is defined as a set of data movements, rep-

esenting an elementary part of the Functional User Requirements

FUR). Each functional process is unique within the FUR and
an be defined independently of any other functional process.

very functional process has a triggering Entry and a set of data

ovements that is needed to meet its FUR for all the possible

esponses to its triggering Entry [32] .

The unit of measure is called COSMIC Function Point (CFP). A

ingle CFP corresponds to a movement of data attributes belonging

o a single data group. Therefore, the functional size is calculated

s the total number of data movements within all the functional

rocesses within in the scope of measurement.

The mapping between COSMIC and use-case models has been

lso considered [33] . The authors seem unanimous in their opin-

ons that availability of detailed use-case scenarios is neces-

ary to apply the COSMIC method based on use cases [34–37] .

t is required that use-case scenarios provide detailed informa-

ion about all the data movements, including local reads and

rites.

.3. Early and rapid functional size approximation methods

Size approximation methods can be classified as early or rapid

38] . A method is considered early if it allows for approximating

unctional size before the FURs are specified at the level of granu-

arity accepted by the FSM method. Rapid means that the method

llows us to approximate the size more efficiently (processing time

 cost) than in the case of measurement (usually compromising

he accuracy of measurement).

A common approach to functional size approximation is to de-

ive a scaling factor as an average size of requirements. In the con-

ext of this study, the most interesting example of this approach

s the average use-case approximation method (AUC) [12] because

t can be easily applied to approximate functional size based on

se-case diagrams [13] .

Fixed size classification and equal size bands are two exam-

les of approximation by classification [11] . In these approaches,

e create a certain number of complexity classes of functional

omponents. Then we determine a scaling factor for each of these

lasses. In the equal size bands approach, the boundaries between

lasses (size bands) are determined in the calibration process so

hat the total size of all the functional components in each band

s the same. Then the average size of functional components be-

onging to a band is used to approximate the size of the esti-

ated functional component that is expected to belong to that

and.

NESMA proposed two early and rapid methods applicable to

unction Points: NESMA Indicative (FPA i) and Estimated FPA [39] .

he FPA i method requires identifying potential logical files based

n a data model. Then, the approximate size is obtained by multi-

lying the number of ILFs by 35 and the number of EIFs by 25. The

stimated NESMA method requires data and transactional func-

ions to be identified and classified. All transactional functions (EI,

Q, EO) are considered to be of average complexity, and all data

unctions (ILF, EIF) are assumed to be of low complexity.

Early & Quick Function Points (E&Q FP) [40] combines differ-

nt prediction approaches to allow approximation of size based on

equirements expressed at a different level of granularity. Initially,

he method was proposed to approximate IFPUG Function Points,

ut in 2004, Conte et al. [41] adapted that technique to the COS-

IC method.

Another approximation method for IFPUG FPA and COSMIC

s the EASY (Early & Speedy) Function Points method [42] . The

ethod allows expressing uncertainty about the expected size of

 function. The measurer provides the probability that the func-

ion will have a certain size. The probability level is further used to

eight the size. The EASY approximation approach provides some

f the commonly used probability distributions to ease the process

f modeling distributions.

76 M. Ochodek / Information and Software Technology 80 (2016) 73–88

Table 1

Applicability of COSMIC and FPA functional size approximation methods to use cases.

Approx. method Accepted input Discussion

Use-case UC goals Use-case

goals only & judgment scenarios

Average use-case (AUC)

[12,13]

The approach can be employed to approximate functional size based on the number of

use cases.

Hussain et al. (HKO)

[14]

The approach could be potentially adapted to approximate functional size based on

use-case scenarios. The method assumes that there is a relationship between the

frequency of linguistic features in requirements and functional size. Therefore, the

method might not be appropriate to approximate functional size based on use-case

names because they are expressed using single, short sentences having a

commonly-agreed structure.

Fixed size classification

[11]

The approach can be applied to approximate functional size based on use cases.

However, it would require judgment about the complexity of use-case scenarios.

Equal size bands [38] Similarly to fixed size classification, this approach can be adapted to approximate

functional size based on use cases. It would also require judgment about the

complexity of use-case scenarios.

EPCU [43] The method can be employed to approximate size based on use cases at early stages

of software development. However, the measurer has to judge the complexity of

use-case scenarios and the number of objects of interest. The method was calibrated

using industrial data [38] ; however, it might require local calibration.

E&Q Function Points

[40,41]

The method could be adapted to approximate functional size based on use cases.

However, there is no direct mapping between use cases and the levels of

aggregation proposed in the method. The using of the method would require expert

judgment about the level of aggregation of a given use case and its complexity. The

method might also require some local calibration.

NESMA FPA i & Est. FPA

[39]

These methods require identification of candidates for either transactional or data

functions. Therefore, they require knowledge about use-case scenarios.

EASY Function Points

[42]

The method might be used to approximate size based on use cases. However, the

measurer would need to identify functional / elementary processes based on

use-case scenarios and judge their complexity.

De Vito and Ferrucci

[44]

The early & rapid method can be used to automatically approximate COSMIC size

based on preconditions and use-case scenarios.

Bagriyanik and

Karahoca [45]

The results of early validation suggest that the method might be capable of

automatically approximating functional size with nearly perfect accuracy [45] .

However, the method requires a large variety of artifacts as an input, e.g., use cases,

services, application interaction diagrams, and conceptual data models.

o

c

u

c

a

s

3

f

o

o

3

f

e

s

m

m

a

o

o

f

i

u

o
Valdés et al. [43] proposed the Estimation of Projects in a Con-

text of Uncertainty model (EPCU). It is a fuzzy logic-based model

that enables COSMIC size approximation. EPCU considers two in-

put variables: the functional process size, and the number of ob-

jects of interest related to the functional process. Both variables

are evaluated subjectively using a 0-to-5 unit scale. The input vari-

ables are then fuzzified into linguistic values. After defuzzification,

the expected size of a functional process is in the 2 CFP to 16.4

CFP range.

Recently, De Vito and Ferrucci [44] proposed a quick and early

method for approximating COSMIC functional size based on use-

case models. They proposed to analyze the flow of data groups in

use-case preconditions and scenarios.

Hussain et al. [14] proposed an approach to approximate COS-

MIC functional size from informally written textual requirements.

The authors use natural language processing (NLP) tools to ana-

lyze the frequency of syntactic linguistic features in functional re-

quirements (the number of words, frequency of nouns phrases, the

number of keywords, etc.). They use this information to classify re-

quirements into complexity classes established based on historical

data.

Bagriyanik and Karahoca [45] proposed a rapid approximation

method that is capable of automatically approximate functional

size based on a domain-specific requirements ontology. The first

studies showed that the method could be effectively used to ap-

proximate COSMIC size. However, it seems oriented towards later

phases of software development and maintenance because it re-

quires detailed information about requirements, services, and con-

ceptual data models.

In Table 1 , we summarize the applicability of the presented

size approximation methods to approximate functional size based
n use cases. It seems that only the AUC and HKO methods are

apable of automatically approximating functional size based on

se-case names. Other considered methods, such as fixed size

lassification, equal size bands, EPCU, and E&Q FP, would require

dditional human judgment about the complexity of use-case

cenarios.

. Research methodology

Because the considered problem of automatic approximation of

unctional size based on use-case names requires developing a set

f methods (artifacts), we decided to base our research procedure

n Design Science Research (DSR) [46,47] .

.1. Overview of the research procedure

We began the research process with a literature study to search

or functional size approximation methods that might be consid-

red as solutions to Core problem. Based on the search results

ummarized in Table 1 , we concluded that the only methods that

eet the constraints of the problem are AUC and HKO. These

ethods employ a quantitative approach to size approximation

nd do not incorporate any specific knowledge about the structure

f use cases. Therefore, we decided to investigate the possibility

f using the information carried by names of use cases to support

unctional size approximation (RQ1).

We collected a sample of use cases from 26 projects (described

n Section 4) and measured the functional size of their applications

sing COSMIC and IFPUG FPA (more precisely FP TF)

We developed a categorization scheme of use-case goals based

n outcomes of our previous studies [16,48] and the considered

M. Ochodek / Information and Software Technology 80 (2016) 73–88 77

s

t

p

n

t

t

(

t

g

(

fi

t

m

i

(

N

c

t

t

t

z

3

a

p

o

(

c

d

A

I

w

M

t

m

S

v

L

o

o

M

t

t

C

a

m

g

t

M

c

H

t

t

a

c

a

s

a

s

m

a

t

t

a

s

i

q

b

i

l

m

d

b

p

u

e

�

ample of projects (see Section 5). We discussed the usefulness of

he proposed categories in the context of the following criteria:

• Completeness — the extent to which the scheme allows catego-

rizing use cases written in accordance with the guidelines for

writing use cases;

• Discriminating efficiency — the extent to which the categories

discriminate use cases with respect to their functional size.

Having proposed the categorization scheme, we considered the

roblem of automatically categorizing use cases based on their

ames (RQ2). We developed and evaluated a prediction method

hat processes use-case names with the use of natural processing

ools (NLP) and automatically predicts categories of use-case goals

see Section 6).

Finally, we investigated the problem of approximating func-

ional size based on a set of use cases labeled with categories of

oals and historical data concerning functional size measurement

RQ3). We propose two prediction methods (see Section 7). The

rst one is a direct derivative of AUC and is based on calculating

he average size of use cases within the categories of goals. This

ethod allows us to investigate if the accuracy of AUC could be

mproved by simply employing information about use-case goals

see Section 8). The second prediction method is based on Bayesian

etworks (BNs). This time, we want to see how much the accuracy

ould be improved by employing a potentially more robust predic-

ion model than a simple averaging.

We believe that the dissemination of results might precede fur-

her steps of DSR, namely the implementation and evaluation of

he size approximation methods in software development organi-

ations.

.2. Size-approximation evaluation framework

The framework for evaluating the accuracy of functional size

pproximation that we propose is based on the guidelines by Shep-

erd and MacDonell [49] .

We assumed that each of the considered approximation meth-

ds P i could be used to predict the functional size of a system j

 ̂ y j). Then, the prediction error or Absolute Residual (AR) could be

alculated as the difference between the actual size y j and the pre-

icted size (see Eq. 1).

R j = y j − ˆ y j (1)

n order to assess the accuracy of P i based on a set of n predictions,

e calculated the mean and median Absolute Residual (MAR and

dAR).

After Shepperd and MacDonell, we standardized MAR relatively

o the random guessing (P 0). The resulting standardized accuracy

easure (SA) was calculated according to Eq. 2 .

A P i =

(
1 − MAR P i

MAR P 0

)
× 100 (2)

MAR P 0 is the mean Absolute Residual of random guessing. Its

alue can be determined using the exact algorithm proposed by

angdon et al. [50] or based on the Monte Carlo simulation—as

riginally proposed by Shepperd and MacDonell. We used both

f these approaches. The exact algorithm was used to calculate

AR P 0 , while simulation was performed to determine the 5% quan-

ile of random guessing, which is the 5% quantile of the MARs dis-

ribution obtained for random guessing in all rounds of the Monte

arlo simulation. In both cases, we allowed random guesses to

light on the correct answer.

The interpretation of SA P i
is that the ratio represents how

uch more (or less) accurate the model P i is compared to random

uessing.
Despite its well-justified criticism, we decided also to consider

he Mean Magnitude of Relative Error, which is given by Eq. 3 .

 M RE =

∑ n
i =1 | y i − ˆ y i | /y i

n

(3)

It has been shown that MMRE is an asymmetric measure and

ould lead to a flawed interpretation of the prediction results [51] .

owever, since it gives an indication of prediction accuracy relative

o the actual size, it might be easier to interpret by practitioners

han MAR or MdAR. Therefore, we decided to include it into the

nalysis as a secondary, supportive criterion.

We used the above criteria and the “leave-one-out” (LOOCV)

ross-validation procedure to evaluate each of the proposed size-

pproximation methods P i in the context of functional size mea-

ure m (P i, m

). Cross-validation is a statistical method for validating

 predictive model. The set of observations is divided into two sub-

ets. One of them, called a training set, is used to build a prediction

odel. The remaining one is used to validate the model. LOOCV is

 form of cross-validation that leaves out a single observation for

he validation purpose at a time.

As suggested by Shepperd and MacDonell, we began the valida-

ion of the method P i, m

by verifying if it provides predictions with

 higher accuracy than random guessing (P i, m

� P 0, m

). We as-

umed that the approximation method outperforms random guess-

ng if the SA calculated for P i, m

is greater than the SA for the 5%

uantile of random guessing (we denote the difference between

oth as �SA 5%). The role of the 5% quantile of random guessing

n the evaluation framework is similar to the role of significance

evel (α) in statistical hypothesis testing. By comparing SA for the

ethod with the SA for the 5% quantile of random guessing, we re-

uce the probability that the superiority of the method is observed

y chance.

In the following step, we compared the accuracy of each pro-

osed approximation method P i with the accuracy of the average

se-case approximation (AUC m

) and the HKO method (HKO m

). For

ach measure m ∈ {CFP, FP TF }, we investigated hypotheses that P i, m

AUC m

and P i, m

� HKO m

based on:

• The comparison of SA calculated for the methods;

• The results of one-tailed Wilcoxon signed-rank test for Absolute

Residuals (AR);

• Cliff’s δ [52] — A non-parametric effect size measure calcu-

lated for Absolute Residuals (AR) according to Eq. 4 (x 1 and x 2
are scores within groups 1 and 2; n 1 and n 2 are the sizes of

the sample groups; # is the cardinality symbol). It estimates

the probability that a value selected from one of the groups is

greater than a value selected from the other group, minus the

reverse probability. The measure ranges between +1 and −1 .

The extreme values indicate the absence of overlap between the

two samples whereas zero suggests equivalence of samples dis-

tributions [53] .

δ =

#(x 1 > x 2) − #(x 1 < x 2)

n 1 n 2

(4)

Cliff’s δ can also be converted to the Number Needed to Treat

(NNT) effect size (NNT = δ−1) [54] . In the context of this study,

NNT can be interpreted as the number of project proposals that

would have to be in a project portfolio to expect that the size of

one more of the proposals was approximated with a higher (or

lower) accuracy than if the same proposals had been estimated

with the use of a baseline approximation method.

The magnitude of the Cliff’s δ effect size can also be assessed

with the use of thresholds proposed by Romano et al. [55] : | δ|

< 0.147 (NNT > 6.8) “negligible”, | δ| < 0.33 (NNT > 3.0) “small”,

| δ| < 0.474 (NNT > 2.1) “medium”, otherwise “large”. The

thresholds were derived from the thresholds for the Cohen’s d

effect size [56] under the assumption of normality of samples

78 M. Ochodek / Information and Software Technology 80 (2016) 73–88

Table 2

Application domain and basic description of the projects under study. Type: N—new development; C—customization of an existing product; E—enhancement project; Origin:

I—project developed by a software development company; U—project developed at the university by staff or students for internal use or external customer .

ID Developer Type Origin Product description

P01 D1.1 N U Java, Oracle DBMS, Hibernate, GWT-based custom framework, JSON, OSGi, Backend application for the university admission

system (Rich Internet Application).

P02 D1.1 E U Java, Oracle DBMS, Apache Struts 1.2, Java Swing, Web-based frontend for the university admission system. Some parts

were re-used from the previous prototype version.

P03 D1.2 N U PHP, PHPLiteMVC, PostgreSQL DBMS, C#, Web-application and daemon for managing life-cycle of smart cards with an

exemplary client application.

P04 D1.2 E U PHP, PHPLiteMVC, PostgreSQL DBMS, C#, Two client applications for the system P16 (web-based application for managing

life-cycle of smart cards).

P05 D1.3 E U Java, GWT, PostgreSQL DBMS, Hibernate, Web-application for managing e-protocols for students grades

P06 D1.3 N U C#, ASP.Net, MS SQL DBMS, Web-based Customer Relationship Management (CRM) system.

P07 D1.3 N U Java, SmartGWT, PostgreSQL DBMS, Hibernate, Web-application for monitoring assignments of organizational duties.

P08 D1.3 E U PHP, Moodle, PostgreSQL DBMS, Web-application, a module to Moodle LMS enabling surveying students and alumni,

which integrates with the University e-services.

P09 D1.3 E U Java, Oracle DBMS, Hibernate, GWT-based custom framework, JSON, OSGi, University admission system for foreign

students.

P10 D1.3 N U Java, Ninja Framework, PostgreSQL DBMS, Hibernate, Web-application for collecting and raporting bibliometric information.

P11 D1.3 N U Java, PostgreSQL DBMS, Hibernate, Web-application for planning educational duties assignments.

P12 D1.3 N U Java, Java Servlets, Spring, Android, SQLite, MySQL, Mobile application for federation of libraries.

P13 D1.3 N U Java, Spring, PostgreSQL DBMS, Hibernate, Web-application for collecting information about a faculty.

P14 D1.3 N U Java, Spring, PostgreSQL DBMS, Hibernate, Web-application for storing and evaluating studies programmes.

P15 D1.3 N U Java, Java Servlets, JSP, Java Swing, SOAP, MySQL DBMS, Web and standalone application for managing members of the

organization.

P16 D1.3 N U Ruby, PostgreSQL DBMS, Web-application that collects information about alumni from web pages.

P17 D1.3 N U Java, Hibernate, Axis, PHP, C++, Bibliometric Information System. A system for collecting information regarding publications

and citations. (Limited GUI)

P18 D1.3 N U Java, Apache Struts 2, Hibernate, Web-based system supporting the assignment of B.Sc and M.Sc. theses projects.

P19 D2 N I C#, ASP.Net, MS SQL DBMS, custom web-framework and Web-based e-commerce solution.

P20 D3 N I Python, Django, PostgreSQL, Web application for collecting and tracking projects metrics.

P21 D3 N I Python, Plone, Zope, Web application developed based on existing CMS solution.

P22 D4 N I PHP, PostreSQL DBMS, Yii web-framework, ExGWT (administration panel) , An e-learning web platform.

P23 D4 N I PHP, PostreSQL DBMS, Yii web-framework, Web application for handling customers’ orders.

P24 D5 N I Java, PHP, MySQL DBMS, Eclipse Rich Client Platform (RCP), Web-based repository of invoices with additional standalone

client application.

P25 D6 C I Python, Plone, Zope, Content Management System (CMS).

P26 D7 N I Delphi, Firebird DBMS, Bank system integrating payments into virtual accounts in one real account.

fi

n

t

fi

r

t

f

f

m

f

4

t

C

[

a

m

i

T

5

n

c

a

a
distributions (e.g., d = 0.2 corresponds to δ = 0.147). Although

neither Cohen nor Romano et al. proposed their thresholds in

the context of Software Engineering research, the thresholds

seem acceptable from the perspective of this study. For in-

stance, the borderline between the “small” and “negligible” ef-

fect size is at NNT = 6.8, which means that there should be

at least seven proposals in a project portfolio to expect im-

provement in the approximation accuracy for one more project

comparing to a baseline method. Conversely, the “large” effect

size would require only 2 to 3 project proposals to achieve the

same improvement. Another argument for using the thresholds

proposed by Romano et al. is that they were also employed

in other research in the area of functional size measurement

[57] .

4. Characteristics of projects

The study is based on the analysis of data from 26 projects.

The data set consists of 427 use cases. The set is an extension of

the Ochodek’s data set [16] . A brief description of the projects and

their expected outcomes is presented in Table 2 .

The projects were developed by six software development com-

panies (D2-D7) and Poznan University of Technology—PUT (D1). In

the case of PUT, the projects were developed by a team established

to develop a system for handling student admission process at the

University (D1.1); Department of Software Development—a unit at

PUT, hiring professional software developers to deliver software for

internal purposes of the University (D.1.2); Software Development

Studio (SDS) [58] (D1.3); or as a B.Sc. project for the internal use

at the University (D1.4).
All of the products delivered by the projects could be classi-

ed as “business application software” [59] . However, their busi-

ess domains differ. The use cases seem similar when it comes

o use-case writing style. Most of the user-level use cases are de-

ned at a similar level of granularity, convergent with the OTOPOP

ule. Similarly, nearly all of the use cases are somehow inspired by

he flow of user interface (UI). However, only in a few of them we

ound explicit references to UI elements (e.g., user chooses the title

rom the combo box).

Although most of the use cases were following the already

entioned guidelines for writing use cases, for some of them we

ound anomalies related to their proper naming. We observed that

% of use cases had misleading names that did not correspond

o the semantics of their scenarios. Another 2% were so-called

RUD (Create, Retrieve, Update, Delete) or partial-CRUD use cases

23] whose names suggested only one of the CRUD operations.

The measurement was performed based on use-case models

nd supplementary material available for the projects, e.g., data

odels, user interface (UI) designs, application screens, and work-

ng application. The results of the measurement are presented in

able 3 .

. Categories of use-case goals

Use-case scenarios describe how the goal expressed in the

ame of a use case might be achieved by an actor. Therefore, we

ould expect that based on the goal of a use case we should be

ble to infer about the complexity of its scenarios.

The proposed categorization scheme for use-case goals aims

t capturing the relationship between the goals of use cases and

M. Ochodek / Information and Software Technology 80 (2016) 73–88 79

Table 3

Projects characteristics (the total size of an application; mean use-case size and stan-

dard deviation).

ID User-level COSMIC FP TF

use cases total mean SD total mean SD

P01 42 693 16 .5 9 .0 389 9 .3 4 .9

P02 17 211 12 .4 5 .7 108 6 .4 2 .8

P03 36 342 10 .7 7 .7 220 7 .2 3 .0

P04 23 159 7 .4 4 .9 115 5 .5 3 .6

P05 19 151 7 .9 4 .3 108 5 .7 3 .4

P06 26 161 6 .2 1 .4 109 4 .2 2 .1

P07 13 113 8 .7 5 .3 83 6 .4 4 .9

P08 8 78 9 .8 3 .5 47 5 .9 2 .4

P09 13 138 10 .6 6 .0 112 8 .6 4 .6

P10 9 70 7 .8 4 .2 47 5 .2 2 .5

P11 10 81 8 .1 4 .2 52 5 .2 2 .8

P12 11 45 4 .1 1 .4 35 3 .2 0 .4

P13 12 91 7 .6 3 .2 57 4 .8 2 .4

P14 13 85 6 .5 4 .1 58 4 .5 2 .1

P15 14 86 6 .1 4 .5 59 4 .2 2 .9

P16 7 49 7 .0 3 .2 37 5 .3 2 .4

P17 6 54 9 .0 4 .2 42 7 .0 3 .9

P18 18 116 6 .4 4 .3 90 5 .0 3 .8

P19 31 399 12 .9 6 .0 269 8 .7 4 .6

P20 11 125 11 .4 8 .5 84 7 .6 4 .7

P21 19 217 12 .3 17 .0 111 6 .6 3 .7

P22 25 142 5 .7 2 .0 108 4 .3 1 .5

P23 9 59 6 .6 2 .1 46 5 .1 2 .0

P24 10 45 4 .5 1 .2 32 3 .2 0 .4

P25 10 85 8 .8 3 .7 57 6 .0 3 .2

P26 15 136 9 .1 6 .3 88 5 .9 4 .7

s

c

t

t

i

c

a

i

o

t

(

n

t

u

t

o

p

s

o

D

u

c

t

t

t

F

s

w

a

a

o

t

i

o

E

p

b

u

p

p

w

w

5

c

n

a

b

f

p

b

emantics of activities in their scenarios. Use-case scenarios are

omposed of actions that form larger structures called use-case

ransactions. A use-case transaction is defined similarly to the

ransactional function in IFPUG FPA as “the smallest unit of activ-

ty that is meaningful from the actor’s point of view that is self-

ontained and leaves the business of the application being sized in

 consistent state” [60] .

In the previous studies [16,48] , we investigated the possibil-

ty of categorizing use-case transactions based on the semantics

f actions they contain. As a result, we proposed twelve semantic

ypes of transactions: Create (C), Retrieve (R), Update (U), Delete

D), Link (L), Delete Link (DL), Asynchronous Retrieve (AR), Dy-

amic Retrieve (DR), Transfer (T), Check Object (CO), Complex In-

ernal Activity (CIA), and Change State (CS). These types can be
Create (C)

The goal is to add (a) domain object(s) to the system.

Transfer (T)

Two or more actors exchange domain
objects that are stored in their
persistent storage.

Retrieve (R)

The goal is to provide a requested domain object(s) to an actor.

Dynamic Retrieve (DR)

The goal is to provide the actor with the requested domain
objects that match a dynamically specified criteria (e.g.,
using a search form).

Asynchronou

An actor requests the s
data to another actor. T
deferred in time.

The goal is to modif

The
dom
the

Link (L)

The goal is to associate
two or more independent domain
objects (they do not form a
composite structure).

A CRUD

Fig. 2. Categorization scheme of use-case goals (arrows show the spe
sed to describe the structures of use-case scenarios. For instance,

he scenarios of the use case presented in Fig. 1 are composed

f two transactions: Retrieve (R)—the listing of the author’s pa-

ers, and Delete (D)—removing a paper from the repository. To

horten the description of the structure, we use an alphabetically-

rdered list of abbreviated names of transaction types (e.g.,

|R).

In our sample of projects, we observed that ∼60% of user-level

se-cases have only one transaction in their scenarios. In these

ases, the type of transaction clearly corresponds to the goal of

he use case. For use cases that include two or more transactions,

here is usually a single, dominant transaction, strongly related

o the goal of the use case, and a set of supporting transactions.

or instance, in the previously discussed example of use case pre-

ented in Fig. 1 , the Delete (D) transaction is the dominating one,

hile Retrieve (R) plays an auxiliary role. Finally, we observed that

round 11% of use cases have a number of equally important trans-

ctions. These were CRUD or partial-CRUD use cases.

Based on theses observations, we proposed thirteen categories

f use-case goals that correspond to the types of dominant transac-

ions in use-case scenarios. The categorization scheme is presented

n Fig. 2 .

We also considered categorizing use-case goals using the types

f transactional functions in the IFPUG FPA method — EI, EO, and

Q (see Section 2.2.1). Unfortunately, we observed that it was im-

ossible to distinguish between EO and EQ types of use cases only

ased on their names. For instance, a dominating transaction in a

se case entitled “View a paper” could be either EQ (e.g., the pa-

er is fetched and presented as it is) or EO (some calculations are

erformed before the paper is presented to the actor, e.g., the key-

ords are determined based on the analysis of the frequency of

ords in the text).

.1. Completeness of categories

Several authors tried to categorize different elements of use

ases, e.g., actions [17,61] , events [62] , transactions [16,48] , or sce-

arios [63] . There have also been studies aiming at developing cat-

logs of use-case patterns [23,64] . Some of these patterns might

e used to categorize use-case goals. However, by definition, they

ocus only on describing solutions to the most commonly observed

roblems (often domain-specific). Thus, a categorization scheme

ased on such patterns seem incomplete.
s Retrieve (AR)

ystem to provide some
he provision of data is

Update (U)

y (a) domain object(s).

Change State (CS)

 goal is to modify the behavior of
ain object(s) or the behavior of
system.

Delete (D)

The goal is to remove (a) domain object(s).

Delete Link (DL)

The goal is to remove the association
between domain objects.

Complex Internal Activity (CIA)

The goal is to execute an operation
requiring complex processing.

Check Object (CO)

The goal is to validate (a) domain object(s)
against some business rules.

CRUD (C|D|R|U)

 or partial-CRUD use case.

cialization/generalization relationships between the categories).

80 M. Ochodek / Information and Software Technology 80 (2016) 73–88

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●●

●

●

●

●

●

●

0

10

20

30

40

C
O

A
R D C D
R U R C
S

C
IA D
L T L

C
|D

|R
|U

Category of use−case goal

C
FP

 p
er

 u
se

 c
as

e

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●

0

5

10

15

20

25

A
R

C
O D U C C
S

C
IA D
R T R D
L L

C
|D

|R
|U

Category of use−case goal

FP
TF

 p
er

 u
se

 c
as

e

Fig. 3. Distributions of functional size of use cases depending on the category of use-case goal (ordered asceding by mean size of use case �).

w

=

t

c

c

f

t

t

a

s

f

o

o

6

d

r

p

n

t

i

g

j

l

One way of ensuring the completeness of a categorization

scheme is to propose categories that are abstract and independent

of business domain, such as the ones included in the proposed cat-

egorization scheme. Using the proposed categorization scheme, we

were able to categorize all of the 427 use cases coming from few

different organizations and describing systems operating in differ-

ent domains. Therefore, it seems that the proposed categories of

use-case goals are sufficiently generic to be used in different con-

texts. Nevertheless, we still consider the proposed categorization

scheme open for extensions.

5.2. Discriminating efficiency of the categories

A categorization scheme should consist of categories that are

meaningful and allow categorizing use cases. However, to be useful

in the context of size approximation, it also has to efficiently dis-

criminate use cases with respect to their functional size (the more

the average functional size of use cases differ between the cate-

gories, the better approximation accuracy can be expected). Oth-

erwise, a method using the categorization scheme would become

equivalent to the AUC method.

Although the guiding criterion for the categorization scheme

was not the efficiency in discriminating use cases with respect to

their functional size but the nature of use-case goals, the box plots

presented in Fig. 3 show that the mean functional size of use cases

differed for all but two pairs of the proposed categories. The series

of Kruskal-Wallis tests (α = 0 . 05) with Holm–Bonferroni correction

[65] and Conover’s post-hoc analysis [66] indicated that the differ-

ences could be perceived as statistically significant for 59% and 54%

pairs of the categories of use-case goals (COSMIC and FP TF , respec-

tively). Unfortunately, some of the categories included only a small

number of use cases, negatively affecting statistical power of the

tests, i.e., decreasing the chance of detecting a difference if it truly

exists in the population. Finally, the observed Cliff’s δ effect size
as on average equal to 0.49 for COSMIC and 0.42 for FP TF (SD

 0.28 for both measures). It means that on average one needs

o pick randomly only three pairs of use cases from two different

ategories to expect that the set of use cases for one of them will

ontain one more use case of greater (or smaller) size than the set

or the other category.

We believe that the observed differences could be explained by

he fact that the proposed categories discriminate efficiently be-

ween different structures of use-case scenarios. Fig. 4 presents

 contingency table which shows frequency distributions of the

tructures of use-case scenarios (columns) in use cases having dif-

erent categories of goals (rows). By investigating the columns, we

bserve that nearly all of the scenario structures (∼90%) appear

nly in a single category of use cases.

. Automatic classification of use-case goals

To consider the question RQ2, we investigated the possibility of

eveloping an automatic method that would be capable of catego-

izing use cases based on their names. The overview of the pro-

osed solution is presented in Fig. 5 .

In the first step of the proposed method, we analyze use-case

ames in a processing pipeline composed of natural processing

ools (NLP) provided by the Stanford Parser kit [67] . The pipeline

ncludes sentence segmentation, word tagging, part-of-speech tag-

ing, lemmatization, and dependency parsing (i.e., finding the sub-

ects, predicates, and objects of a sentence).

Based on the results of natural language processing, we extract

inguistic features that are further used by a prediction algorithm:

• The number of predicates (numerical);

• The presence of prepositions to or from (boolean);

• The presence of predicates having antonym forms (boolean);

• The object of a sentence is plural (boolean);

M. Ochodek / Information and Software Technology 80 (2016) 73–88 81

●

● ● ● ● ● ● ● ● ●

●

● ● ●

●● ● ● ●

● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ●

● ●

● ● ● ● ●

● ● ● ● ● ● ●● ● ●

● ● ● ● ● ● ● ●● ●

● ● ●

● ● ● ●

AR

C

CIA

CO

CS

C|D|R|U

D

DL

DR

L

R

T

U

A
R

A
R

|C
|D

|D
L|

L
A

R
|C

|R
|U

C C
IA

C
O

C
O

|R
C

O
|U

C
S

C
S

|C
S

C
S

|C
S

|C
S

|R
C

S
|C

S
|C

S
|R

|R
C

S
|D

L|
L|

R
C

S
|R

C
S

|R
|R

C
|C

S
C

|C
S

|D
|R

|U
C

|C
S

|R
C

|C
|R

|R
C

|D
R

|U
C

|D
|D

L|
L

C
|D

|D
L|

L|
U

C
|D

|D
|R

|R
|R

C
|D

|L
|U

C
|D

|R
|U

C
|D

|R
|U

|U
C

|D
|U

C
|D

|U
|U

C
|L

C
|L

|R
|U

C
|R

C
|R

|R
|U

C
|R

|U
C

|U D D
L

D
L|

D
R

|L
D

L|
L

D
L|

L|
L

D
L|

L|
R

D
L|

R
|R

D
L|

R
|R

|U
D

L|
U

D
R

D
R

|D
R

D
R

|D
R

|L
|R

|R
D

R
|L

D
R

|R
D

R
|R

|R
D

R
|R

|T
D

|R
D

|R
|R

D
|R

|U
L

L|
L|

R
L|

R
L|

R
|U

R R
|R

R
|R

|R
R

|R
|R

|R
|R

R
|T

R
|T

|U
R

|U T U U
|U

Structure of use−case scenarios

C
at

eg
or

y
of

 u
se

−
ca

se
 g

oa
l

Freq ● ●0 10 20 30 40 50

Fig. 4. A contingency table showing multivariate frequency distribution of use-case structures and categories of use-case goal.

root(ROOT-0, Remove-1)

det(paper-3, a-2)

dobj(Remove-1, paper-3)

(ROOT

 (S

 (VP (VB Remove)

 (NP (DT a) (NN paper)))

 (. .)))

PredicatesDelete

Remove
a paper

Natural
Language

Processing

predicate = "remove"
CRUD = false,
to = false,
from = false,
...

Linguistic
feature

extractor

...

Predicates
similarity

lookup

sim("remove", Delete) = 1.0
Delete = true...

Decision rules

Category = Delete

C4.5 Decision
tree

Historical data

Category

delete.v.01
remove.v.01

... Domain
knowledge

+

Fig. 5. The process of automatic categorization of use cases based on their names presented on the example of the use case from Fig. 1 .

f

l

p

g

c

r

N

T

m

u

w

t

s

g

n

b

t

t

d

2 WordNet identifies a set of synonyms (a synset) by a triple: [word].[part-of-

speech].[meaning] (e.g., import.v.02).
• The object of a sentence representing association between do-

main objects, e.g., reference, association, binding, connection

(boolean);

• The presence of CRUD or partial-CRUD abbreviations (boolean);

• The presence of a noun representing a container object, e.g., a

list, set, group (boolean);

• An object of a preposition is the name of the “system” actor

(boolean).

Except for the number of predicates, all of the above-presented

eatures have a qualitative nature.

In the next step, we analyze if predicates describe activities re-

ated to specific categories of use-case goals. We create a set of

redicates for each category C that describe activities related to the

oal the category represents (Predicates C). Because a single word

an have many meanings, we do not store a predicate itself but a

eference to its set of synonyms (synset) available in the Word-

et lexical database [68] . For instance, the set for the category
ransfer (T) might consist of the synsets 2 : import.v.02, export.v.02,

ove.v.02, transfer.v.02, synchronize.v.06. Because WordNet allows

s to establish similarity of meanings, storing synsets instead of

ords helps to tackle with new verbs that were not present in the

raining set.

The sets of predicates created for the purpose of this study con-

isted of common verbs that seem related to the proposed cate-

ories of goals. However, one can extend the sets to include termi-

ology related to a specific business domain.

The predicate sets are used to derive additional thirteen

oolean features. A positive value of a given feature C (Create, Re-

rieve, etc.) indicates that the predicates in a use-case name refer

o activities related to the goal of the category C . This feature is

etermined based on measuring the similarity between predicates

82 M. Ochodek / Information and Software Technology 80 (2016) 73–88

C

Listing 1. A chain of decision rules for automatic categorization of use-case goals.

C

R

U

D

L

DL

AR

DR

T

CO

CIA

CS

C|D|R|U

C R U D L D
L

A
R

D
R T C
O

C
IA

C
S

C
|D

|R
|U

P
re

di
ct

ed
 ty

pe
 o

f u
se

−
ca

se
 g

oa
l

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Normalized
Frequency
in the name of the use case and the synsets in the set of predicates

for the category C —denoted as sim(predicates, C) .

The process of calculating sim(predicates, C) is two-fold (see

Eq. 5). First, we use Lin’s similarity measure 3 (sim Lin) [70] to as-

sess similarity between each pair of predicates and synsets in

Predicates C . Afterwards, we calculate sim(predicates, C) as a maxi-

mum sim Lin . Finally, if sim(predicate, C) is greater than or equal to

0.95, the value of the feature C is set to “true”; otherwise, it is set

to “false” (see Eq. 6).

sim (predicates , C) = max (sim Lin (p i , s j)) , (5)

p i ∈ predicates , s j ∈ P redicates C

 =

{
true : sim (predicates , C) ≥ 0 . 95

false : sim (predicates , C) < 0 . 95

(6)

The last considered feature is the number of CRUD elementary

operations (numeric). It is determined using the above-described

features, by counting the number of predicates that represent Cre-

ate, Retrieve, Update, or Delete activities.

The final prediction algorithm consists of two main steps. First,

a vector of features describing a use-case name is processed by a

chain of decision rules presented in Listing 1 . If none of the rules

apply, the vector is passed to a prediction model built based on

C4.5 decision trees [71] . (We used the implementation of the C4.5

(revision 8) available in the WEKA package [72] .)

6.1. Evaluation of the automatic categorization

We employed the LOOCV cross-validation method to evaluate

the prediction performance of the proposed classification method.

In each run, the method was trained on use cases from n-1

projects. It was then used to predict the categories of goals of

the use cases belonging to the remaining project. We evaluated

the prediction performance based on the analysis of the confu-

sion matrix presented in Fig. 6 and popular prediction performance

measures that can be derived from confusion matrices, i.e., ac-

curacy, recall (sensitivity), precision, specificity, and F-score (see

Appendix A).

Because we considered a multiclass prediction problem, we had

to evaluate the prediction performance at two levels: macro (over-

all prediction performance) and micro (prediction performance of

categorizing use cases to certain categories).

The accuracy was equal to 0.78 (95% confidence interval (CI) be-

tween 0.73 and 0.81). The macro recall and precision were 0.73

and 0.77, respectively. The macro F-score was equal to 0.74. These

results seem promising, especially when taking into account that

the method was evaluated based on use cases coming from real

software projects that have some defects and anomalies (discussed

in Section 4).

At the micro level, the most difficult task was to discriminate

between categories and their sub-categories (e.g., discriminate be-

tween Retrieve and Dynamic Retrieve or Asynchronous Retrieve).

The observed recall for main categories was on average equal to

0.85, comparing to 0.60 for their sub-categories. The specificity

was, however, similar for both categories and sub-categories and

equal to 0.98 and 0.99, respectively. These results do not seem sur-

prising because the slight differences in the meaning of these cat-

egories might not be reflected in the names of use cases.

Taking into account the problems related to distinguishing be-

tween main and sub-categories, we performed a similar analysis

for a simplified categorization scheme including only the main cat-

egories of goals (C, R, U, D, CIA, CO, C|D|R|U). We observed that the
3 We use the implementation of Lin’s similarity measure available in the NLTK

library [69] .

Actual type of use−case goal

Fig. 6. Confusion matrix summarizing the quality of predicting categories of use-

case goals based on use-case names.

M. Ochodek / Information and Software Technology 80 (2016) 73–88 83

Category of
use-case

goal

Structure
of use-case
scenarios

FPTF

CFPC, R, U, D, etc. C -> C|D
 C|U
 C|D|R|U
...

Fig. 7. A graphical representation of Bayesian Network Use-Case Goal AproxImatioN

(BN-UCGAIN).

a

(

r

a

c

7

p

t

u

p

a

f

a

a

t

g

t

a

w

s

f

r

c

p

s

f

t

o

a

i

a

S

w

fi

b

s

d

c

p

a

i

s

t

w

a

8

fi

g

t

m

t

i

r

d

t

B

t

w

c

m

Table 4

Comparing AUC, AUCG, and BN-UCGAIN accuracy results (�SA 5% is a difference be-

tween SA and SA 5% calculated for the 5% quantile of random guessing).

Approx. method Measure MdAR MAR MMRE (%) SA (%) �SA 5% (%)

HKO CFP 35 .00 58 .73 43 .27 49 .80 19 .95

AUC CFP 24 .33 46 .33 33 .12 60 .40 30 .55

AUCG ∗ CFP 21 .80 31 .39 21 .69 73 .17 43 .32

AUCG CFP 18 .55 29 .80 21 .15 74 .53 44 .68

BN-UCGAIN

∗ CFP 21 .38 28 .62 18 .95 75 .53 45 .68

BN-UCGAIN CFP 16 .91 26 .64 19 .18 77 .23 47 .38

HKO FP TF 22 .50 32 .96 32 .23 53 .78 23 .78

AUC FP TF 13 .24 24 .55 26 .90 65 .58 35 .57

AUCG ∗ FP TF 8 .74 16 .23 16 .82 77 .24 47 .23

AUCG FP TF 11 .55 16 .23 18 .51 77 .24 47 .24

BN-UCGAIN

∗ FP TF 8 .39 15 .65 16 .23 78 .06 48 .05

BN-UCGAIN FP TF 12 .79 15 .18 17 .18 78 .71 48 .71
ccuracy of the automatic classification increased from 0.78 to 0.83

95% CI between 0.79 and 0.87). However, it turned out later that

educing the number of categories had a negative impact on the

ccuracy of the functional size approximation. Therefore, we de-

ided to use the full categorization scheme.

. Functional-size approximation models

To investigate if the proposed categorization scheme might sup-

ort approximation of functional size, we proposed and evaluated

wo approximation methods that incorporate information about

se-case goals.

The first method is called Average Use-Case Goal-aware Ap-

roximation (AUCG). It mimics the concept of the average use-case

pproximation (AUC). The main difference is that it approximates

unctional size based on the average size of use cases belonging to

 given category. If historical data for the category are not avail-

ble, it tries to calculate the average size of use cases belonging

o its parent categories. If the category does not have parent cate-

ories or there is no historical data for its parents, we fall back to

he average use-case size approximation.

The second model—Bayesian Network–based Use-Case-Goal-

ware ApproxImatioN (BN-UCGAIN)— is based on Bayesian Net-

orks (BNs) [73] . A BN is a probabilistic graphical model that

upport reasoning under uncertainty. Such a network has the

orm of directed acyclic graph (DAG), with nodes representing

andom variables and edges representing conditional dependen-

ies between the variables. Each node is associated with a node-

robability table (NPT). The table binds a set of node’s parent

tates with the probability of the states of the node.

The proposed BN-UCGAIN model, presented in Fig. 7 , includes

our random variables:

• Category of use-case goal—it is a categorical variable concerning

thirteen use-case goals defined in the categorization scheme.

• Structure of use-case scenarios—it is a categorical variable rep-

resenting types of semantic transactions in use-case scenarios.

For instance, C|U would represent a use case that has Create (C)

and Update (U) transactions in its scenarios.

• CFP and FP TF variables represent COSMIC and FPA functional

size of use cases. Because BNs have difficulties in modelling

continuous probability distributions (unless the distribution is

Gaussian) we decided to discretize these variables using the

equal size bands algorithm proposed by Vogelezang and Prins

[38] .

Once the conditional probabilities are computed based on his-

orical data, the Bayesian Network can be used to infer about states
f nodes based on provided evidence. For instance, we may provide

 category of use-case goal as evidence and query for the probabil-

ties of other nodes. It allows approximating the size of a use case

ccording to Eq. 7 .

ize (uc) =

n ∑

i =1

̂ P B i (uc) × μSize (B i) (7)

here

• Size(uc) is the functional size of the use case uc (COSMIC or

IFPUG FP TF);

• n is the number of equal size bands (n = 4);

• B i is the i th size band;

• ̂ P B i (uc) is the inferred probability that the actual size of uc falls

within the boundaries of the size band B i ;

• μSize (B i) is the average size of use cases in the size band B i .

We also took into account the concept of uniqueness . It is de-

ned differently by each of the considered measurement methods,

ut its general idea is that each elementary or functional process

hall be measured only once. Unfortunately, we observed that the

escriptions of the same process might be repeated in many use

ases to help the readers understand the context. To mitigate this

roblem, we introduced a uniqueness coefficient . It is calculated as

 quotient between the size of an application taking and not tak-

ng into account the uniqueness rule. We used the coefficient to

cale the final approximation of size. However, for the projects in

he considered data set, the uniqueness coefficient was nearly al-

ays very close to one. Thus, its real impact on the approximation

ccuracy was negligible.

. Evaluation of the size approximation accuracy

We used the evaluation framework described in Section 3.2 to

nd out if the methods incorporating information about use-case

oals (AUCG and BN-UCGAIN) are more accurate in approximating

he functional size than the AUC and HKO methods.

In the study, we considered two variants of each proposed

ethod. The variants denoted as AUCG and BN-UCGAIN employed

he automatic categorization method presented in Section 6 . A new

nstance of the category prediction method was created in each

un of cross-validation based on the training set. To provide ad-

itional baselines for comparison, we also considered two addi-

ional variants of the proposed methods denoted as AUCG

∗ and

N-UCGAIN

∗. These variants did not use the automatic categoriza-

ion method. Instead, they assumed that the categories of use cases

ere known a priori. Thus, they represent an ideal case when all

ategories of use-case goals are already identified.

We also re-implemented the NLP processing chain of the HKO

ethod based on the papers by the authors of the method [14,74] .

84 M. Ochodek / Information and Software Technology 80 (2016) 73–88

Table 5

Significance testing results (p-values) and effect sizes (Cliff’s δ) for comparison between AUC, AUCG, BN-UCGAIN (∗ denotes variants with a priori known categories of

use-case goals).

Approx. p-values, Wilcoxon signed-rank test (AR) Cliff’s δ effect size (AR)

method Measure HKO AUC AUCG ∗ AUCG BN-UCGAIN

∗ BN-UCGAIN HKO AUC AUCG ∗ AUCG BN-UCGAIN

∗ BN-UCGAIN

HKO CFP 0 .98 1 .00 1 .00 1 .00 1 .00 0 .18 0 .35 0 .36 0 .40 0 .42

HKO FP TF 0 .96 1 .00 1 .00 1 .00 1 .00 0 .25 0 .41 0 .45 0 .44 0 .45

AUC CFP 0 .02 0 .99 0 .99 1 .00 1 .00 –0 .18 0 .19 0 .21 0 .25 0 .28

AUC FP TF 0 .04 1 .00 0 .97 1 .00 0 .99 –0 .25 0 .19 0 .12 0 .20 0 .17

AUCG ∗ CFP < 0 .01 0 .01 0 .71 1 .00 0 .98 –0 .35 –0 .19 0 .05 0 .12 0 .14

AUCG ∗ FP TF < 0 .01 < 0 .01 0 .22 0 .90 0 .53 –0 .41 –0 .19 –0 .04 0 .04 0 .01

AUCG CFP < 0 .01 0 .01 0 .30 0 .84 1 .00 –0 .36 –0 .21 –0 .05 0 .08 0 .08

AUCG FP TF < 0 .01 0 .03 0 .79 0 .88 0 .99 –0 .45 –0 .12 0 .04 0 .04 0 .04

BN–UCGAIN

∗ CFP < 0 .01 < 0 .01 < 0 .01 0 .17 0 .49 –0 .40 –0 .25 –0 .12 –0 .08 –0 .01

BN–UCGAIN

∗ FP TF < 0 .01 < 0 .01 0 .10 0 .12 0 .24 –0 .44 –0 .20 –0 .04 –0 .04 –0 .01

BN–UCGAIN CFP < 0 .01 < 0 .01 0 .02 < 0 .01 0 .52 –0 .42 –0 .28 –0 .14 –0 .08 0 .01

BN–UCGAIN FP TF < 0 .01 0 .01 0 .48 < 0 .01 0 .77 –0 .45 –0 .17 –0 .01 –0 .04 0 .01

A

c

o

8

t

w

�

r

n

f

w

m

p

F

c

e

c

b

m

a

m

c

m

t

p

9

s

r

g

9

o

c

4 We decided to rely on the comparison between ARs rather than directly com-

paring SAs because SA is calculated using sample’s MAR and do not take into ac-

count uncertainty related to potential differences between the sample and the pop-

ulation it comes from.
We used the tool to analyze the names of use cases and extract

13 syntactic linguistic features considered in the method. Then, in

each run of the cross-validation procedure, we trained a classifier

based on the features extracted from use cases in the training set.

As in the original study, use cases were classified into four size

classes determined based on the quantiles of use-case functional

size distribution. We used the median size of use cases belonging

to a given size class to approximate the size of use cases belonging

to that class.

8.1. Validating prediction capabilities of the methods

In the first step of validation, we investigated if all of the con-

sidered approximation methods are more accurate than random

guessing. As is shown in Table 4 , all of the methods, including

HKO and AUC, outperformed random guessing by 50–79% (SA: μ
= 70.1%, SD = 10.2). Also, all of the �SA 5% values were greater

than zero (�SA 5% ranged between 20–49%, μ = 40.2%, SD = 10.2).

Therefore, we can conclude that it is highly probable that all of the

considered methods are not guessing, but truly predicting func-

tional size.

8.2. Comparing the accuracy of the methods

The highest accuracy was observed for BN-UCGAIN. Its stan-

dardize accuracy (SA) was higher than AUC’s by 16.83% and 13.14%

for COSMIC and FP TF , respectively. Also, the observed predictions

errors were lower for BN-UCGAIN than for AUC. When BN-UCGAIN

was compared with the HKO method, the differences were even

bigger. SAs for BN-UCGAIN were higher by 27.43% for COSMIC and

24.93% for FP TF . Based on the results of Wilcoxon signed-rank tests

for AR, reported in Table 5 , we could state that the observed dif-

ferences were unlikely due to chance. All of the p-values would

allow rejecting the null hypotheses with α ≤ 0.05. The correspond-

ing magnitude of the effect size for these comparisons could be in-

terpreted as “small” for comparison with AUC (Cliff’s δ were equal

−0 . 28 and −0 . 17 ; | δ| < 0.33) and “medium” for comparison with

the HKO method (Cliff’s δ equal to −0 . 42 and −0 . 45 ; 0.33 ≤ | δ| <

0.474).

We obtained similar results for the comparison between AUCG

and AUC. All of the observed differences between ARs seemed un-

likely due to chance (p-values ≤ 0 . 05). The observed effect sizes

could be interpreted as “small” for COSMIC (δ = −0 . 21 ; | δ| < 0.33)

and negligible for FP TF (δ = −0 . 12 ; | δ| < 0.147). In the case of

the comparison with the HKO method the observed effect size

was greater and could be interpreted as “medium” (δ = −0 . 36 and

−0 . 45 ; 0.33 ≤ | δ| < 0.474).

The variants with the a priori known categories of use–case

goals (AUCG

∗ and BN-UCGAIN

∗) seemed to perform similarly to
UCG and BN-UCGAIN. None of the observed differences could be

onsidered as statistically significant. Also, the observed magnitude

f effect size might be interpreted as “negligible” (| δ| < 0.147).

.3. Discussion of results

We used Hasse diagrams [75] to summarize our findings related

o the accuracy of the methods. While constructing the diagrams,

e assumed that there is a partial preference between P i and P j (P i
P j) if the observed p-value for the one-tailed Wilcoxon signed-

ank test 4 was ≤ 0 . 05 and Cliff’s δ suggested at least “small” mag-

itude of effect size (NNT ≤ 6.8). We believe that even “small” ef-

ect size could have a practical meaning in this case. Especially, if

e consider the limited amount of information available for the

ethods.

Based on the diagrams presented in Fig. 8 , we conclude that the

roposed methods seem to outperform AUC for both COSMIC and

P TF . The only observed exception was the AUCG method in the

ontext of FP TF . However, in that case, the observed p-value was

qual to 0.03 and the Cliff’s δ was equal to -0.12 (| δ| < 0.147).

As expected, the HKO method was outperformed by all of the

onsidered approximation methods. This result is not surprising

ecause the method was not intended to be used to approxi-

ate functional size based on use-case names. The quantitative

pproach it employs seems well-suited for processing require-

ents with longer, unstructured descriptions. Unfortunately, use-

ase names are usually expressed by single sentences (with a com-

on structure). The results of the study suggest that using quali-

ative features to build predictive models seems to be a better ap-

roach for classifying use-case names.

. Threats to validity and study limitations

There are several threats to the validity and limitations of this

tudy that should be taken into account while interpreting the

esults of the study. We will discuss these threats based on the

uidelines provided by Wohlin et al. [76] .

.1. Construct validity

There are several threats related to construct validity. The first

ne regards the lack of formal standards on how to author use

ases. Use cases can differ visibly among organizations, especially

M. Ochodek / Information and Software Technology 80 (2016) 73–88 85

AUC

BN-UCGAIN AUCGAUCG*BN-UCGAIN*

MdAR: p-value = 0.01
SA = 13.13%
 = -0.17

NTT= 5.9

FPTF

MdAR: p-value < 0.01
SA = 12.48%
 = -0.20

NTT = 5.0

MdAR: p-value < 0.01
SA = 11.66%
 = -0.19

NTT = 5.3

AUC

BN-UCGAIN AUCGAUCG*BN-UCGAIN*

COSMIC

HKO

HKO

MdAR: p-value = 0.04
SA = 11.8%
 = -0.25

NTT= 4.0

MdAR: p-value < 0.01
SA = 23.46%
 = -0.45

NTT = 2.2

MdAR: p-value = 0.03
SA = 11.66%
 = -0.12

NTT = 8.3

MdAR: p-value < 0.01
SA = 16.83%
 = -0.28

NTT= 3.7

MdAR: p-value < 0.01
SA = 15.13%
 = -0.25

NTT= 4.0

MdAR: p-value = 0.01
SA =12.77%
 = -0.19

NTT = 5.3 MdAR: p-value = 0.01
SA =14.13%
 = -0.21

NTT = 4.8MdAR: p-value = 0.02
SA =10.6%
 = -0.18

NTT = 5.6

Fig. 8. Hasse diagram showing preference relationships between the functional size approximation methods.

c

i

p

o

[

s

b

t

s

M

s

a

r

m

P

a

m

a

a

u

a

s

m

f

e

f

d

u

d

t

t

W

c

u

p

c

r

t

c

i

m

b

W

a

s

w

v

9

t
oncerning their level of granularity. That might cause difficulties

n measurement and necessity of calibrating use-case based ap-

roximation methods [11,77,78] . We based our view on use cases

n the state-of-the-art books by Cockburn [22] and Adolph et al.

21] . The user-level use cases in the considered sample of projects

eemed convergent with the concept of use cases given by these

ooks. Unfortunately, we cannot state without a doubt that this is

he only valid way of authoring user-level use cases.

The second group of potential threats to validity relates to the

ubjectivity of functional size measurement methods. Both COS-

IC and IFPUG FPA are well-documented methods. However, mea-

urement specialists have to interpret the rules in the context of

 given application. As a result, they can unintentionally bias the

esults. In the study, the functional size of the applications was

easured by the author of the paper who is an experienced IF-

UG Certified Function Point Specialist. However, although having

 certified professional measured the functional size of application

itigates the risk, it obviously does not eliminate it.

Another threat to construct validity relates to the availability

nd quality of the input data for measurement. The availability of

rtifacts differed between the projects. In 17 out of 26 projects,

se cases were augmented with the information about the flow of

pplication screens. Also, for 9 of the projects we had access to

creen designs or working application. Although we decided not to

easure the size of data in the case of IFPUG FPA method, the in-

ormation about data models was still valuable. Detailed data mod-

ls were available for 14 projects and more business data models

or 7 projects. For the remaining 5 projects, we had to derive the
ata models based on other artifacts (e.g., description of the prod-

ct, use cases, other requirements).

There is also a threat related to the process of identifying a

ominant transaction in use cases consisting of more than one

ransaction. The dominant transaction was determined based on

he analysis of use-case scenarios and the name of a use case.

e encountered only two types of multi-transaction use cases: use

ases with a single dominating transaction or CRUD/partial-CRUD

se cases. There are at least two threats to validity related to the

rocess of determining a dominant transaction. First of all the pro-

ess is subjective. Therefore, there is a chance of misjudging the

ole of a given transaction in a use case. The second relates to

he fact that there could be more types of multi-transaction use

ases with many, equally important transactions than the observed

n the study CRUD-like use cases.

An additional threat to construct validity relates to the imple-

entation of the HKO method. We reimplemented the method

ased on its description in the author’s original papers [14,74] .

e also used the same software packages, e.g., Stanford Parser

nd WEKA. The method requires some expert-based tuning when

electing the probability thresholds for constructing lists of key-

ords. However, according to our trials, this step did not have a

isible impact on the results.

.2. Internal validity

We identified two threats related to the internal validity of

he study. The first one relates to the evaluation of the prediction

86 M. Ochodek / Information and Software Technology 80 (2016) 73–88

t

c

t

i

e

e

i

n

c

a

t

s

l

m

l

s

o

t

t

T

t

p

1

n

o

b

l

t

R

g

c

c

f

s

e

T

T

b

p

i

u

a

T

q

r

w

n

t

i

a

w

i

p

0

accuracy of use-case goals. The proposed NLP tools were capable

of analyzing use-case names expressed in English while most of

the use cases were written in Polish. Therefore, some of the names

had to be translated. We tried to translate them literary even when

the names were not convergent with the guidelines for writing use

cases.

Another issue relates to the homogeneity of the projects’ data

set. Most of the size approximation methods have to be calibrated

locally to be used effectively [11] . Therefore, it is assumed that the

learning data sets are homogeneous. Homogeneity of the data set

also allows limiting the influence of potential confounding factors.

As we stated in Section 4 , the data set considered in the study

contains data from projects developed by different organizations;

however, the use cases share many similarities concerning use-case

writing style. The main feature that differentiates use cases in the

projects is the level of details when describing the system internal

processing (for more details, see Section 2.1). The gray-box style

of use cases was the most common in the data set (13 projects).

Nearly similarly popular was the black-box style (11 projects). Fi-

nally, there were only 2 projects with the occurrence of white-

box-style use cases. However, we expect that these differences

should not have a visible impact on applying COSMIC or IFPUG FPA

methods.

Another argument for homogeneity of the data is the fact that

we observed relatively small prediction errors, even for the less

accurate methods.

9.3. Conclusion validity

One of the threats concerns the number of statistical tests per-

formed in the study. We used two Kruskal-Wallis tests to check if

there is a difference in size of use cases depending on the cate-

gory of use-case goal (a single test per measure). To mitigate this

problem, we set the significance level α to 0.05 and then used the

Holm–Bonferroni method [65] to control the familywise error rate

(FWER) at the same level.

The same problem relates to the number of statistical tests

that were performed during the evaluation of the accuracy of the

approximation methods. We performed two one-tailed Wilcoxon

signed-rank tests per each pair of approximation methods and

functional size measures. However, to examine our main hypoth-

esis that the proposed automatic methods predict functional size

with a higher accuracy than AUC and HKO, we needed to per-

form only eight statistical tests (2 proposed methods × 2 meth-

ods to compare with × 2 functional size measures). After adjust-

ing p-values for these tests with the Holm-Bonferroni method, all

of them would still allow rejecting null hypotheses with α = 0.05.

Nevertheless, we believe that the results of these statistical tests

should be taken with caution.

Another potential threat relates to sample size. The considered

data set included only twenty-six data points what limits the pos-

sibility of detecting statistically significant differences if they truly

exist. Unfortunately, this problem seems typical for studies involv-

ing predictions based on use cases, and especially to those requir-

ing access to full documentation of use cases.

9.4. External validity

The most important threat to external validity relates to the

potential influence of different approaches to elicit and document

use cases. For instance, in the study, we assumed that user-level

use cases should be convergent with the OTOPOP rule and the ac-

cepted guidelines for writing use cases. Unfortunately, we lack ap-

proved standards for writing use cases. As a result, use cases can

differ visibly between and within organizations [11,77,78] . For in-

stance, some organization might create more abstract use cases
han the user-level ones. As a result, each of these use cases might

oncern multiple, similarly important user goals. In such situation,

he proposed approach might not provide satisfactory results even

f calibrated locally.

Another threat relates to the completeness of the proposed cat-

gories of use-case goals. Although we aimed at proposing a cat-

gorization scheme that is independent of domain, we evaluated

t only for software products that could be characterized as busi-

ess applications. Therefore, we have to accept the threat that use

ases might differ in other domains in such a way that it would

ffect the applicability of the proposed methods.

In the context of Function Point Analysis, a visible limitation of

he proposed methods is that they allow approximating functional

ize expressed in FP TF instead of the regular FP. Consequently, it

imits the possibility of using them for benchmarking or effort esti-

ation (i.e., determining productivity based on historical data) un-

ess an organization collects and stores FP TF for its projects.

The necessity of collecting historical data about the functional

ize of use cases imposes another limitation of the proposed meth-

ds. To use the methods, organizations have to collect informa-

ion about use cases, i.e., their names, the categories of their goals,

ypes of transactions, and functional size (either COSMIC or FP TF).

herefore, even if organizations are already collecting data related

o functional measurement, they may need to revisit theirs past

rojects to supplement the missing information.

0. Conclusions

The main finding of the study is that information carried by the

ames of use cases might be used to support early approximation

f COSMIC and IFPUG FPA functional size. Moreover, the size can

e approximated in an automatic way.

The analyses reported in the paper allow us to provide the fol-

owing answers to the research questions stated in the introduc-

ion:

Q1: Is it possible to propose a categorization scheme of use-case

oals that would support functional size approximation based on use-

ase names?

The proposed categorization scheme that relates goals of use

ases to the dominant transactions in their scenarios seems ef-

ective in discriminating between use cases of different functional

ize. The on-average difference between use cases from differ-

nt categories seemed significant for 54–59% pairs of categories.

he observed standardized effect size was “medium” (Cliff’s δ).

he proposed categories of use-case goals seem independent of a

usiness domain; therefore, they might be applicable in different

roject contexts.

RQ2: How to automatically categorize use-case names (expressed

n the natural language) according to the proposed categories of

se-case goals?

Use-case names are expressed in a natural language. They usu-

lly have a simple form of a single, well-structured sentence.

herefore, it seems more appropriate to categorize them based on

ualitative features, such as the meaning of sentence predicates,

ather than using quantitative measures, such as the number of

ords. The proposed method of automatic categorization employs

atural language processing tools to derive a set of qualitative fea-

ures from use-case names, including the analysis of the mean-

ng of the predicates of sentences. It uses a set of decision rules

nd C4.5 decision trees to categorize use cases in an automatic

ay. The method was evaluated on a set of 427 use cases com-

ng from 26 software projects. The prediction accuracy of the pro-

osed method seems promising. The accuracy was at the level of

.78, recall 0.73, precision 0.77, and F-score 0.74.

M. Ochodek / Information and Software Technology 80 (2016) 73–88 87

R

t

c

s

d

m

e

o

s

T

v

r

p

a

s

c

t

e

i

h

i

o

t

e

T

t

r

a

m

t

t

g

s

s

A

s

r

A

c

f

f

(

r

m

t

A

w

True
Positive

(TP)

False
Negative

(FN)

True
Negative

(TN)

False
Positive

(FP)

C not C

Actual category (expert)

P
re

d
ic

te
d

 c
at

eg
o

ry
 (

to
o

l)

no
t C

C

C - a considered category of use-case goal

Fig. A1. Confusion matrix. T (true)/F (false) indicates whether the output of the pre-

dicting tool is/is not consistent with the expert’s opinion; P (positive)/N (negative) —

the category predicted by the tool is/is not C .

R

P

S

F

R

[

Q3: How to automatically approximate COSMIC and IFPUG FPA func-

ional size of an application based on use-case names labeled with the

ategories of goals and historical data concerning functional size mea-

urement?

The proposed categorization scheme can be used to develop

ifferent prediction methods. In the paper, we propose two such

ethods. The first one is called AUCG. It mimics the idea of av-

rage use-case approximation (AUC) and approximate size based

n average size of use cases belonging to a certain category. The

econd one, called BN-UCGAIN, has a form of Bayesian Network.

he prediction accuracy of the methods was evaluated on the pre-

iously mentioned sample of projects, and compared to the accu-

acy of AUC and the HKO methods. The results showed that both

roposed methods— AUCG (a direct derivative of AUC) and more

dvanced BN-UCGAIN, seem to outperform AUC and HKO. The ob-

erved differences in prediction errors were statistically signifi-

ant. The observed standardized effect sizes ranged from “small”

o “medium”.

We believe that the proposed approach can support practition-

rs in approximating the functional size and may help in estimat-

ng effort at early stages of software development. Assuming that

istorical data concerning functional size measurement is available,

t allows approximating sizes of applications as soon as the names

f use cases are known. Therefore, it seems to be a good alterna-

ive to the AUC method. The approach is automatic and allows re-

stimating the functional size whenever use-case model changes.

The presented results open some new directions of research.

he first one relates to use-case goals categorization scheme. Al-

hough we considered some possibilities of simplifying the catego-

ization scheme, we were not able to find any scheme that would

llow achieving a higher accuracy of the functional size approxi-

ation. Therefore, it could be beneficial to explore other possibili-

ies of classifying goals of use cases, also including domain-specific

ypes of goals.

Another interesting direction for future research is to investi-

ate the possibility of applying a similar approach to approximate

ize and estimate effort using the popular use-case-based methods,

uch as Use Case Points [79] .

cknowledgments

I would like to thank Professor Jerzy Nawrocki, Krystyna Ciesiel-

ka, Sylwia Kopczy ́nska, and Michał Ma ́ckowiak for their valuable

emarks and help in improving the paper.

ppendix A. Prediction performance measures

The prediction performance measures used in Section 6.1 are

alculated according to Eqs. A .1 –A .5 . The measures can be derived

rom confusion matrices, such as the one presented in Fig. A.9 .

The formula for calculating accuracy (see Eq. A.1) is the same

or the micro (a single category) and macro levels of assessment

overall performance). Eqs. A .2 –A .5 give formulas for calculating

ecall, precision, specificity, and F-score at the micro level. Their

acro-level variants are calculated as average values by making

he positive category each of the possible categories in turn.

ccuracy =

∑ n
i =1 I(t i = p i)

n

(A.1)

here

• n is the number of use cases,

• t is a vector of the actual categories of use cases,

• p is a vector of the predicted categories of use cases,

• I is a function returning 1 if its argument is true and 0 other-
wise.
ecall =

∑

T P ∑

T P +

∑

F N

(A.2)

 recision =

∑

T P ∑

T P +

∑

F P
(A.3)

pecificity =

∑

T N ∑

F P +

∑

T N

(A.4)

 − score = 2 × P recision × Recall

P recision + Recall
(A.5)

eferences

[1] H.A. Levine , Project Portfolio Management: A Practical Guide to Selecting
Projects, Managing Portfolios, and Maximizing Benefits, John Wiley & Sons,

2007 .

[2] ISO/IEC, Information technology — Software measurement — Functional size
measurement — Part 1: Definition of concepts, 2007.

[3] A. Albrecht , Measuring application development productivity, Proc. Joint
SHARE/GUIDE/IBM Appl. Dev. Symp. (1979) 83–92 .

[4] ISO/IEC, ISO/IEC 24570:2005: Software engineering — NESMA functional size
measurement method version 2.1 — Definitions and counting guidelines for

the application of Function Point Analysis, 2005.

[5] ISO/IEC, ISO/IEC 29881:2010: Information technology — Systems and software
engineering — FiSMA 1.1 functional size measurement method, 2010.

[6] C. Symons , Software Sizing and Estimating: Mk II FPA (Function Point Analy-
sis), Wiley-Interscience, 1991 .

[7] ISO/IEC, ISO/IEC 19761:2011: Software engineering – COSMIC: a functional size
measurement method, 2003.

[8] OGC , Managing Successful Projects with PRINCE2, The Stationery Office, 2009 .

[9] OGC , Managing of portfolios, The Stationery Office, 2011 .
[10] OMG, OMG Unified Modeling Language TM (OMG UML), superstructure, version

2.3, 2010,
[11] COSMIC, COSMIC Guideline for Early or Rapid Functional Size Measure-

ment using approximation approaches, edited by F. Vogelezang, 2015,
10.13140/RG.2.1.4195.0567

[12] COSMIC, The COSMIC Functional Size Measurement Method version 3.0 Ad-

vanced and Related topics, edited by A. Lesterhuis and C. Symons, 2007,
[13] A. Živkovi ̌c , I. Rozman , M. Heri ̌cko , Automated software size estimation based

on Function Points using UML models, Inf. Software Technol. 47 (13) (2005)
881–890 .

[14] I. Hussain , L. Kosseim , O. Ormandjieva , Approximation of COSMIC functional
size to support early effort estimation in Agile, Data & Knowledge Eng. 85

(2013) 2–14 .

[15] M. Ochodek , J. Nawrocki , Enhancing use-case-based effort estimation with
transaction types, Found. Comput. Decis. Sci. 35 (2) (2010) 91–106 .

[16] M. Ochodek, J. Nawrocki, K. Kwarciak, Simplifying effort estimation based on
Use Case Points, Inf. Software Technol. 53 (3) (2011) 200–213, doi: 10.1016/j.

infsof.2010.10.005 .
[17] J. Jurkiewicz , J. Nawrocki , Automated events identification in use cases, Inf.

Software Technol. 58 (2015) 110–122 .
[18] C. Neill , P. Laplante , Requirements Engineering: The State of the Practice, Soft-

ware, IEEE 20 (6) (2003) 40–45 .

[19] S. Tiwari , A. Gupta , A systematic literature review of use case specifications
research, Inf. Software Technol. 67 (2015) 128–158 .

20] NESMA, FPA applied to UML/Use cases, version 1.0, 2008.
[21] S. Adolph , P. Bramble , A. Cockburn , A. Pols , Patterns for Effective Use Cases,

Addison-Wesley, 2002 .

http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0008
http://dx.doi.org/10.1016/j.infsof.2010.10.005
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0013

88 M. Ochodek / Information and Software Technology 80 (2016) 73–88

[22] A. Cockburn , Writing Effective Use Cases, Addison-Wesley Boston, 2001 .
[23] G. Övergaard , K. Palmkvist , Use Cases: Patterns and Blueprints, Addison-Wes-

ley, 2004 .
[24] ISO/IEC, ISO/IEC 20926:2009: Software and systems engineering — Software

measurement — IFPUG functional size measurement method 2009, 2009.
[25] T. Fetcke, A. Abran, T. Nguyen, Mapping the OO-Jacobson approach into Func-

tion Point Analysis, in: Proceedings of TOOLS 23, 1997, pp. 192–202, doi: 10.
1109/TOOLS.1997.654721 .

[26] B. Bernárdez , A. Durán , M. Genero , An empirical review of use case metrics for

requirements verification, in: Proceedings of SMEF’04, Rome, Italy, 2004 .
[27] T. Iorio , IFPUG Function Point analysis in a UML framework, in: Proceedings of

SMEF’04, Rome, Italy, 2004 .
[28] G. Cantone, D. Pace, G. Calavaro, Applying function point to Unified Modeling

Language: Conversion model and pilot study, in: Proceedings of 10th Interna-
tional Symposium on Software Metrics, IEEE, 2004, pp. 280–291, doi: 10.1109/

METRIC.2004.1357912 .

[29] V. Harput , H. Kaindl , S. Kramer , Extending Function Point Analysis to bject-ori-
ented requirements specifications, in: 11th IEEE International Symposium on

Software Metrics, IEEE, 2005, pp. 10–pp .
[30] B. Kitchenham , K. Känsälä, Inter-item correlations among Function Points, in:

Software Engineering, 1993. Proceedings., 15th International Conference on,
IEEE, 1993, pp. 477–480 .

[31] L. Lavazza , S. Morasca , G. Robiolo , Towards a simplified definition of Function

Points, Inf. Software Technol. 55 (10) (2013) 1796–1809 .
[32] COSMIC, The COSMIC Functional Size Measurement Method v4.0.1, Measure-

ment Manual, 2015.
[33] B. Marín , G. Giachetti , O. Pastor , Measurement of functional size in conceptual

models: A survey of measurement procedures based on COSMIC, in: Software
Process and Product Measurement, Springer, 2008, pp. 170–183 .

[34] P. Habela, E. Głowacki, T. Serafinski, K. Subieta, COSMIC Function Points: The-

ory and Advanced Practices, CRC Press.
[35] M. Jenner , COSMIC-FFP and UML: Estimation of the Size of a System Specified

in UML–Problems of Granularity, in: Proc. the Fourth European Conference on
Software Measurement and ICT Control, 2001, pp. 173–184 .

[36] V. Bévo , G. Lévesque , A. Abran , Application de la methode FFP a partir
d’une specification selon la notation UML: Compte rendu des premiers essais

d’application et questions, 9th International Workshop Software Measurement,

Lac Supérieur, Canada, 1999 .
[37] A. Sellami, H. Ben-Abdallah, Functional size of use case diagrams: a fine-grain

measurement, in: Proceedings of ICSEA’09, IEEE, 2009, pp. 282–288, doi: 10.
1109/ICSEA.2009.96 .

[38] F. Vogelezang , T. Prins , S.N. BV , Approximate size measurement with the COS-
MIC method Factors of influence, Proc. SMEF’07 (2007) 167–178 .

[39] NESMA, The application of Function Point Analysis in the early phases of the

application life cycle — A practical manual: Theory and case study, version 2.0,
2005.

[40] T. Iorio , R. Meli , F. Perna , Early & Quick Function Points® v3.0: enhancements
for a Publicly Available Method, in: Proceedings of SMEF’07, 2007, pp. 179–198 .

[41] M. Conte , T. Iorio , R. Meli , L. Santillo , E&Q: An Early & Quick Approach to Func-
tional Size Measurement Methods, in: Proceedings of SMEF’04, Rome, Italy,

2004 .
[42] L. Santillo, Easy Function Points–’Smart’ Approximation Technique for the IF-

PUG and COSMIC Methods, in: Proceedings of IWSM-MENSURA 2012, IEEE,

2012, pp. 137–142, doi: 10.1109/IWSM-MENSURA.2012.29 .
[43] F. Valdés , A. Abran , Industry case studies of estimation models based on fuzzy

sets, in: Proceedings of IWSM-MENSURA 2007, 2007, pp. 5–9 .
[44] G. De Vito , F. Ferrucci , Approximate COSMIC Size: The Quick/Early Method, in:

Software Engineering and Advanced Applications (SEAA), 2014 40th EUROMI-
CRO Conference on, IEEE, 2014, pp. 69–76 .

[45] S. Bagriyanik, A. Karahoca, Automated COSMIC Function Point measurement

using a requirements engineering ontology, Inf. Software Technol. 72 (2016)
189–203. http://dx.doi.org/10.1016/j.infsof.2015.12.011 .

[46] A.R. Hevner , S.T. March , J. Park , S. Ram , Design science in information systems
research, MIS quarterly 28 (1) (2004) 75–105 .

[47] R. Wieringa , Design Science Methodology for Information Systems and Soft-
ware Engineering, Springer, 2014 .

[48] M. Ochodek , B. Alchimowicz , J. Jurkiewicz , J. Nawrocki , Improving the relia-

bility of transaction identification in use cases, Inf. Software Technol. 53 (8)
(2011) 885–897 .

[49] M. Shepperd, S. MacDonell, Evaluating prediction systems in software project
estimation, Inf. Software Technol. 54 (8) (2012) 820–827. http://dx.doi.org/10.

1016/j.infsof.2011.12.008 .
[50] W.B. Langdon, J. Dolado, F. Sarro, M. Harman, Exact Mean Absolute Error of
Baseline Predictor, MARP0, Inf. Software Technol. 73 (2016) 16–18. http://dx.

doi.org/10.1016/j.infsof.2016.01.003 .
[51] B.A. Kitchenham , L.M. Pickard , S.G. MacDonell , M.J. Shepperd , What accuracy

statistics really measure? in: IEE Proceedings—Software Engineering, 148, IET,
2001, pp. 81–85 .

[52] N. Cliff, Dominance statistics: Ordinal analyses to answer ordinal questions.,
Psychol. Bull. 114 (3) (1993) 494 .

[53] M.R. Hess , J.D. Kromrey , Robust confidence intervals for effect sizes: A com-

parative study of Cohen’s d and Cliff’s delta under non-normality and het-
erogeneous variances, Annual meeting of the American Educational Research

Association, San Diego, 2004 .
[54] H.C. Kraemer , D.J. Kupfer , Size of treatment effects and their importance to

clinical research and practice, Biol. psychiatry 59 (11) (2006) 990–996 .
[55] J. Romano , J.D. Kromrey , J. Coraggio , J. Skowronek , Appropriate statistics for or-

dinal level data: Should we really be using t -test and Cohen’s d for evaluating

group differences on the NSSE and other surveys, in: Annual meeting of the
Florida Association of Institutional Research, 2006, pp. 1–33 .

[56] J. Cohen, Statistical power analysis for the behavioral sciences, 1977,
[57] S.D. Martino, F. Ferrucci, C. Gravino, F. Sarro, Web effort estimation: Function

point analysis vs. {COSMIC}, Inf. Software Technol. 72 (2016) 90–109. http://dx.
doi.org/10.1016/j.infsof.2015.12.001 .

[58] S. Kopczy ́nska, J. Nawrocki, M. Ochodek, Software development studio—

Bringing industrial environment to a classroom, in: Proceedings of EduRex
2012, IEEE, 2012, pp. 13–16, doi: 10.1109/EduRex.2012.6225698 .

[59] ISO/IEC, Information technology — Software measurement — Functional size
measurement — Part 5: Determination of functional domains for use with

functional size measurement, 2004.
[60] S. Diev , Software estimation in the maintenance context, ACM SIGSOFT Soft-

ware Eng. Notes 31 (2) (2006) 1–8 .

[61] C. Rolland , C. Achour , Guiding the construction of textual use case specifica-
tions, Data Knowledge Eng. 25 (1) (1998) 125–160 .

[62] J. Jurkiewicz , J. Nawrocki , M. Ochodek , T. Głowacki , HAZOP-based identification
of events in use cases, Empirical Software Eng. 20 (1) (2015) 82–109 .

[63] M. Ridao , J. Doorn , J. do Prado Leite , Domain independent regularities in sce-
narios, in: Requirements Engineering, 2001. Proceedings. Fifth IEEE Interna-

tional Symposium on, IEEE, 2001, pp. 120–127 .

[64] A. Issa , M. Odeh , D. Coward , Using use case patterns to estimate reusability in
software systems, Inf. Software Technol. 48 (9) (2006) 836–845 .

[65] S. Holm , A simple sequentially rejective multiple test procedure, Scand. J. Stat.
(1979) 65–70 .

[66] W.J. Conover , Practical Nonparametric Statistics, 3rd, John Wiley & Sons, 1999 .
[67] M.-C. De Marneffe , B. MacCartney , C.D. Manning , et al. , Generating typed de-

pendency parses from phrase structure parses, in: Proceedings of LREC, 6,

2006, pp. 449–454 .
[68] G.A. Miller , WordNet: a lexical database for English, Commun. ACM 38 (11)

(1995) 39–41 .
[69] S. Bird , E. Klein , E. Loper , Natural language processing with Python, “O’Reilly

Media, Inc.”, 2009 .
[70] D. Lin , An information-theoretic definition of similarity., in: ICML, 98, 1998,

pp. 296–304 .
[71] J.R. Quinlan , C4. 5: programs for machine learning, Elsevier, 2014 .

[72] M. Hall , E. Frank , G. Holmes , B. Pfahringer , P. Reutemann , I.H. Witten , The

WEKA data mining software: an update, ACM SIGKDD explor. newslett. 11 (1)
(2009) 10–18 .

[73] T.D. Nielsen , F.V. Jensen , Bayesian Networks and decision graphs, Springer Sci-
ence & Business Media, 2009 .

[74] I. Hussain , L. Kosseim , O. Ormandjieva , Using linguistic knowledge to classify
non-functional requirements in SRS documents, in: Natural Language and In-

formation Systems, Springer, 2008, pp. 287–298 .

[75] B.A . Davey , H.A . Priestley , Introduction to lattices and order, Cambridge uni-
versity press, 2002 .

[76] C. Wohlin , P. Runeson , M. Höst , M.C. Ohlsson , B. Regnell , A. Wesslén , Experi-
mentation in Software Engineering, Springer Science & Business Media, 2012 .

[77] F. Vogelezang , C. Symons , A. Lesterhuis , R. Meli , M. Daneva , Approximate COS-
MIC Functional Size–Guideline for Approximate COSMIC Functional Size Mea-

surement, in: Proceedings of IWSM-MENSURA 2013, IEEE, 2013, pp. 27–32 .

[78] V. Del Bianco , L. Lavazza , G. Liu , S. Morasca , A.Z. Abualkishik , Model-based
early and rapid estimation of COSMIC functional size–An experimental eval-

uation, Inf. Software Technol. 56 (10) (2014) 1253–1267 .
[79] G. Karner , Metrics for objectory. No. LiTH-IDA-Ex-9344:21, Master’s thesis, Uni-

versity of Linköping, Sweden, 1993 .

http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0015
http://dx.doi.org/10.1109/TOOLS.1997.654721
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0018
http://dx.doi.org/10.1109/METRIC.2004.1357912
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0025
http://dx.doi.org/10.1109/ICSEA.2009.96
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0029
http://dx.doi.org/10.1109/IWSM-MENSURA.2012.29
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0032
http://dx.doi.org/10.1016/j.infsof.2015.12.011
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0036
http://dx.doi.org/10.1016/j.infsof.2011.12.008
http://dx.doi.org/10.1016/j.infsof.2016.01.003
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0043
http://dx.doi.org/10.1016/j.infsof.2015.12.001
http://dx.doi.org/10.1109/EduRex.2012.6225698
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30138-0/sbref0065

	Functional size approximation based on use-case names
	1 Introduction
	2 Background and related work
	2.1 Use cases
	2.2 Functional size measurement
	2.2.1 Function Point Analysis
	2.2.2 The COSMIC method

	2.3 Early and rapid functional size approximation methods

	3 Research methodology
	3.1 Overview of the research procedure
	3.2 Size-approximation evaluation framework

	4 Characteristics of projects
	5 Categories of use-case goals
	5.1 Completeness of categories
	5.2 Discriminating efficiency of the categories

	6 Automatic classification of use-case goals
	6.1 Evaluation of the automatic categorization

	7 Functional-size approximation models
	8 Evaluation of the size approximation accuracy
	8.1 Validating prediction capabilities of the methods
	8.2 Comparing the accuracy of the methods
	8.3 Discussion of results

	9 Threats to validity and study limitations
	9.1 Construct validity
	9.2 Internal validity
	9.3 Conclusion validity
	9.4 External validity

	10 Conclusions
	 Acknowledgments
	Appendix A Prediction performance measures
	 References

