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a b s t r a c t

Fingerprint matching has emerged as an effective tool for human recognition due to the uniqueness,
universality and invariability of fingerprints. Many different approaches have been proposed in the
literature to determine faithfully if two fingerprint images belong to the same person. Among them,
minutiae-based matchers highlight as the most relevant techniques because of their discriminative
capabilities, providing precise results. However, performing a fingerprint identification over a large
database can be an inefficient task due to the lack of scalability and high computing times of fingerprint
matching algorithms.

In this paper, we propose a distributed framework for fingerprint matching to tackle large databases
in a reasonable time. It provides a general scheme for any kind of matcher, so that its precision is
preserved and its time of response can be reduced.

To test the proposed system, we conduct an extensive study that involves both synthetic and
captured fingerprint databases, which have different characteristics, analyzing the performance of three
well-known minutiae-based matchers within the designed framework. With the available hardware
resources, our distributed model is able to address up to 400 000 fingerprints in approximately half a
second. Additional details are provided at http://sci2s.ugr.es/ParallelMatching.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Personal identification is one of the largest problems in the
society today in a wide variety of fields: from access control to
criminology and forensic identifications, payments and identifica-
tion in computer systems [1]. Among all the biometric features
that can be used for identification, such as voice, iris, DNA,
fingerprints are the most widely used [2]. They are very suitable
for human recognition because of their uniqueness, universality,
invariability and extraction facilities.

A fingerprint is basically a pattern of ridges and valleys captured
from a finger by inked press, capacitive or optical sensors, etc.
Fingerprint recognition has been studied for many years and a great
number of fingerprint matching algorithms have been proposed in
the specialized literature [3,4]. Minutiae-based matching algorithms
highlight as the most relevant approaches because minutiae are
considered the most discriminating and reliable features [5,6]. The
design of Automatic Fingerprint Identification Systems (AFISs) [7] is
an important task in pattern recognition. Although very effective
solutions are currently available, many problems still remain [8].

Among them, the performance and speed of AFISs for large
databases need to be improved.

Fingerprint recognition can be categorized into two different
problems: verification [9] and identification [10]. The former
consists of determining whether two images belong to the same
fingerprint, that is, a one-to-one comparison. The latter is devoted
to search for the matching of an input fingerprint in a template
database, so that the owner of this fingerprint can be identified.
Thus, identification can be seen as a generalization of the verifica-
tion problem that conducts one-to-many comparisons. In this
paper, we will focus on identification.

In general, matching algorithms are designed to carry out a
fingerprint verification and their generalization to address identifi-
cation is straightforward. Most of them are focused on achieving
very accurate matchings, what usually negatively affects the time
consumption. This factor is determinant in most real time systems
where a high response time is equivalent to a system failure.
Furthermore, this weakness is especially harmful when the number
of templates in the database is increased. Although some approaches
have been designed to be as fast as possible [6], they are not suitable
to tackle large databases maintaining their precision.

High Performance Computing (HPC) is one of the tools that
support the modern Science, allowing the execution of multiple
calculations in a reasonable time [11] by using an adequate massive
computational structure [12]. HPC has been successfully used in
many different pattern recognition problems [13–15], and more

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.patcog.2013.08.002

n Corresponding author. Tel.: +34 958244019; fax: +34 958243317.
E-mail addresses: dperalta@decsai.ugr.es (D. Peralta),

triguero@decsai.ugr.es (I. Triguero), rsreillo@ing.uc3m.es (R. Sanchez-Reillo),
herrera@decsai.ugr.es (F. Herrera), J.M.Benitez@decsai.ugr.es (J.M. Benitez).

Pattern Recognition 47 (2014) 588–602

http://sci2s.ugr.es/ParallelMatching
www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2013.08.002
http://dx.doi.org/10.1016/j.patcog.2013.08.002
http://dx.doi.org/10.1016/j.patcog.2013.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.08.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.08.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.08.002&domain=pdf
mailto:dperalta@decsai.ugr.es
mailto:triguero@decsai.ugr.es
mailto:rsreillo@ing.uc3m.es
mailto:herrera@decsai.ugr.es
mailto:J.M.Benitez@decsai.ugr.es
http://dx.doi.org/10.1016/j.patcog.2013.08.002


concretely in real-time image comparison [16] and other artificial
intelligence systems [17]. Given the complexity order of an AFIS,
HPC is a promising resource that has already been proven to reduce
the identification time [18,19]. However, the proposals in the
current scientific literature focus on objectives other than perfor-
mance, such as high availability or database distribution. Real-time
response times can only be obtained through a correct algorithm
design and implementation in order to exploit the available
resources as flexibly and efficiently as possible.

In this paper, we design a two-level distributed framework to
provide matching algorithms the capacity of dealing with arbitrarily
large databases by adapting the underlying hardware. According to the
so far presented reasons, three objectives are defined for this paper:

� To analyze the behavior of matching algorithms when dealing
with large databases.

� To verify the scalability of the proposed system.
� To provide a real-time answer.

To check the performance of the proposed system, we will
conduct experiments involving up to 400 000 fingerprints. Because
of the absence of large captured fingerprint databases, we use the
SFinGe software tool [20,2] to generate a large synthetic database.
This database is used for experiments both with the ground-truth
minutia provided by SFinGe and using the NIGOS mindtct [21]
minutiae extractor in a seek of a more realistic framework. Further-
more, in order to validate the results we also include experiments
with captured databases: NIST DB4 [22] and DB14 [23].

Due to the space constraints not every experiment could be
included in the paper. Complementary material about the work
done for this paper can be found at the URL http://sci2s.ugr.es/
ParallelMatching.

The rest of this paper is organized as follows: Section 2
provides a description of the fingerprint recognition process,
defining in detail the most important steps. In Section 3, the
HPC paradigm is presented, showing its hardware and software
requirements, theoretical benefits and current applications to
AFISs. Section 4 explains the proposed distributed system for
tackling the fingerprint identification problem in a reasonable
time. Section 5 describes the experimental framework. Section 6
examines the results obtained, presenting a discussion of them.
Finally, Section 7 concludes the paper.

2. Background

A considerable research effort has been carried out in the
fingerprint recognition field over the last decades. This section
sums up the state-of-the-art in that field, starting with the
fingerprint recognition problem (Section 2.1), and explaining the
generalities of feature extraction (Section 2.2) and fingerprint
matching (Section 2.3).

2.1. Fingerprint recognition

Because of its different application fields, most authors divide
the fingerprint recognition problem into two variants that con-
stitute by themselves different problems [2]:

� Verification consists of determining whether two fingerprint
images P1 and P2 belong to the same person, performing a 1:1
comparison [9]. The system output is an acceptation or a
refusal of the claimed identity depending on the similarity
level (called score) of both fingerprints.

� Identification aims to find the fingerprint that matches with
the input fingerprint in a database, so that its owner can be

identified [10]. A fingerprint database is a set T of N template
fingerprints T ¼ fT1; T2;…; TNg that are used as reference for the
identification. Thus, identification is a problem of 1:N compar-
ison as the input fingerprint I needs to be compared with all Ti
template fingerprints (with iAf1;2;…;Ng) to find the matching
that provides the highest score. This score is called mbest. It is
defined in Eq. (1), where Q ðI; TiÞ is the matching function (see
Section 2.3). If mbest is lower than a certain threshold ϕ, then the
system may consider that the input fingerprint has no corre-
sponding template in the database. Hence, the system output
can be the matched identity, a “not found” notification, or a set
of candidate identities. This paper focuses on a system that
considers only the maximum score, so the last case is not
detailed, as shown in Eq. (2). A description of the system
behavior in the case with a set of candidates can be found in
the web site:

mbest ¼maxfQ ðI; TiÞjiAf1;2;…;Ngg ð1Þ

IdðIÞ ¼
not found; if mbest4ϕ

argmax
i

Q ðI; TiÞiAf1;…;Ng; otherwise

8<
: ð2Þ

The identification problem can be seen as a verification performed
once per each fingerprint in the database. The main difference
between these problems is therefore a matter of complexity order.
The objective in a verification problem is to obtain a very precise
result, reducing the error rates as much as possible. However,
complex verification methods are not useful for identification because
the overall response time would be excessive.

So far, the general characteristics of the identification problem
have been defined. The requirements needed by an AFIS to deal
with large databases can be fixed:

� Precision: error rates have to be as low as possible in order to
get an accurate system. Additional information about error
rates can be found in the web site associated with this paper.

� Efficiency: the time that is needed to locate a fingerprint in the
database should be as small as possible. In a real-time system,
for example, a high delay can be equivalent to a system failure
[24]. The delay threshold depends on the specific system but it
is very often within the order of a few seconds.

� Scalability: it reveals the system capabilities to deal with
databases of almost arbitrary size, in a reasonable amount of
time, maintaining the precision requirement. This can be done
by guaranteeing that a large database can be explored in the
same time than a smaller one by increasing correspondingly
the underlying hardware resources.

� Flexibility: the system has to fit easily and efficiently any
database size, any database features (such as noisy fingerprints
or rollings), as well as any hardware configuration (different
architectures, varying cluster size, different processors).

Although there are several solutions to the fingerprint identi-
fication problem, the general search process structure is composed
of the following steps [2]:

(1) Input fingerprint fetching
(2) Feature extraction
(3) Search of a similar fingerprint in the database
(4) Returning the result

2.2. Feature extraction

A fingerprint is basically formed by ridges and valleys. They can
be easily appreciated in a good quality image (Fig. 1a), or on the
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contrary they can be blurred or even indistinguishable (Fig. 1b),
difficulting the knowledge extraction process.

As they are analyzed at different degrees theses ridges and
valleys present some patterns that can be used to perform the
fingerprint comparison. The most relevant features, ordered from
the most global to the most local, are the following [2]:

� Singular points: they are detected at the most global level. They
are points around which the ridge patterns are wrapped. There
are two kinds of them: loops and deltas, and a fingerprint can
have between zero and five singular points.

� Orientation map: it belongs to the same level as singular points
and contains the direction of the fingerprint lines for each
coordinate in the image.

� Minutiae: they are the ridge bifurcations and endings, which
are detected at a more detailed level (Fig. 2).

Among these kinds of patterns, minutiae are the most used
features for fingerprint recognition [2]. Some studies state that
they are the most reliable features for these purposes [25,26], and

that twelve perfectly matching minutiae between two fingerprints
can ensure that they are the same [27]. However, in bad quality
images their extraction can be troublesome [28].

A minutia Mi is typically described with five parameters
ðxi; yi; θi; ti; qiÞ:

� ðxi; yiÞ: coordinates in the picture
� θi: orientation or minutia angle
� ti: type (ridge ending or bifurcation)
� qi: quality

Therefore, a fingerprint F with r minutiae can be represented as
a minutiae vector fM1;M2;…;Mrg.

The number of minutiae r is typically between 30 and 100.
Thus, minutiae can be efficiently stored and easily handled in a
computing environment, and fingerprint comparison can be trea-
ted as a similarity calculation between minutiae sets.

There are two main types of minutiae extractors [2]:

� Binarization-based methods: most of the methods require a binary
fingerprint image. The image usually passes through a thinning
process that reduces the line thickness to one pixel, resulting in a
skeleton image. Although these steps are time-consuming and
may cause some information loss, they allow the minutiae
detection with a simple image scan and they greatly benefit
from previous enhancement processes such as the approaches
presented in [29–31]. Some methods of this type are NIGOS
mindtct [21], and an approach based on peak detection along
sections orthogonal to the ridge orientation [32]. Additionally,
other methods improve the image quality before the thinning
step, for example by using adaptive windows to follow the ridges
and find the gaps and holes [33].

� Direct gray-scale extractors: some methods do not use binariza-
tion or thinning. Therefore, there is no information loss and the
time spent on binarization and thinning steps is avoided, but
these methods do not benefit from a priori enhancements. One
of the most used methods uses the orientation map to follow the
ridges [5], and is used as a basis by further proposals [34–38].
Other methods use alternatives to ridge-line tracking, such as
neural networks [39] or spatial filtering [40].

2.3. Matching

A matching algorithm compares the features of two finger-
prints and returns a similarity score. The algorithm and the data

Fig. 1. Good and bad quality images. (a) Good quality image and (b) bad quality image.

Fig. 2. Fingerprint minutiae with their orientation.
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structures it uses depend on the specific features that are
extracted from the fingerprint image, allowing the following
classification of matchers [2]:

� Correlation-based [41,42].
� Minutiae-based [43,28,6,44].
� Non-minutiae feature-based [33,4].

This paper focuses on minutiae-based matchers, whose usual
data structures are the following:

� Distance between minutiae.
� Minutiae neighborhood.
� Number of ridges between minutiae (ridge count).

A matching algorithm performs some calculations from these
structures and the fingerprint features themselves and returns a score
(typically a real number) that describes the similarity level ranging
from completely different fingerprints to the totally identical pictures.

The minutiae-based matching process can be performed at
three different levels [2,6]:

� Global: The minutiae of the whole image are compared. This
matching type is more sensitive to image distortions, rotations
and translations, although the usage of information of the
whole image at the same time provides a complete view of
the fingerprint. Some proposals are presented in [45,46].

� Local: Small groups of minutiae close to each other are compared.
Problems due to rotations and translations are softened because
the use of relative angles and coordinates makes the method
rotation and translation invariant. The distortion problem is also
reduced because close minutiae are less affected by distortions.
However, not considering the fingerprint as a whole implies a loss
of information that can affect the precision of the algorithm. Some
approaches are described in [47,28].

� Hybrid: Most reliable algorithms use a hybrid approach, combining
both philosophies. First, a local matching extracts the most similar
minutiae groups of both fingerprints. These minutiae are consid-
ered to be the same, and then a global matching based on this
correspondence is executed. Some of the most relevant proposals
are [43,6].

3. High performance computing

HPC systems are normally used for distributed and parallel
computing, providing several advantages:

� Efficiency: the parallel processing in several cores and compu-
ters can be used to get results faster.

� Robustness: the use of several machines allows the system to be
fault-tolerant, because if one machine fails, the rest can assume
its work and the system still provides a correct response.

� Scalability: hardware evolves towards a higher number of cores
and collaborating processors. Thus, an algorithm that is able to
solve bigger problems just by using more computers could
solve arbitrarily big problems without being modified.

In Sections 3.1 and 3.2, the hardware and software that give
support to an HPC system are described. Section 3.3 presents the
theoretical expectation of improvement in the execution times of a
generic system that uses HPC. Finally, the state-of-the-art about
distributed AFISs is studied in Section 3.4.

3.1. Hardware support

Hardware has evolved in two ways to support HPC. On one
hand, several computers can be integrated with a high-speed
network to form a cluster. This provides a great flexibility when
the processing capacity has to be increased, but the performance
can become limited by the network speed.

On the other hand, a single computer can have several
processors, a single processor can have several cores, and a single
core can handle several execution threads (for example, with the
Intel Hyperthreading technology [48]). All these processors and
cores can communicate using shared memory, which is very fast,
as long as the synchronization is efficiently performed. This is not
always easy and may imply great design and implementation
efforts. However, the number of cores in a single computer is still
quite limited, and nowadays is not higher than about 12 or 24.

A typical computing cluster is formed by a bunch of computers,
and each one of them has one or several multicore processors,
where all the cores share the main memory and some cache. This
kind of clusters are called hybrid clusters (Fig. 3).

3.2. Software support

According to the current evolution of technology, the parallel
paradigm for software development is bound to be increasingly
necessary in the next years (and most likely in a longer term too).

Within a hybrid cluster, the computing program is typically
divided into several processes and each process is run in a
different node. These processes communicate using Message
Passing Interface (MPI).1 Again, each process can be divided into
several execution threads that can communicate using shared
memory, which is faster than MPI. The maximum performance is

Fig. 3. Typical hybrid architecture of the cluster used for the experiments in Section 6.

1 http://www.mpi-forum.org/
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usually reached when each computing node executes a single
process that contains one or two threads per node core. Thus, the
adequate implementation of a system in a computing cluster is a
complex task.

The execution of these processes and threads can be tackled by
the operating system (for example when using C++), or by a
virtual machine (for instance with Java, Scala or Erlang).

3.3. Theoretical expectations

There are several formulas to measure the performance of a
parallel system. The most widely used is the speedup ðS¼ ts=tpÞ,
which measures the relation between the execution times of the
sequential (ts) and parallel (tp) versions of a same calculation.

If a calculation is executed in n processing cores, and a portion f
of the calculation is performed in parallel, the maximum attain-
able speedup would be Sn, according to the Amdahl's Law [49],
which is shown in

Sn ¼ 1

1�fð Þ þ f
n

ð3Þ

Therefore, if the calculation is fully parallelizable (f¼1) the
maximum speedup would be equal to the number of cores (n).
However, in practice the attained speedup is lower than this
maximum due to several factors:

� There is always some part of the calculation that is not
parallelizable (1�f ). Even if this part is very small it can
represent a very big speedup loss when the number of parallel
cores is high, as it can be seen in Eq. (4), which shows the
maximum speedup for a certain f even if the number of
processors is arbitrarily high. Therefore, it is crucial to reduce
as much as possible the fraction of non-parallelizable calculation

lim
n-þ1

1

1�fð Þ þ f
n

¼ 1
1�f

ð4Þ

� A parallel application includes extra communication and syn-
chronization workloads that are not necessary in sequential
programs.

� When some threads or processes finish their workload before
others, the hardware does not work at full capacity any more
because some of the processing cores remain idle, waiting for
new tasks to be assigned.

However, there are some cases where a superlinear speedup
can be attained. One of them is when the amount of processed
information does not fit in the main memory of a single computer.
If several computers collaborate, the total amount of available
memory is higher and then the necessity of slow hard-disk
accesses can be removed.

Finally, the relationship between processing (tpr) and commu-
nication (tc) workload as the problem size increases is also
important (Rpc ¼ tpr=tc). If the processing workload is higher, a
bigger cluster would be useful in order to improve the perfor-
mance. However, if there is more communication as the problem
size increases, there would be a bottleneck and the use of more
machines would not imply faster results.

3.4. Distributed AFISs: proposals in the specialized literature

According to the preceding sections, the features provided by
HPCs are very similar to the AFIS objectives described in Section 2.
HPC is a promising tool for the design of a flexible and scalable AFIS

because it would allow a parallel search through the fingerprint
database, providing an increased system performance [18,50].

At the time of writing this paper there are several AFISs in the
specialized literature and also in the commercial market. Most of
these systems have an acceptable performance when they deal
with small databases. Nevertheless, in most real world problems
there is a need of finding a person among databases whose sizes
can range from tens of thousands to tens of millions. These
identifications must be performed in a reasonable time, often
shorter than a threshold of a few seconds. Furthermore, as
explained in Section 2, the larger the size of the fingerprint
database, the harder it is to obtain a good identification accuracy.

Within this context, the bottleneck step in the identification
process is the matching algorithm, because it must be performed
once per each database fingerprint to determine which one is the
most similar to the input.

The proposals in the specialized literature can be classified into
different categories:

� Client-server systems: in [51], the authors propose a server-like
AFIS where the fingerprint database is distributed among several
servers. When a client requests an identification from a server, it
searches the input fingerprint in its database portion. If it
succeeds, it sends the response to the client. However, if the
fingerprint is not found in the server, the request is forwarded to
other servers and the server acts as a client. Therefore, this
system does not process the information in parallel. The distribu-
tion only affects the database and not the processing, and the
overall processing time is higher than in a sequential AFIS. This
makes this architecture unsuitable for very large databases with
hundreds of thousands of fingerprints. A similar system is
described in [19], that additionally includes a GPS-based system
for an increased security.
The objective of these systems is to provide an AFIS for
distributed databases, whereas this paper focuses on attaining
low identification times in large databases. Thus, no comparison
can be performed between these systems.

� Agent-based systems: in [52] an agent-based system is pre-
sented, mostly oriented to heterogeneous hardware architec-
tures. The novelty of this work is that it uses the idle times of a
bunch of computers that are mainly used for other purposes,
especially desktop machines. The main part of this proposal is
therefore a load-balancing algorithm. The system has a master-
slave structure where a set of slave agents compare fingerprints
and a master agent distributes and organizes the computing
workload. The proposed architecture is divided into layers that
isolate the resource monitoring, the agent manager and the
matching algorithm. A similar, less centralized approach is
presented in [53], where slave agents are able to communicate
and share their found scores. Several processes are dynamically
created when an input fingerprint is received to better dis-
tribute the database exploration. Although this may improve
the system flexibility, there is a negative impact on the
identification time.
Again, the objective in these systems is not performance, but
load-balancing between shared machines. The execution times
shown in [52] are of 3 min and 14 s for performing 700
matchings in a set of 20 Pentium IV machines. This result
shows that this approach is not able to handle identifications
through hundreds of thousands of fingerprints in no more than
a few seconds, as is the requirement for most real-time
biometric systems.

To sum up, there are some solutions and ideas to improve the
efficiency and the availability of AFISs; however, there is no really
scalable AFIS available in the current scientific literature.
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4. Distributed and scalable AFIS framework

As it has been explained in the previous sections, the bottle-
neck in a traditional AFIS is the matching process, that has to be
executed once for each fingerprint in the database. This makes the
system less usable when it comes to deal with large or very large
databases (from tens of thousands of fingerprints onwards) as the
response time becomes too high. However, the fingerprint identi-
fication problem is naturally parallelizable, because the compar-
isons of the input fingerprint I with each one of the N fingerprints
Ti in the database are entirely independent. This feature can be
exploited by designing a flexible and efficient parallel identifica-
tion system based on the HPC paradigm, which eliminates the
bottleneck.

The proposed system is described as follows: Section 4.1 details
its parallel structure, Section 4.2 describes the database distribu-
tion and Section 4.3 explains the distributed search process.

4.1. Two-level parallelization

As described in Section 3.1, a typical computer cluster has two
parallelism levels. Both nodes and cores contribute to the system
performance and can execute processes by themselves; however,
they must be handled by the software in a different way if a
maximum performance must be attained.

The proposed software system (which is implemented in C++)
consequently has a two-level parallelization:

� Processes: typically one per node, they are handled with MPI
(see footnote 1).

� Threads: one or several per process, they are handled with
OpenMP.2

There is a single process (called “master”) which reads the
input fingerprint and gathers the results at the end of a search. All
the other processes are called “slaves”, and perform parts of the
search executing the matching algorithm. Each slave loads its
corresponding fraction of the database and searches the input
fingerprint in it. Additionally, each slave process is itself formed by
one or more threads, therefore its database fraction can be divided

over again and the threads perform a parallel search within each
process.

4.2. Database distribution

Suppose a generic system with N fingerprints, p nodes and h
threads per node. The database would be divided into one portion
per node, so that each process searches in its corresponding
portion of N/p fingerprints (Fig. 4). This distribution can be
physical, if the fingerprints are stored in their corresponding
nodes in order to improve the access time and avoid the bottle-
necks of a centralized database, or merely logical if the database is
centralized.

Inside each node, the process performs a logical partition of its
database portion. Hence, each thread searches through only N=ðphÞ
fingerprints. This scheme allows N, p and h to be modified in a
totally flexible way, so they can be adjusted to any hardware (from
single-core computers to hybrid clusters), any environment condi-
tions and any database to obtain a maximum performance gain.

Fig. 5 represents the interval size for each thread as a function
of the total number of threads ph.

Fig. 4. Database partition for nodes and threads.
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2 http://openmp.org/wp/
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4.3. Distributed search process

The logic of the system remains the same independent of how
many nodes or threads are used, and is depicted in Fig.6.

(1) Initialization: this step is executed only once, and then the
system can perform as many identifications as required. The
database partitions are established, each slave loads its part of
the database, preprocesses it if necessary, and the master waits
for input fingerprints.

(2) Identification loop:
(a) The master receives an input fingerprint. As the feature

extraction is performed only once, it can be computed
either in the master process or in each of the slaves
independently, depending on the system features.

(b) When a slave gets the fingerprint features, each one of its
threads performs N=ph matchings to compare it with the
template fingerprints in its database portion.

(c) Each slave sends its successful matches to the master
process.

(d) The master computes the results and gives a response to
the user.

This scheme ensures that the bottleneck step (number 2.b) is
executed with two levels of parallelism, in order to accelerate the
execution as much as possible and eliminate the bottleneck.
Moreover, as the matching algorithm remains the same as in a
sequential search, there is no loss of precision and the system is
guaranteed to find exactly the same solution as the sequential
model in much less time. This also makes the system independent
of the matching algorithm, which can be easily replaced.

According with these data and Amdahl's Law (Section 3.3), this
system can obtain a maximum speedup of 1=ph. In that case the
identification time plot would have the same hyperbolic shape as
the partition size in Fig. 5.

The proposed distributed system shows several important
advantages:

� Very high speedup because of several factors:
○ Independent processing among slave processes.
○ Independent processing among threads within each slave.
○ Minimum communication overhead.
○ Optimal exploitation of the hardware structure.

� Adaptability to multiple sequential or distributed platforms and
architectures.

� Flexibility for centralized or distributed databases.

� Flexibility for any matcher or feature extractor.
� Same precision as the sequential model.

5. Experimental setup

This section describes the experimental framework for this
paper. The aim of this experimental study is to check the system
scalability — along with its adaptability to the underlying hard-
ware system — in several aspects:

� The number of computing nodes.
� The number of threads in each node.
� The size of the database.

All the performed experiments have the same structure: first, a
fingerprint database is loaded in the system and all its fingerprints
are preprocessed according to the corresponding matching algo-
rithm; then, a set of input fingerprints are searched throughout
the database for their identification. All the presented results are
averages of the identification times obtained for 1000 input
fingerprints. For the sake of readability and reasons of space, the
standard deviations are not included, but they can be found in the
web site associated with this paper. The penetration rate is 100%
for this setup, as there is no stopping criterion for the search.
As explained in Section 4.3, the proposed system provides the
same identifications as a traditional sequential AFIS. A large
description of the possible stopping criterion is presented in the
associated web site, as well as the precision results for all the
databases used in this paper.

Firstly, the hardware and software support are defined and
detailed in Section 5.1. Then, Section 5.2 describes the large
synthetic databases created with SFinGe. Finally, Section 5.3
details the captured databases that are used in the experiments.

5.1. Hardware and software environment

The experiments have been carried out on up to twelve nodes
in a cluster. Each of these nodes has the following features:

� Processors: 2 � Intel Xeon CPU E5-2620
� Cores: 6 per processor (12 threads)
� Clock Speed: 2.00 GHz
� Cache: 15 MB
� Network: Gigabit Ethernet (1 Gbps)
� RAM: 64 GB

Fig. 6. Processing in the proposed distributed model.
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One of the nodes acts as the interface with the user and hosts
the master process. However, as this process does not perform any
major processing tasks, a slave process can also be executed on the
same node without compromising the performance and thus the
hardware is more efficiently exploited.

The proposed distributed model has been implemented in C++,
using the OpenMPI 1.6 library3 for the communication and
synchronization of processes. Similarly, the OpenMP library (see
footnote 2) has been used for handling the threads within each
process. In all databases where the fingerprint features had to be
extracted, the NIGOS mindtct [21] algorithm was used.

Three different matching algorithms of the state-of-the-art
literature have been used within the framework:

� Jiang is a classical hybrid matching algorithm [43]. Each
minutia is described with a feature vector that depends on its
neighboring minutiae, and the feature vectors of both finger-
prints are compared in pairs. The algorithm assumes that the
most similar pair corresponds to the same minutia in both
fingerprints and compares the rest of the minutiae using
relative coordinates and angles (avoiding the translation and
rotation problems).

� Chen focuses on getting robustness despite of the fingerprint
distortion [28]. The algorithm is mostly local, as it calculates the
local topology for each minutiae given a fixed radius. Then, it
compares the local topologies of both fingerprints, and if they
are similar enough, it repeats the comparison with a modified
radius to avoid problems with the image distortion.

� Minutia-Cylinder-Code (MCC) uses both local and global infor-
mation to perform the matching [6]. For each minutia, a
tridimensional cylinder is built and discretized in cells. Each
cell is given a value that depends on its position and the
relative position of neighboring minutiae. According to this
number, the cell can be declared either valid or invalid, so that
only cylinders with a minimum number of valid cells are taken
into account for the matching process. This process compares
the cylinders of both fingerprints cell by cell and merges the
results (global matching) to get the score.
This algorithm has a binary and a real version. In this paper, we
focus on the latter, which is more precise and more suited for
general purpose machines. We also fix 16 cells as the cylinder
side size in order to get the most accurate configuration, which
is also the most computationally complex. Results for the
version with Ns¼8 are included in the web site associated to
this paper.

All three algorithms have been implemented by the authors of
this paper, with the only help of the information shown at each of
the referred papers. All the used methods parameters are common
for all databases, and they were selected according to the recom-
mendation of the corresponding authors (Table 1).

5.2. SFinGe databases: ground-truth minutiae and NIGOS mindtct
extraction

A correct scalability study requires a very large database.
However, there is no public captured fingerprint database big
enough to cover this need, so we used SFinGe [20,2] to generate a
database with 400 000 synthetic fingerprints, using the para-
meters described in Table 2 to ensure the generation of realistic
fingerprints.

SFinGe randomly generates the fingerprint minutiae and cal-
culate a fingerprint image from them, following patterns so that
the resulting synthetic fingerprints behave as natural captures.
As SFinGe is able to provide the generated minutiae as an
additional output, this paper has used both the returned ground-
truth minutiae and the extracted minutiae (using mindtct), obtain-
ing two databases with the same fingerprints but slightly different
characteristics.

For each fingerprint 25 impressions have been generated. One
of the impressions is selected as template, and the rest are
considered input fingerprints. Then, several subsets of the whole
database (each of them of increasing sizes) have been selected,
respecting the natural class distribution, in such a way that each

Table 1
Parameters for the methods used in the experimentation.

Algorithm Parameters Reference

Mindtct Output format ¼ ANSI INCITS 378-2004 [21]
Image enhancement ¼ enabled

Jiang wd ¼ 1; wθ ¼ 54π; wϕ ¼ 54π; wn ¼ 0; wt ¼ 0 [43]
Consolidation step iterations¼5, minutiae neighborhood size¼2
BG1 ¼ 8; BG2 ¼ π

6; BG3 ¼ π
6

Chen ThrL ¼ 55; ThrH ¼ 80; R¼ 80; RS¼ 100; θL ¼ 0:25; θH ¼ 0:4 [28]
lenL ¼ 5; lenH ¼ 20; Thrtopo ¼ 0:7

MCC16 R¼ 70; Ns ¼ 16; Nd ¼ 6; ss ¼ 28
3 ; sd ¼ 2π

9 ; μΨ ¼ 0:01; τΨ ¼ 400 [6]

ω¼ 50; minVC ¼ 0:75; minM ¼ 2; minME ¼ 0:60; sθ ¼ π
2; maxnp ¼ 12

Floating-point-based version: enabled, μP ¼ 20
wR ¼ 0:5; μρ1 ¼ 5; τP ¼ 0:6; minnp ¼ 4
μρ2 ¼ π

12; μ
ρ
3 ¼ π

12; τ
ρ
1 ¼�1:6; τρ2 ¼�30; τρ3 ¼�30; nrel ¼ 5

Table 2
Parameter specification used with the SFinGe tool.

Scanner parameters

Acquisition area: 0.58”�0.77” (14.6 mm�19.6 mm)
Resolution: 500 dpi
Image size: 288�384
Background type: optical
Background noise: default
Crop borders: 0�0

Generation parameters
Impression per finger: 25
Class distribution: natural
Set all distributions as: “varying quality and perturbations”
Generate pores: enabled
Save ISO templates: enabled

Output settings
Output file type: WSQ

3 http://www.open-mpi.org/
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database contains the immediately smaller one. The whole enroll-
ment process is described in the associated web site.

The size of all database subsets are presented in Table 3, along
with the average number of minutiae for both template and input
fingerprints. As it can be seen, the number of average minutiae is
higher for the extracted feature vectors due to the noise intro-
duced by the image generation and the processing steps. This
implies that mindtct extracts an average of 15 spurious minutiae
per fingerprint.

Finally, we have selected one random input impression for each
fingerprint in the smallest database, obtaining a test set of 1000
input fingerprints that is valid for the experiments with all the
generated databases.

The execution parameters take the following values for the
experiments with these database subsets, producing a total of 480
executions of 1000 identifications each:

� Number of nodes: 1, 2, 4, 8 and 12
� Number of threads per node: 1, 4, 12 and 24
� Matchers: Jiang, Chen and MCC16

For the extracted minutiae databases not all parameter combi-
nations are necessary, and the experiments are limited to the
sequential and fully parallel cases to compare if the system
behavior when using the extracted minutiae is the same as when
using the ground-truth database. Considering the 3 matching
algorithms and the 8 database sizes, this produces a total of
48 experiments. It is important to note that the increase in the
number of minutiae shown in Table 3 implies a slow down in the
identification process.

5.3. NIST DB4 and DB14 databases

In addition to the above mentioned experiments, NIST DB4 and
DB14 databases have also been used. These databases are provided
by the National Institute of Standards and Technology (NIST). They
contain 2000 and 27 000 rolled fingerprint pairs, respectively, and
thus the number of minutiae extracted by NIGOS mindtct is very
high (135.87 in DB4 and 206.90 in DB14). The aim of using DB4
and DB14 is to test if the proposed system can deal with captured
databases, and also with rolled fingerprints. The used parameters
for the minutiae extraction and the matching algorithms are the
same as for the SFinGe extracted database.

6. Experimental study

This section describes the results of the performed experi-
ments. Sections 6.1, 6.2, and 6.3 present the results for SFinGe
ground-truth, SFinGe extracted and NIST databases, respectively.

6.1. Speedup with SFinGe ground-truth minutiae

The obtained results are presented in Tables 4 and 5. Note that
the experiments with the 400 000 fingerprints database combined
with the MCC16 algorithm could not be performed within a single
machine because the preprocessed database is bigger than the
whole RAM space in the used computers (64 GB), and thus no
speedups can be calculated. The sequential tests could be run
using virtual memory, but the performance loss would be dra-
matic and the speedup when using several machines would be
superlinear, as described in Section 3.3. This is a very clear case of a
problem that cannot be solved in a sequential manner, but can be
successfully tackled using a distributed approach.

In the rest of the results, the decrease in the execution time and
the corresponding increase in the speedup as the amounts of
threads and processes are augmented can be seen. It is also clear
that the speedup is generally almost linear with the total number
of threads that perform the distributed search.

However, there are some exceptions to this statement:

� When the number of threads per computing node is 24, the
performance gain is not proportional to this number of threads,
but lower. Nevertheless, this behavior is normal because each
node in the used cluster only has 12 cores. The Intel Hyper-
threading technology is able to handle two threads in each
core, but its performance is not as high as when these threads
are executed in parallel within different cores, and strongly
depends on the specific instructions executed by the threads.

� When the database size is small and the computing resources
are high, the performance is not optimal. This behavior is
especially clear with the Jiang algorithm, which is the fastest
method tested in this paper. For example, the execution time
for 10 000 fingerprints is lower than for 1000 fingerprints
when the full cluster (12 nodes and 24 threads) is used. This is
due to the ratio between processing and communication times
(Rpc), as explained in Section 3.3. With small databases and big
resources, the processing time tpr is much smaller than the
communication time tc and thus no gain is obtained. Further-
more, tc is increased due to the synchronization between
threads and processes. The response time of the overall system
depends on the response time of the slowest thread; when the
database is small, the chunks assigned to each thread are very
small and the difference are high. This problem disappears as
the database grows, and it explains why bigger databases can
be explored faster than smaller ones when large resources are
employed.
Since we are mainly concerned with large databases, this is no
issue. Anyway, it can be easily solved by using a specific
configuration for databases with a size smaller than a given
threshold.

Table 3
SFinGe databases size and average number of minutiae.

DB size Ground-truth Extracted

Template Input Template Input

1000 40.79 36.84 55.35 49.60
2000 40.84 36.81 55.47 49.61
5000 40.97 36.98 55.64 49.87

10 000 40.79 36.77 55.48 49.61
50 000 40.72 36.70 55.44 49.58

100 000 40.73 36.71 55.46 49.62
200 000 40.74 36.71 55.50 49.63
400 000 40.70 36.68 55.47 49.66
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Additionally, Fig. 7 shows the speedup when the number of
threads and processes is varied, with one line per database size
and number of slaves. For the sake of readability and to avoid the
irregular behavior described in the preceding paragraph, only
databases from 10 000 fingerprints onwards have been drawn in
these plots.

These figures clearly state that when there are more threads
than physical cores the speedup does not increase linearly. It can
also be seen that the lines corresponding to different database
sizes are grouped. Thus, the database size does not affect the
speedup when it is reasonably large. This result, along with the
fact that the flexible proposed system allows the identification
in arbitrarily large databases, ensures full scalability regarding
the database size. In other words, if the database size is doubled,
the identification time can be kept constant by simply doubling
the computing resources.

Fig. 8 shows the speedup as a function of the total number of
threads that are performing the parallel search. The theoretical limit
imposed by the Amdahl's Law is also displayed, and it can be seen
that the results are close to the line. Moreover, the larger the
database size is, the closer to the line the results are, showing that
the system scalability increases along with the database size. This is
the best possible situation, as it ensures a maximum scalability and
performance when it is most needed. As before, there are

exceptions where the speedup is much lower than the limit, when
the database size is small and when the number of used threads is
higher than the number of physical computing cores. The right side
of the plots in Fig. 8 shows this behavior very clearly: then the full
cluster is used, the speedup increases when the database grows.

6.2. SFinGe databases: extracted minutiae

Once the speedup behavior when changing the computing
resources has been studied, more experiments have been performed
in order to validate the results with more realistic databases. For this
purpose, we have compared the sequential execution times with the
times obtained when using the best configuration (12 nodes and 24
threads per node). Table 6 presents the sequential and parallel times,
along with their quotient (speedup).

It becomes clear that the good speedups obtained with the
ground-truth database are also obtained with extracted minutiae.
This is due to the flexibility of the database partitioning scheme,
which distributes the database statically among nodes and dyna-
mically among threads. Another fact that can be seen in the table
is that the execution times are higher than with the ground-truth
minutiae. This is a consequence of the higher number of obtained
minutiae when using NIGOS mindtct.

Table 4
Execution times and speedup with the MCC16 algorithm.

Slaves DBsize 1 Thread Speedup 4 Threads Speedup 12 Threads Speedup 24 Threads Speedup
Time ðsÞ Time ðsÞ Time ðsÞ Time ðsÞ

1 1000 6.5377 1.0000 1.6867 3.8759 0.6444 10.1447 0.5043 12.9646
2000 12.9968 1.0000 3.2963 3.9429 1.2041 10.7936 0.9059 14.3463
5000 32.5242 1.0000 8.1634 3.9841 2.9056 11.1937 2.1228 15.3212

10 000 64.7076 1.0000 16.2010 3.9940 5.7484 11.2566 4.1308 15.6645
50 000 321.8924 1.0000 81.9340 3.9287 28.2669 11.3876 20.1745 15.9554

100 000 624.3297 1.0000 160.9759 3.8784 56.5323 11.0438 40.2844 15.4980
200 000 1250.2594 1.0000 314.9397 3.9698 113.1789 11.0468 80.4265 15.5454
400 000 – – – – – – – –

2 1000 3.3728 1.9384 0.9062 7.2142 0.3633 17.9976 0.3081 21.2203
2000 6.5398 1.9873 1.6969 7.6592 0.6457 20.1289 0.5144 25.2667
5000 16.3442 1.9900 4.1567 7.8246 1.4826 21.9367 1.1156 29.1537

10 000 32.5416 1.9885 8.1786 7.9118 2.9220 22.1446 2.1294 30.3882
50 000 161.8845 1.9884 40.3953 7.9686 14.1720 22.7132 10.1626 31.6743

100 000 324.4350 1.9244 80.6912 7.7373 28.2606 22.0919 20.1649 30.9612
200 000 625.5980 1.9985 161.2985 7.7512 56.5520 22.1081 40.2440 31.0669
400 000 1248.7902 – 322.3448 – 109.9070 – 80.4963 –

4 1000 1.8610 3.5129 0.5247 12.4603 0.2329 28.0741 0.2133 30.6491
2000 3.3892 3.8347 0.9121 14.2499 0.3680 35.3140 0.3172 40.9691
5000 8.2977 3.9197 2.1465 15.1521 0.7898 41.1816 0.6155 52.8417

10 000 16.3510 3.9574 4.1657 15.5334 1.4917 43.3775 1.1096 58.3179
50 000 80.8244 3.9826 20.3091 15.8497 7.1278 45.1600 5.1219 62.8463

100 000 161.5434 3.8648 40.4924 15.4185 14.2047 43.9523 10.1475 61.5253
200 000 312.9654 3.9949 80.7448 15.4841 28.2520 44.2538 20.1662 61.9977
400 000 621.7593 – 158.2815 – 56.4944 – 40.2569 –

8 1000 0.9849 6.6382 0.3098 21.1005 0.1681 38.8978 0.1750 37.3486
2000 1.8604 6.9859 0.5302 24.5143 0.2335 55.6547 0.2195 59.2200
5000 4.2340 7.6816 1.1434 28.4443 0.4392 74.0569 0.3691 88.1285

10 000 8.3241 7.7735 2.1611 29.9425 0.7880 82.1115 0.5932 109.0777
50 000 40.4281 7.9621 10.2904 31.2810 3.5670 90.2412 2.5289 127.2860

100 000 80.9415 7.7133 20.2252 30.8689 7.0044 89.1343 4.9369 126.4614
200 000 161.5014 7.7415 40.3357 30.9963 14.1784 88.1803 10.1298 123.4243
400 000 315.6620 – 80.5549 – 28.2313 – 20.1449 –

12 1000 0.6955 9.4000 0.2366 27.6279 0.1384 47.2470 0.1616 40.4603
2000 1.2825 10.1340 0.3841 33.8357 0.1885 68.9394 0.1909 68.0741
5000 2.9076 11.1858 0.8120 40.0537 0.3320 97.9537 0.2866 113.4908

10 000 5.5884 11.5789 1.4935 43.3259 0.5632 114.8979 0.4399 147.0949
50 000 27.1921 11.8377 7.0135 45.8961 2.4538 131.1832 1.7928 179.5466

100 000 54.1348 11.5329 13.5321 46.1370 4.8029 129.9911 3.4581 180.5417
200 000 104.8093 11.9289 26.9958 46.3132 9.4815 131.8623 6.7807 184.3857
400 000 213.1696 – 51.5151 – 18.8523 – 13.4805 –
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Table 5
Execution times and speedup with Jiang and Chen algorithms.

Slaves DBsize Jiang Speedup 4 Threads Speedup 12 Threads Speedup 24 Threads Speedup Chen Speedup 4 Threads Speedup 12 Threads Speedup 24 Threads Speedup
1 Thread Time ðsÞ Time ðsÞ Time ðsÞ 1 Thread Time ðsÞ Time ðsÞ Time ðsÞ
Time ðsÞ Time ðsÞ

1 1000 0.2223 1.0000 0.0572 3.8865 0.0210 10.6091 0.0322 6.9010 2.6166 1.0000 0.6707 3.9014 0.2631 9.9439 0.2158 12.1275
2000 0.4491 1.0000 0.1143 3.9292 0.0418 10.7486 0.0469 9.5809 5.2484 1.0000 1.3442 3.9046 0.5200 10.0937 0.4094 12.8186
5000 1.1262 1.0000 0.2871 3.9232 0.1048 10.7434 0.0898 12.5358 13.2122 1.0000 3.3910 3.8963 1.3043 10.1294 1.0083 13.1038

10 000 2.2432 1.0000 0.5710 3.9286 0.2072 10.8245 0.1670 13.4285 26.3182 1.0000 6.7189 3.9170 2.6000 10.1224 1.9823 13.2764
50 000 11.2532 1.0000 2.8536 3.9434 1.0443 10.7753 0.7408 15.1909 130.0427 1.0000 33.3673 3.8973 12.9129 10.0708 9.7984 13.2719

100 000 22.3477 1.0000 5.6989 3.9214 2.0743 10.7737 1.4444 15.4715 261.2312 1.0000 66.7052 3.9162 25.8390 10.1099 19.5891 13.3355
200 000 44.7627 1.0000 11.4571 3.9070 4.1789 10.7115 2.8860 15.5104 520.8561 1.0000 133.8296 3.8919 51.7934 10.0564 39.2616 13.2663
400 000 89.4130 1.0000 22.8261 3.9171 8.3137 10.7549 5.7485 15.5541 1041.2164 1.0000 268.2014 3.8822 103.6681 10.0437 78.6457 13.2393

2 1000 0.1142 1.9461 0.0294 7.5499 0.0108 20.6412 0.0292 7.6174 1.3740 1.9044 0.3538 7.3956 0.1360 19.2343 0.1180 22.1809
2000 0.2233 2.0118 0.0575 7.8125 0.0213 21.1162 0.0364 12.3264 2.6151 2.0069 0.6745 7.7813 0.2643 19.8543 0.2176 24.1182
5000 0.5647 1.9942 0.1455 7.7383 0.0522 21.5809 0.0579 19.4507 6.6614 1.9834 1.7315 7.6305 0.6522 20.2588 0.5073 26.0449

10 000 1.1266 1.9911 0.2917 7.6913 0.1041 21.5529 0.0940 23.8630 13.2512 1.9861 3.4134 7.7102 1.3075 20.1283 1.0074 26.1243
50 000 5.5878 2.0139 1.4407 7.8108 0.5222 21.5507 0.3782 29.7538 65.3116 1.9911 16.8256 7.7289 6.4966 20.0171 4.9242 26.4089

100 000 11.2132 1.9930 2.8599 7.8141 1.0442 21.4017 0.7306 30.5885 130.0469 2.0087 33.5380 7.7891 12.9157 20.2258 9.7965 26.6656
200 000 22.3400 2.0037 5.7152 7.8323 2.0770 21.5513 1.4477 30.9198 263.4494 1.9771 67.1486 7.7568 25.8201 20.1725 19.5915 26.5858
400 000 44.7918 1.9962 11.4334 7.8203 4.1682 21.4514 2.8645 31.2138 494.2013 2.1069 134.0177 7.7692 51.7896 20.1047 39.2861 26.5034

4 1000 0.0636 3.4950 0.0160 13.8813 0.0060 36.8029 0.0237 9.3672 0.7832 3.3409 0.2000 13.0831 0.0773 33.8613 0.0773 33.8581
2000 0.1154 3.8922 0.0297 15.1395 0.0111 40.4738 0.0294 15.2556 1.3838 3.7928 0.3590 14.6187 0.1362 38.5442 0.1155 45.4296
5000 0.2848 3.9547 0.0731 15.4160 0.0268 42.0524 0.0382 29.4869 3.3920 3.8951 0.8811 14.9944 0.3295 48.0000 0.2660 49.6665

10 000 0.5649 3.9707 0.1456 15.4113 0.0526 42.6104 0.0582 38.5593 6.6707 3.9454 1.7267 15.2417 0.6550 40.1810 0.5116 51.4412
50 000 2.8063 4.0099 0.7184 15.6639 0.2631 42.7751 0.1996 56.3777 33.6899 3.8600 8.4567 15.3775 3.2448 40.0772 2.4605 52.8523

100 000 5.5953 3.9940 1.4330 15.5947 0.5248 42.5867 0.3764 59.3691 65.3531 3.9972 16.8876 15.4688 6.4745 40.3479 4.9155 53.1444
200 000 11.2069 3.9942 2.8843 15.5196 1.0416 42.9750 0.7293 61.3813 130.2397 3.9992 33.7397 15.4375 12.9011 40.3730 9.7735 53.2930
400 000 22.3816 3.9949 5.7571 15.5309 2.0919 42.7426 1.4346 62.3251 244.8766 4.2520 67.2316 15.4870 25.8130 40.3369 19.5542 53.2478

8 1000 0.0316 7.0401 0.0083 26.7494 0.0035 64.2974 0.0290 7.6733 0.4037 6.4812 0.1054 24.8257 0.0428 61.1117 0.0515 50.8454
2000 0.0620 7.2497 0.0161 27.9362 0.0062 72.6729 0.0212 21.1652 0.7753 6.7691 0.2062 25.4555 0.0775 67.7110 0.0758 69.2445
5000 0.1451 7.7641 0.0378 29.7743 0.0137 82.4991 0.0132 85.4633 1.7007 7.7686 0.4545 29.0717 0.1694 77.9951 0.1482 89.1464

10 000 0.2842 7.8943 0.0736 30.4730 0.0269 83.4649 0.0189 118.5300 3.3823 7.7811 0.9019 29.1795 0.3319 79.2880 0.2626 100.2375
50 000 1.3982 8.0483 0.3657 30.7747 0.1338 84.0739 0.0865 130.1263 16.2990 7.9786 4.3068 30.1949 1.6056 80.9917 1.2014 108.2427

100 000 2.8018 7.9761 0.7160 31.2100 0.2617 85.4097 0.1676 133.3246 32.6356 8.0045 8.3803 31.1721 3.2778 79.6972 2.3699 110.2273
200 000 5.5918 8.0050 1.4278 31.3501 0.5252 85.2298 0.3771 118.6958 65.4597 7.9569 16.7699 31.0590 6.4707 80.4948 4.9169 105.9329
400 000 11.2094 7.9766 2.8535 31.3340 1.0465 85.4367 0.7311 122.2957 130.3891 7.9855 33.5594 31.0261 12.9884 80.1652 9.8312 105.9092

12 1000 0.0217 10.2596 0.0059 37.8051 0.0026 84.7512 0.0355 6.2588 0.2860 9.1492 0.0750 34.8743 0.0319 82.0586 0.0462 56.6480
2000 0.0420 10.7056 0.0111 40.5654 0.0045 100.4881 0.0305 14.7041 0.5355 9.8015 0.1402 37.4315 0.0555 94.5845 0.0605 86.7839
5000 0.0987 11.4113 0.0257 43.7860 0.0099 113.8505 0.0245 46.0084 1.1946 11.0598 0.3207 41.1937 0.1207 109.4223 0.1097 120.3981

10 000 0.1913 11.7289 0.0496 45.2401 0.0180 124.5452 0.0294 76.2192 2.2545 11.6735 0.6144 42.8372 0.2249 117.0009 0.1826 144.0929
50 000 0.9391 11.9824 0.2479 45.3899 0.0886 127.0723 0.0769 146.2598 11.6401 11.1720 2.9209 44.5208 1.0921 119.0792 0.8393 154.9394

100 000 1.8793 11.8913 0.4780 46.7535 0.1757 127.1641 0.1298 172.2133 21.8480 11.9568 5.6096 46.5684 2.1689 120.4465 1.6707 156.3570
200 000 3.7270 12.0104 0.9538 46.9313 0.3514 127.3876 0.2573 173.9799 43.5101 11.9709 11.1898 46.5475 4.3222 120.5079 3.2824 158.6822
400 000 7.4420 12.0146 1.9056 46.9214 0.7015 127.4627 0.4922 181.6637 83.1721 12.5188 22.3146 46.6609 8.6148 120.8634 6.5342 159.3485
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Fig. 9 shows the obtained speedups depending on the database
size (note the logarithmic scale on the horizontal axis). It can be
seen that the larger the database, the higher the speedup. It is due
to the same reasons explained in the preceding section. Thus, the
system behavior remains the same even when the database is
changed. The plot also shows how the obtained speedup when
using two threads per core is far from the theoretical maximum
with the Intel Hyperthreading technology, but it is also consider-
ably higher than the maximum of 144 (12 nodes with 12 cores)
that would be attainable if this technology were not implemented
in the microprocessors. This proves again that we are in an optimal
case for the application of a distributed system and that the
proposed system has been optimally designed and implemented.

6.3. NIST DB4 and DB14 databases

Finally, the NIST DB4 and DB14 databases have been used to
test the proposed system in the same conditions as the SFinGe
extracted fingerprints. The results are presented in Table 6 and
Fig. 10.

Again, the speedup values are similar to those obtained with
the SFinGe ground-truth database, proving that the proposed

system is database-independent and can achieve very good results
both with plain and rolled fingerprints, whose matching times are
totally different.

The plot also shows that the speedups are higher when the
search is performed in DB14, which is by far the biggest database.
This result is in the same line as those obtained with the SFinGe
databases, where bigger databases allow better scalability. If the
figure is compared with Fig. 9, it can be seen that both NIST
databases reach a better speedup than SFinGe databases of the
same size. This is due to the higher number of minutiae of the rolled
fingerprints: the matching process is more computationally com-
plex, and thus HPC is able to improve the time results even further
because the impact of the sequential preprocessing is reduced.

The different matching algorithms show the same behavior
with the NIST and SFinGe databases, as it can be seen when
comparing Figs. 9 and 10: the Jiang algorithm has less speedup
because its processing workload is very small, and thus the
communication time has a bigger impact on the overall time. On
the other extreme, the most computationally expensive algorithm
(MCC) obtains a superlinear speedup when inserted in the
proposed framework, although in theory this situation should
not be possible. In this case, as mentioned in Section 3.3, a higher
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Fig. 7. Speedup when varying the number of slave processes and threads, for databases with 10 000 or more fingerprints. (a) Jiang, (b) Chen, and (c) MCC16.
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number of computers also means more main memory and more
caches. As the database chunks explored by each node are also
smaller, they can fit more easily in the cache memory and thus can
be explored even faster.

7. Conclusions

In this paper, we have introduced a novel two-level parallelized
automatic fingerprint identification system. The proposed framework
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Fig. 8. Speedup when varying the database size. (a) Jiang, (b) Chen, and (c) MCC16.

Table 6
Sequential (ts) and parallel (tp) execution times and speedup with the SFinGe extracted and NIST databases.

DB size Jiang Chen MCC16

ts ðsÞ tp ðsÞ Speedup ts ðsÞ tp ðsÞ Speedup ts ðsÞ tp ðsÞ Speedup

1000 0.4735 0.0253 18.7070 5.9325 0.0661 89.6952 10.4988 0.2023 51.9038
2000 0.9330 0.0255 36.5825 11.4148 0.1004 113.6886 19.7435 0.2519 78.3921
5000 2.3099 0.0325 71.0363 28.6567 0.2061 139.0185 47.5580 0.3912 121.5540

10 000 4.6722 0.0446 104.8213 56.6954 0.3477 163.0649 93.2347 0.6227 149.7332
50 000 22.9674 0.1475 155.6925 283.3022 1.6784 168.7886 459.9514 2.5605 179.6316

100 000 46.3680 0.2734 169.6040 569.8500 3.3252 171.3708 922.1267 4.9613 185.8622
200 000 92.3980 0.5288 174.7348 1144.3038 6.6053 173.2413 1851.2036 9.7530 189.8089
400 000 183.2521 1.0368 176.7501 2303.3817 13.2144 174.3086 – 19.3620 –

DB4 7.7601 0.0795 97.5911 81.7127 0.5893 138.6534 192.5607 1.6131 119.3743
DB14 307.4337 2.0310 151.3740 2454.5287 10.4387 235.1381 6460.3050 20.6486 312.8684
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combines process-level and thread-level parallelism in order to
obtain a maximum speedup for any kind of underlying hardware
architecture from monocore processors to large hybrid clusters.
It also abstracts the fingerprint matching algorithm, in such a way
that the inclusion of a new algorithm is straightforward and does not
affect either the algorithm or the global framework.

In order to verify the capabilities of the system, we have used
the SFinGe software [20,2] to generate a database of 400 000
fingerprints that has been used for identification in a set of
experiments on a hybrid cluster, ranging from sequential to
massively parallel runs. In a search for more realistic fingerprints,
we have applied the NIGOS mindtct minutiae extractor on the
database and performed more experiments. Finally, another set of
experiments has been executed using two large real-world data-
bases from the NIST. All these experiments have been run with
three well-known fingerprint matching algorithms [43,28,6].

After detailing the obtained results, we can conclude that the
proposed framework fulfills the expectations. It has a linear
scalability regarding the fingerprint database, as well as an optimal
adaptability to the underlying hardware. In theory, this allows the
identification in databases of arbitrary size as long as there is
enough computing power. In practice, the identification time can

be kept constant against the database growth just by augmenting
the computing resources in the same proportion. The framework
has also proven to maintain its good behavior independent of the
underlying matching algorithms and fingerprint features.
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