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The interaction between scientific and technological knowledge facilitates exploration of new
technological opportunities; however, gaps between them typically impede exploration of
these opportunities. Scientific papers and technological patents record modern and advanced
knowledge in scientific discovery and technological development; therefore, comparing their
statuses can identify the gaps and explore potential technological opportunities. Because
microalgal biofuels are a promising alternative energy resource devoid of territorial land use
problems, this study applies text mining and an algorithm that can cluster objects of high-
dimensional data to microalgal biofuel papers and patents, and explores their potential
technological opportunities. The results demonstrate that a text-based clustering approach is
appropriate for identifying scientific and technological applications for microalgal biofuels. The
results indicate that microalgal photosynthesis and light utilization have abundant scientific
outcomes for technological engineers to potentially apply. Technological opportunities exist in
synthesis, harvesting, extraction, and lipid conversion. Scientific knowledge underlying biofuels
accompanying high-value co-products of production require sustained exploration and reporting
through research. These needs represent potential technological opportunities.

© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Technological opportunity is the potential for technological
progress in general or within a particular field (Klevorick et al.,
1995; Olsson, 2005; Frenz and Prevezer, 2012) that affects the
overall industry and individual enterprises. At the industrial
level, technological opportunities determine technological de-
velopment (Olsson, 2005), affect industry R&D intensity, and
lead to heterogeneous R&D productivity in different industries
(Klevorick et al., 1995; Olsson, 2005). At the enterprise level,
technological opportunities affect R&D costs and innovation
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activities, resulting in different R&D productivity and operating
performance among enterprises (Frenz and Prevezer, 2012;
Nieto and Quevedo, 2005; Cohen et al., 1987; Cohen and
Levinthal, 1989). In addition to affecting current enterprises,
technological opportunities can facilitate the startup of new
businesses and successful commercialization of entrepreneurs'
inventions (Shane, 2001). Because technological opportunities
profoundly influence industries and enterprises, systematic
methods of exploring potential technological opportunities
undoubtedly benefit industries and enterprises.

Klevorick et al. (1995) identify three sources that contribute
to an industry's technological opportunities: advances in
scientific knowledge, technological advances originating out-
side the industry, and feedback from industrial technology.
Among those, advances in scientific knowledge are most
powerful. It provides an expanding pool of theory, technique,
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and problem solving capability that industrial R&D uses, and
unlocks new technological capabilities (Klevorick et al., 1995;
Narin et al., 1997; Meyer, 2000). The interaction between
scientific and technological knowledgenourishes exploration of
new technological opportunities. Scientific knowledge lays the
foundation for technological knowledge and provides better
solutions for product commercialization. Feedback stimulus
from technological knowledge can promote continuous explo-
ration and study of scientific knowledge (Glänzel and Meyer,
2003; Ziman, 1988; Meyer, 2002).

Scientific and technological knowledge are complementary,
but the gap between science and technology hinders the
development of technological opportunities. Previous studies
on exploration of technological opportunities have, therefore,
used a single knowledge source. For example, Yoon and Park
(2005) and Yoon and Kim (2012) explore technological
opportunities based on technological knowledge alone. In
contrast, Shibata et al. (2010) successfully combine scientific
and technological knowledge sources to analyze the gap
between them. Their method employs a citation-based cluster-
ing approach that identifies citation networks and further
compares scientific clusters with technological clusters to
identify commercialization gaps. The extracted commercializa-
tion gap is equivalent to the potential of technological opportu-
nities. However, Shibata et al. (2010) analyze only the largest
component in the citation networks and remove isolated nodes
and components not connected with the largest one. This study,
however, observes that citations among literature materials in
some emerging technological fields occur infrequently. Applying
their methods may omit a large portion of literature data, losing
important information. To solve this problem, a text-based
clustering approach that analyzes nonstructured text through
text mining, which replaces the citation network for identifying
scientific and technological clusters, and extracts commercial
gaps and potential technological opportunities, is adopted.

This approach extracts representative words and terms–
features–from documents. Because the literature typically
contains hundreds to thousands of features, the matrices
representing the relationship between documents and features
are high-dimensional spaces; thus, clustering these objects
poses challenges presented by the “curse of dimensionality” (or
“distance concentration effect”), whereby similarity measures
cannot discriminate between the nearest and farthest neigh-
bors for a given object (Beyer et al., 1999). The vector space
extracted by text mining contains more or less irrelevant
features, which may conceal relevant features and confuse the
clustering process (Kriegel et al., 2009). Therefore, a suitable
clustering algorithm is selected for our empirical technology.

Due to serious global climate change, the development of
clean, environmentally-friendly, and renewable energies has
become an important strategy in many countries (Rosenberg,
1982). Biofuel is the fourth largest energy source, after
petroleum, coal, and natural gas. Although biofuel can reduce
CO2 emission, planting biofuel crops requires large land areas
and may reduce space for grain crops. Microalgae are a type of
amphibious plants, and thus, are unaffected by land area
restrictions. The oil content of microalgal cells is higher than
that of any landplant, producinghigher biofuel yields;moreover,
it has the advantage of rapid growth (Smith et al., 2010).
However, microalgal biofuel production cost remains higher
than that of fossil fuel (Davis et al., 2011). Exploring the gaps
between scientific research and technological development
provides useful clues to technological opportunities for over-
coming the challenge in microalgal biofuel production systems.
The citation network relationships among scientific and techno-
logical literature are not frequent because microalgal biofuels
remain a newly emerging field. Therefore, text-based clustering
is more appropriate than citation-based clustering for exploring
technological opportunities in microalgal biofuels.

Therefore, on the basis of scientific and technological
literature related to microalgal biofuels and by employing text-
based clustering for analysis, this study examines current major
scientific and technological research fields, and then explores
future potential technological opportunities by exploring the
gaps between them. Finally, this study suggests future R&D
directions for microalgal biofuels.

2. Related research

2.1. Technological opportunity

Scientific technological knowledge and technological
knowledge within and beyond industries are important
sources of technological opportunities (Klevorick et al., 1995).
The interaction between science and technology has been
studied since Price's (1965) research. Price finds that science
and technology are independent, and accumulate their own
knowledge structure; in special cases, the two interact. Since
then researchers have found that interactions between science
and technology have become increasingly active. Rich scientific
research fields can stimulate innovation and technological
development (e.g., Rosenberg, 1982); conversely, technologies
with less scientific exploration may also inspire important
scientific breakthroughs. Additionally, basic science advance-
ment requires support from more advanced technologies
(e.g., Nelson, 1982). Thus, science and technology are interde-
pendent (Meyer, 2002; Petrescu, 2009).

Despite this interdependence, a gap exists between them.
Scientists may be unaware of the application of their discov-
eries, while manufacturers are often unaware which scientific
discoveries can improve their technological development and
commercialization (Hellmann, 2007). Scientific papers and
technological patents present the results of scientific discovery
and technological development (Martino, 2003; Robinson
et al., 2013; Kostoff, 2006); thus, an analysis and comparison
of scientific papers and technological patents can determine
the gap and identify technological opportunities (Shibata et al.,
2010).

Some previous studies exploring technological opportuni-
ties are based on technological patents alone, whereas others
combine scientific papers and technological patents. Among
the patent studies, Yoon and Park (2005) use text mining to
extract patents' keywords, through which they establish a
technological dictionary and morphology. The undeveloped
morphological combination indicates potential technological
opportunities. The method of exploring technological oppor-
tunities proposed by Shibata et al. (2010) combines science and
technology. They use social network analysis to establish
citation networks of science and technology based on citation
relationships in paper and patent references. After extracting
the papers and patents in the largest components from both
network diagrams, they identify scientific and technological
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Fig. 1. Relationships between science and technology.
Source: Modified from Shibata et al. (2010).
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clusters in both components. By comparing them, they derived
three relationships as shown in Fig. 1.

In Fig. 1, Cluster A is a field containing both technological
and scientific literature, where science and technology interact
and co-evolve. Cluster B is an existing scientific research field
without technological development, presenting a gap between
science and technology that indicates potential technological
development or commercialization opportunities. Cluster C is a
field in which technological developments appear but lack
scientific research, also presenting a gap. This cluster has no
scientific work and requires advanced technological support;
therefore, this gap indicates opportunities for scientific research
advancement. In addition, Shibata et al. (2010) describe a field
that both scientific research and technological development
failed to explore, not shown in Fig. 1.

Themethod proposed by Shibata et al. (2010) analyzes only
the largest components in the citation network, and remove
isolated nodes and components not connected to the largest
ones. As shown in Fig. 1, scientific papers and technology patents
beyond the circle consisting of the largest components are
omitted. Some emerging technologiesmay have had insufficient
time to accumulate knowledge and form a representative
component; therefore, the removal processmay lose potentially
important information.

Scientific papers and technological patents include struc-
tured andunstructured items. Structured items contain uniform
fields and formats, such as publication date and patent number,
whereas papers' and patents' context information is an example
of unstructured items. Text mining can analyze the natural
language of unstructured text to extract useful technological
information (Kostoff, 2008). This study uses amethod proposed
by Shibata et al. (2010) as its base and employs text mining
rather than social network analysis in identifying scientific and
technological clusters.

Text mining integrates approaches of data mining, machine
learning, natural language processing, information retrieval,
and knowledge management. It extracts effective, non-trivial,
hidden, previously unknown, and potentially useful knowledge
from non-structured or semi-structured texts (Feldman and
Sanger, 2007; Weiss et al., 2005). The approach can handle a
large volume of unstructured text and mine important hidden
information from a set of documents, called a corpus. For paper
and patent corpuses, text mining has many potential applica-
tions. Previous studies have used text mining or combined text
mining with other methods to mine different knowledge and
information from academic papers or patent documents. For
example, Wang et al. (2010) combine text mining and TRIZ
(Theory of Inventive Problem Solving) to investigate techno-
logical evolutionary trends. Combining text mining, network
analysis, and citation analysis, Lee et al. (2009) visualize patent
information that can support enterprises in discovering
business opportunities. Wu et al. (2011) combine text mining
and bibliometric analysis to explore technology trends. To
overcome the problem that invention, traditionally, requires
scientists' spontaneous creativity or countless attempts, Kostoff
(2008) proposes a literature-related discovery approach,where
textmining analyzes literature to suggest potential discoveries.

2.2. Text mining and clustering for high-dimensional data

Feldman and Sanger (2007) explain that text mining
procedures include the preprocessing of document collections,
storage of intermediate representations, techniques to analyze
these intermediate representations, and visualization of the
results. Preprocessing of document collections involves an
attempt to convert unstructured texts into structured textual
data for computer processing. Therefore, preprocessing involves
stemming, stopword removal, and extraction of representative
words or terms, which are called the features of the document.
The relationships between documents and feature extractions
are often presented by the vector space model (VSM) proposed
by Salton et al. (1975). In the VSM model, the relationships
between documents and features are projected in a multi-
dimensional Euclidean space. A document is presented as a
vector containing weights of several features; a corpus is a
vector space composed of several documental vectors. This
vector space is the structured textual data that can be analyzed
by computers.

Cluster analysis reveals groups of similar documents. Cluster
detection is based on similarity between documents, typically
determined using measures of the dimensions in vector space.
When the number of dimensions increases, all documents in
the high-dimensional vector space must be nearly equidistant
from each other (Parsons et al., 2004). Thus, conventional
clustering algorithms cannot detect meaningful clusters.
Beyer et al. (1999) called this the “curse of dimensionality.”
Vector space transformed froma corpus typically has numerous
features, so the space is a high-dimensional space. Therefore,
conventional clustering algorithms may not identify meaning-
ful clusters. Aside from the problem of similarity measures,
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vector space generated from a corpus is typically very sparse,
featuring many zero values in the matrix (Kriegel et al., 2009).
Some features may be irrelevant to the themes, which may
confuse clustering algorithms (Parsons et al., 2004).

Previous studies typically used feature transformation and
selection techniques to cluster objects in high-dimensional
space. Feature transformation techniques attempt to summarize
a dataset by creating combinations of the original features:
principle component analysis and singular value decomposition
are two well-known techniques. However, transformations
generally preserve the original relative distances between
documents; thus, information from irrelevant dimensions may
mask meaningful clusters if the data contain many irrelevant
dimensions. Feature selection discovers and retains the features
of a dataset that are most relevant to research task (Parsons
et al., 2004); however, it may not always be feasible to prune
excessive dimensions without information loss when some
document features are differently correlated (Aggarwal and Yu,
2000). Therefore, feature selection techniquesmaybe ineffective
when dimensions have locally varying relevance for different
clusters of documents. Fig. 2 illustrates the concepts that
documents have locally varying relevance and possible clusters
in a vector space. Cluster 3 represents a traditional cluster in
global space, whereas clusters 1, 2, and 4 appear only in a subset
of relevant dimensions, which present a specific theme. Note
that D8 may be assigned to more than one cluster (Müller et al.,
2009).

Feature transformation and selection techniques handle
clustering problems in a global space by computing only one
subspace of the original data space, wherein the clustering can
then be performed (Kriegel et al., 2009; Müller et al., 2009).
They perform “ineffectively” to detect clusters because each
cluster may exist in a different subspace. In clustering
documents, it is common to find that each cluster exists in a
different subspace. Related documents only have a similar
word weights within a subset of terms that are likely to be
different for different groups of thematically relevant docu-
ments (Kriegel et al., 2009).

Recently, scholars have taken the concept of feature
selection one step further by selecting relevant subspaces for
each cluster separately and developing clustering algorithms
Term
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for high-dimensional space. Numerous possible subspaces can
be selected. To obtain high-quality clusters, given reasonable
computation time, the first class of algorithms focuses only on
clusters in axis-parallel subspaces. These algorithms are called
projected clustering, or subspace clustering algorithms. The
second class searches for subspace solutions where clusters
may exist in any arbitrarily oriented subspace, and are usually
called generalized subspace/projected clustering, or correlation
clustering algorithms. The third class lies between the above
two and are referred to as pattern-based clustering algorithms
(Kriegel et al., 2009).

From the application viewpoint, the second class is
generalized, concise, and meaningful compared with the other
two. ORCLUS (arbitrarily Oriented projected CLUSter genera-
tion), is the first proposed generalized projected clustering
algorithm (Aggarwal and Yu, 2000). This algorithm arose from
the observation that many datasets contain inter-feature
correlations, and is a k-means-like approach. It includes three
steps: assigning clusters, finding subspaces, and merging
clusters. During cluster assignment, the algorithm iteratively
assigns each object to its closest seed. The distance between
two points is measured in subspace E, where E is a set of
orthonormal vectors in some d-dimensional space. Finding the
subspaces redefines the subspace E associatedwith each cluster
by calculating the covariance matrix for a cluster and selecting
the orthonormal eigenvectors with the smallest eigenvalues.
The selected eigenvectors correspond to the projected sub-
space, where the clustered objects exhibit high density, and
hence can exclude the most noisy subspaces. Calculation and
selection are iteratively adapted to the current state of the
updated cluster. As a result, each successive iteration continues
to strip noisy subspaces from different clusters. The third step
merges nearby clusters that have similar directions of high
density. The number of clusters and size of the subspace
dimensionality must be specified by the researcher. The cluster
sparsity coefficient can statistically evaluate the choice of
subspace dimensionality (Kriegel et al., 2009; Parsons et al.,
2004; Aggarwal and Yu, 2000). If the value approaches 1, then
the chosen subspace dimension may be too large. A value close
to 0 can be interpreted as a hint that a strong cluster structure
has been found (Szepannek, 2013).
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2.3. Microalgal biofuel

Among several renewable energies, biofuels possess several
advantages, such as reducing carbon emissions and lower
waste content. However, the problem of requiring substantial
land for cultivating most biofuel sources impedes the develop-
ment and usage of biofuels as a feasible option for renewable
energies.Microalgae are amphibious plants, presenting no land
problem. They grow rapidly and contain more oil than any
terrestrial biofuel source (Smith et al., 2010).Microalgae can be
produced all year-round, yielding higher oil production than
that of the best oilseed crops. For example, microalgal biodiesel
yield containing only 30% oil by weight is 58,700 liters per
hectare (L/ha), which is superior to 1190 L/ha for rapeseed,
1892 L/ha for Jatropha, and 2590 L/ha of Karanj (Pongamia
pinnata) (Singh andGu, 2010). This extracted oil can be used to
produce many high energy density transport fuels, its biomass
residues can be converted into biofuel through either the
biochemical or thermochemical pathway (Smith et al., 2010).
The primary pathway of biomass produced in microalgae is
photosynthesis. Its reactants are carbon dioxide and water
through light absorption, and the products are oxygen and
glucose, the latter being used for ethanol or other biofuel
production. Two systems enable microalgae cultivation: open
pond and closed tubular photobioreactor (PBR) systems.
Comparing the two systems, the open pond system includes
lower capital investment and available technology, while its
disadvantages are higher downstream processing cost, higher
water usage, and lower flexibility to strain selection. The PBR
system, in contrast, offers higher flexibility to strain selection
and lower downstream processing cost andwater usage (Davis
et al., 2011).

3. Research process

The research process includes four stages: document
collection, textmining, clustering for research and technological
fields, and identification of technological opportunities. Fig. 3
presents the research process; the paragraphs below describe
these stages in detail.

Step 1, document collection, includes scientific and techno-
logical documents. The Science Citation Index and patent
Stage 1. Document collection
• Paper documents

• Patent documents

Stage 3. Clustering for 
scientific and technological 
fields
• Orclus clustering algorithm 

Fig. 3. Research
databases are typical sources for basic research and technolog-
ical development, respectively; therefore, this study collects
scientific papers related tomicroalgal biofuels from the Science
Citation Index-Expanded (SCIE) database and technological
documents from theUnited States Patent and Trademark Office
(USPTO).

The search strategy for retrieving documents related to
microalgal biofuels was the submission of keywords to paper
and patent databases (Konur, 2011). The first phase of
submitted keywords comprised of several microalgae-related
keywords, such as “microalgae,” “alga,” and the names of 32
microalgae species that yield biofuel. The identifiedmicroalgae-
related documents to biofuels were then narrowed down by
using a Boolean operator AND, with the second phase of
keywords comprising of biofuel-related words, such as “bio-
energy,” “bio-fuel,” “bio-diesel,” and “bio-hydrogen.” Table 1
displays detailed queries to retrieve paper documents.

When retrieving patent documents, the biofuel-related
keywords in the second phase are modified to account for the
particularwording and terminology used in patent applications
being different from those found in other types of documents.
Academic authors typically use precise wording in articles,
whereas patent applicants are accustomed to submitting genus
claims that embrace a class of entities characterized by a
common property (Lefstin, 2008), to broaden the scope of
patent protection. Taking bio-butanol from the biofuel-related
keywords as an example, the word “bio” means that the
butanol feedstock is biomass rather than fossil-based, and the
bio-butanol has the same chemical properties as butanol,
revealing that the word “butanol” is a general (genus) term for
“bio-butanol.” Therefore, this study adopts general terms for
each biofuel in the second phase of the keyword search, and
general terms are obtained by removing “bio” from the lists
of biofuel-related words in Table 1. Considering that broad
keywordsmay include patents unrelated tomicroalgae biofuels,
this study removes them by referring to the main international
patent classifications (IPCs) designated to each patent after the
patents are downloaded.

The searched fields in the patent database included title,
abstract, and claim, while those in paper database were title
(TI) and topic (TS). Documents published from 1990 to the end
of 2013 were searched. Year 1990 was selected because the
Stage 2. Text mining
• Preprocessing

• Documental representation by 
Vector Space Model

Stage 4. Identification of 
technological opportunities
• The correspondence between 

fields of  technology and science

process.



Table 1
Retrieval queries for microalgal biofuels.

Retrieval queries

((microalga* or micro-alga* or macroalga* or macro-alga* or alga or algal
or algae) or (names of 32 microalgae species)) and (bio-energy or fuel* or
biofuel* or bio-fuel* or biomethan* or bio-methan* or biodiesel* or bio-
diesel* or biohydrogen or bio-hydrogen or bioethanol* or bio-ethanol* or
biooil* or bio-oil* or bio-gas or bio-gas or biorefiner* or bio-refiner* or
bioreactor* or bio-reactor*)

Note: The 32microalgae species are Ankistrodesmus sp., Beijerinck, Botryococcus
braunii, Chaetoceros, Chlamydomonas reinhardtii, Chlorella, Chlorococcum,
Crypthecodinium cohnii, Cylindrotheca sp., Diatoms, Dunaliella, Ellipsoidion sp.,
Euglena gracilis,Eustigmatophytes,Haematococcus pluvaris, Isochrysis,Monallanthus
salina, Monodus subterraneus, Nannochloris sp., Nannochloropsis, Neochloris
oleabundans, Nitzschia sp., Oocystis pusilla, Pavlova, Phaeodactylum tricornutum,
Prymnesiophytes, Scenedemus, Schizochytrium sp., Skeletonema, Spirulina,
Tetraselmis, and Thalassioria pseudonana.
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Intergovernmental Panel on Climate Change (IPCC), an organi-
zation established by the Union Nations, published the First
Assessment Report on Climate Change in 1990 (IPCC, 1992),
likely to promotemicro-algal biofuel research and development.

The second stage conducted preprocessing and documental
representation by VSM. Themined text was in the fields of title,
abstract, and keywords for paper documents, and in title,
abstract and the first independent claim for patent documents.
In preprocessing, this study erased word suffixes to retrieve
their radicals; removed stopwords, number, and punctuation;
eliminatedwhitespace; and converted characters to lower case.
Extracted terms called sparse terms did not appear in most
documents. Because their usefulness is low, this study excluded
them to reduce noise.

The purpose of documental representation by VSM is to
organize a document-by-term matrix, where each cell records
the term's importance in a given document. This study adopts
the widely used frequency-inverse document frequency (TF-
IDF) weighting measures (Feldman and Sanger, 2007).

3.1. Stage 3. Clustering for scientific and technological fields

The extracted document-by-term matrices in stage 2 are
two high-dimensional spaces. The extracted terms could be
inter-correlated. ORCLUS, a generalized projected clustering
algorithm, is used to cluster the paper and patent documents.
To implement ORCLUS, we prespecify four parameters: final
number of clusters (k), dimensionality of subspaces where the
final clusters are concentrated (l), initial number of clusters
(k0), and factor for the cluster number reduction in each
iteration of the algorithm (a and a b 1). The field of microalgal
biofuels comprises different underlying knowledge streams
and technologies, revealing that microalgal biofuels are in-
volved in several scientific and technological fields; thus, this
study specifies the final number of clusters k ranging from 5 to
10 for each corpus in question when implementing ORCLUS.
Aggarwal and Yu (2000) experiments determined that ORCLUS
performswell when the specified dimensionalities are between
2 and 8, provided the synthetic data is generated from five
clusters. The optimal value of dimensionality l is 6. This study
widens the range and tries dimensionalities from 2 to 12. k0 is
chosen to be large (here, the greatest value that computers can
handle) to enable the iterations to begin with a larger number
of seeds, and therefore improving the likelihood that each
cluster will be covered by at least one seed (Aggarwal and Yu,
2000). For sensitivity analysis, several values of k0 near the
largest are additionally specified.We set a as 0.75, which slowly
reduces the number of clusters in the merging iterations.

A broad range of parameter settings for paper and patent
corpuses separately are evaluated and appropriate settings
both by referring the cluster sparsity coefficients provided by
ORCLUS and by inviting experts to assess the performance of
clustering results are determined. Based on the best clustering
results, the papers in a cluster are a scientific fieldwith a similar
concept, and the patents in a cluster are a technological field
with a similar concept.

This study uses tm, Snowball, and ORCLUS packages in R
language for preprocessing, documental representation, and
ORCLUS algorithm implementation.

3.2. Stage 4. Identification of technological opportunities

Based onmined scientific fields and technological fields, this
study identifies fields with scientific activities but no techno-
logical applications, and those with technological applications
but no scientific activities. The former fields provide the
potential for new technological opportunities because advanced
scientific knowledge is the strongest driver of new technological
opportunities. The latter fields can also enrich technological
opportunities because industrial applications suggest the need
for the creation of new knowledge.

4. Results

4.1. Step 1: Document collection

Using the search strategy described in Section 3, this study
obtained 6332 paper documents and 1358 patent documents.
Paper documentswithout a digital object identifier (DOI) always
returned an empty abstract, and most without publication year
or author address. Therefore, 1030 paper documents without a
DOI were excluded. Thirty-four paper documents with empty
abstracts were also removed. Documents retained included
“article,” “book chapter,” or “proceedings paper,” documents
removed included “biographical-item,” “review,” “note,” or
“editorial material.” The final number of retained documents
was 4680.

This study obtains 1358 patents based on the search
strategy, and then refers to the IPCs designated to each patent
to remove those unrelated to microalgal biofuels. According to
the World Intellectual Property Organization (WIPO), classifi-
cations of A01N “pertain to preservation of bodies of humans or
animals or plants or parts thereof.” The algae-related patents
with A01N typically treat algae as organisms that are threats to
human resources, e.g., food; thus, algae-related patents often
involvemethods or chemical processes to prevent algal growth.
After removing patents with A01N as the primary IPC, the
retained number of patents is 1173.

As Fig. 4 illustrates, the annual number of published papers
on microalgal biofuels slowly grew from 1990 to 2001 and
notably increased after 2006. The slope of the annual number of
granted patents is relatively flat, revealing that technological
development and commercialization of microalgal biofuels is
less aggressive than related scientific research.
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This study calculates the cumulative frequencies by country
of reprint author of papers and first applicants of patents, and
then identifies the top 10 countries by cumulative frequency.
As Fig. 5 demonstrates, theU.S. produced the highest number of
both papers and patents, outperforming other nations in both
scientific research and technological development for
microalgal biofuels. Germany ranked third in papers and second
in patents, and Japan ranked fourth in papers and third in
patents, indicating that both countries dedicate resources
toward researching and developing of microalgal biofuels.
Although China ranked second in papers published, the number
of patents granted is not ranked in the top ten, revealing that a
gap exists between scientific research and technological
development in China.

4.2. Stage 2: text mining

After preprocessing text, such as unifying synonyms, remov-
ing stopwords, and stemming, 20,143 and 7511 words from the
paper and patent corpuses, respectively, were obtained. To
reduce noise, termswith high zero-entries (high sparsity) in the
derived document-by-termmatrixwere excluded. For the paper
corpus, the sparsity is set at 95%, meaning that terms with more
than 95% zero-entry in the derived document-by-term matrix
are excluded. A 95% sparsity-level setting retained 256 terms.
Patent corpus sparsity is set at 96%. The settings produce
document-by-term matrices of 4680 × 256, and a matrix of
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Fig. 5. Cumulative frequencies of pa
1173 × 216 for paper and patent corpuses. For each corpus, the
matrix cells record the term weights for the corresponding
documents, applying TF-IDF weighting measures.

4.3. Stage 3: clustering for scientific and technological fields

On the basis of the derived document-by-termmatrices, the
ORCLUS algorithm with the broad range of parameter settings
separately introduced in Section 3 for paper and patent
corpuses is executed; hence, clustering the documents.

The cluster sparsity coefficients provided by ORCLUS to
preliminarily screen out appropriate parameter settings are
used. In Aggarwal and Yu's study (Aggarwal and Yu, 2000), the
smallest sparsity coefficient is 0.002. Here, given that the
specified final clusters k range between 5 and 10, the specified
subspace dimensionalities l are not less than (k − 2), and
the specified initial number of clusters k0 are, or approach
the greatest value that computers can handle, most sparsity
coefficients are below 0.001. When implementing clustering,
Aggarwal and Yu (2000) suggested defining a minimum
threshold for sparsity coefficients and choosing the largest
value of l, where the cluster sparsity coefficient is less than the
threshold. Accordingly, this study sets a low threshold of 0.001,
and parameter settings whose cluster sparsity coefficients are
below the threshold. However, this study finds that a trade-off
between values of l and k0 occurs frequently under the
limitation of computer memory, meaning that to increase one
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the other must be reduced to derive a converged clustering
solution. As a result, the highest specified value of l as 12 to
ensure k0 at a high level is maintained.

Next, this study outputs the cluster centroids and cluster
members for each parameter setting candidate. Clusters are
identified after identifying terms with high centroids and
reading sample articles. Invited experts then read sample
papers and patents for assessment. Considering the greatest
value of k0 the computer can handle in this study may not be
large enough, whichwas approximately 35 and 45 for the paper
corpus and patent, respectively; ORCLUS was further imple-
mented three times for each parameter setting whose result is
identified by experts as being relatively realistic. The iterations
introduce stability of the recommended parameter setting, even
though the low initial seeds are not very large. Stable clustering
may imply that a large number of initial seeds were used. After
several runs, the most realistic and stable clustering results
corresponded to a parameter setting of cluster numbers k being
9 and subspace dimensionalities lbeing 11 (paper corpus), and a
setting of k being 7 and l being 10 (patent corpus). The
corresponding cluster sparsity coefficients are 0.0006 and
0.0002. The generated cluster sizes for scientific fields are 962,
1442, 245, 258, 248, 235, 274, 753, and 263; the sizes for
technological fields are 72, 121, 120, 161, 129, 192, and 378. In
successive analyses, nine scientific fields and seven technolog-
ical fields are denoted as SF1 to SF9 and TF1 to TF7, respectively.

Termswith high centroids to interpret the characteristics of
the scientific and technological fields and lists representative
terms in Tables 2 and 3 were identified. In addition, research
categories of papers and the IPCs in patent documents to
preliminarily identify these field characteristics were referred
to. The following two subsections describe the characteristics of
nine scientific and seven technological fields.
Table 2
Scientific fields in paper documents.

SF Count Mean
year

Main categories Representative terms (in dec

1 962 2004.4 Ecology; Marine &
Freshwater Biology

Food, diet, fish, feed, ecosyst
nutrient, water, organism, ca
fed, marine, dynamic, ecolog

2 1442 2003.5 Plant Sciences Light, fluorescence, photosys
electron, protein, cell, excitat
temperature, react, grow

3 245 2008.1 Biotechnology & Applied
Microbiology

Hydrogen, gene, express, ferm
photosynthesis, light, green a
biological, condition, molecu

4 258 2008.3 Biotechnology & Applied
Microbiology

Extract, photobioreactor, tem
culture, gas, degree, cultivati
photosynthesis, carbon dioxi

5 248 2006.4 Biotechnology & Applied
Microbiology

Cell, culture, grow, bioreacto
biomass, strain, ferment, carb

6 235 2008.1 Biotechnology & Applied
Microbiology

Model, membrane, kinetic, re
metabolic, chemical, biomass
system, biological, material, p

7 274 2009.2 Agricultural Engineering;
Environmental Engineering

Wastewater, digest, remove,
phosphorus, lipid, grow, day,
chlorella, biodiesel, feed, syst

8 753 2010.8 Agricultural Engineering;
Biotechnology & Applied
Microbiology

Lipid, biodiesel, biofuel, oil, b
content, process, nitrogen, gr
optimized, yield, water, syste

9 263 2010.2 Biotechnology & Applied
Microbiology

Oil, acid, fatty, biodiesel, lipid
feedstock, properties, biofuel
4.3.1. Characteristics of scientific fields
According to the research areas defined by ISI, SF1 papers

are in the categories of ecology, marine and freshwater biology,
and fisheries. According to SF1 terms, this field relates to
interactions between algae and ecosystems, such as the role of
algae in the food web of certain fish species or regions, effect of
environmental factors on algae communities, and algal growth
in different conditions. Representative terms include food, diet,
fish, feed, ecosystem, community, benthic, and species. There-
fore, SF1 is labeled as “algal ecosystem.”

Most SF2 papers are in plant sciences, biochemistry and
molecular biology, and biotechnology and appliedmicrobiology,
and together comprise the largest scientific field paper count.
Terms with high centroid value include light, fluorescence,
photosystem, electron, cell, excitation, and absorption. These
terms are related to electron transporter chains in photosyn-
thetic reactions; thus, SF2 includes the terms chlorophyll,
complex, pigment, and structure, which reveals that SF2 papers
investigate algal structures and proteins, photosynthetic pro-
cesses, and light utilization in photosystems. Microalgae are
photosynthetic organisms; therefore, their photosynthetic effi-
ciency is a crucial determinate in their productivity. Therefore,
SF2 is labeled as “photosynthesis and light utilization.”

The main categories of SF3 are biotechnology and applied
microbiology, and chemistry. The term hydrogen reveals that
some SF3 papers investigate bio-hydrogen production through
light-driven pathways, although more terms are associated
with geneexpression, enzymes, andmetabolic pathways. Terms
such as gene, express, ferment, protein, metabolic, and pathway
are found, particularly in studies that investigate the genetic and
cellular processes involved in synthesis and regulation in algal
strains, and hence identify the most useful. Therefore, SF3 is
labeled as “strain screening by genetic approaches.”
reasing order by centroid) Field naming

em, community, sea, benthic, species,
rbon, consumption, phytoplankton, source,
y

Algal ecosystem

tem, chlorophyll, complex, photosynthesis,
ion, pigment, model, structure, absorption,

Photosynthesis and light
utilization

ent, protein, metabolic, pathway,
lgae, strain, cell, enzyme, plant, evolution,
lar

Strain screening by genetic
approaches

perature, lipid, biomass, reactor, light,
on, grow, bioreactor cell, solar,
de, oxygen

Microalgal cultivation and
growth conditions

r, medium, concentration, batch, cultivation,
ohydrate, uptake, carbon, nutrient

Heterotrophic or
mixotrophic cultivation

move, solution, concentration, enzyme, time,
, organism, compound, treatment, separate,
arameter

Kinetic modeling and
chemical parameter
investigation

anaerobic, treatment, nutrient, diet, biomass,
nitrogen, cultivation, rate, waste, biofuel, fed,
em, culture

Integration of algae
cultivation with
wastewater treatment

iomass, fuel, cultivation, acid, fatty, feedstock,
ow, extract, culture, strain, economic, cost,
m, harvest, life

Synthesis, harvesting,
extraction, and conversion
of lipids

, composition, fuel, yield, biomass, react,
, strain, culture, gas, chain, conversion

Conversion of algal
biomass to fuels



Table 3
Technological fields in patent documents.

TF Count Mean year Main IPC Representative terms (in decreasing order by centroid) Field naming

1 72 2007.9 C12N Sequence, nucleic, acid, encode, molecule, gene, isolate, enzyme,
express, fatty, cell, group, protein, organism, oil

Genetic engineering on algae

2 121 2004.5 C02F Fraction, water, alkyl, biomass, liquid, algae, treatment, solid, ester,
waste, carbon, lipid, separate, surface, treat, solvent, material,
oxygen, protein, remove, organism, system, nutrient

Recycling CO2 and wastes by algae

3 120 2006.3 B01D, C12M Tank, gas, algae, water, light, wet, culture, liquid, stream, flow,
solvent, biomass, system, wall, cell, lipid, separate, fraction, harvest,
remove, oxygen, photosynthesis, dioxide, cellulose, carbon, reactor,
filter, dried, filtrate

Culturing, harvesting, and dewatering
technologies

4 161 2006.3 B01D, C02F oil, filter, stream, extract, algae, water, system, liquid, separate,
solvent, fraction, flow, biomass, species, chamber, solid, gas, protein,
component, remove, lipid, grow, process, fluid

Dewatering and extraction technologies

5 129 2008.0 C12P, A61K Biomass, fatty, acid, omega, oil, fuel, material, extract, lipid, animal,
plant, chain, transport, feedstock, ferment, ethanol, harvest,
microbial, sugar, heat, wet, conversion

Conversion of algal extracts to ethanol
and nutritional products

6 192 2006.4 C07C Cell, fluid, react, ester, feedstock, hydrocarbon, hydrogen, fatty,
catalyst, alcohol, fuel, production, triglyceride, process, diesel,
pressure, temperature, biodiesel, alkyl

Biofuel conversion technologies

7 378 2004.5 A61K, C02F, C12P Composition, organism, material, compound, acid, medium, extract,
mix, polymer, process, product, microorganism, grow, metal,
substance, oxidant, method, component, bacteria, marine

Applications and potential co-products
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The main categories of SF4 to SF6 are biotechnology and
applied microbiology. Both SF4 and SF5 include the terms
culture, grow, cultivation, and biomass, revealing that two SFs
relate to microalgal cultivation. The terms photobioreactor,
temperature, photosynthesis, solar, carbon dioxide, and oxygen
are those that SF4 contains, but not SF5. These terms relate to
environmental conditions for cultivating microalgae. Sunlight,
gas exchange (both carbondioxide andoxygen), and appropriate
temperature are required formicroalgal growth; therefore, SF4 is
labeled as “microalgal cultivation and growth conditions.”

Those terms with the highest centroids in SF5 are: cell,
culture, and grow. Terms of medium, batch, strain, ferment,
carbohydrate, uptake, nutrient, and nitrogen are those that SF5
contains, but not SF4. These terms reveal that SF5 includes the
study of cellular growth mechanisms in a growth medium. SF5
also includes studies where microalgae are fed carbon sources,
such as carbohydrate or nitrogen, to generate highly concen-
trated biomass, which indicates heterotrophic, or mixotrophic
cultivation. This approach utilizes mature industrial fermenta-
tion technology. Therefore, SF5 is labeled as “heterotrophic or
mixotrophic cultivation.”

SF6 terms show specializations in modeling-related re-
search, such as kinetic modeling of heavy metal absorption by
microalgae in the aqueous phase. This field also investigates
chemical parameters in the separation and harvesting of algae.

The main categories of SF7 are agricultural engineering and
environmental engineering. The representative terms include
wastewater, remove, anaerobic, digest, treatment, nutrient,
diet, biomass, phosphorus, nitrogen, cultivation, andwaste. SF7
focuses on integrating algae production and cultivation with
wastewater treatment; that is, nutrient-richwastewater can be
used simultaneously for algae production and wastewater
treatment.

SF8 terms indicate a focus on synthesis, harvesting, extrac-
tion, and applications of algal oils and lipids (including fatty
acids and triglycerides), which are used in biodiesel production.
Terms such as lipid, oil, biomass, cultivation, acid, fatty, content,
nitrogen, and grow present that SF8 includes studies that
investigate lipid accumulation and oil content of algae. Algal
cultures are mainly grown in aqueous conditions; hence,
harvesting anddewatering are requiredprocesses for converting
algae into liquid fuels. The terms optimized, yield,water, harvest,
and life indicate that SF8 projects include these steps. Further-
more, the terms lipid, biodiesel, economic, cost, extract, and
system present that SF8 projects involve cost-efficient system
design for extracting lipids from algal biomass and applying the
extracted lipids to biodiesel production. Therefore, SF8 is labeled
as “synthesis, harvesting, extraction, and conversion of lipids.”

SF9 relates converting algal biomass to fuels, emphasizing
the conversion of algal oil extracts to biodiesel. The conversion
processes from algal biomass to final fuel specifications
(e.g., biodiesel and biogas) are highly interdependent, so SF9
also covers studies on feedstock characterizations, such as lipid
and fatty-acid compositions and thermochemical processes.

Based on the mean published year of papers in each field
listed Table 2, papers in SF2were published earliest, with amean
published year of mid-2003, demonstrating early exploration of
microalgal photosynthesis and light utilization processes. The
field of algal ecosystem (SF1) also attracted earlier investigations,
with a mean published year of mid-2004. The means of SF8 and
SF9 are 2011 and 2010, respectively, revealing the recent
expansion of science and technology in the areas of synthesis,
harvesting, extraction, and conversion of biomass to fuels.
4.3.2. Characteristics of technological fields
Table 3 shows the main IPCs, representative terms, patent

counts, and naming for each technological field. The main IPC of
TF1 is C12N. WIPO defines C12N as “microorganisms, enzymes,
genetic engineering, and culture media.” TF1 terms, such as
sequence, nucleic, acid, encode, isolate, gene, control, carrier,
enzyme, and express, demonstrate that TF1 relates to algal
genetic engineering, which modifies algal strains and enables
the selection of strains possessingdesirable properties for biofuel
production. Therefore, TF1 is labeled as “genetic engineering on
algae.”
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The main IPC of TF2 is C02F. By definition, C02F involves
water and sewage treatment. In Table 3, terms such as
fraction, water, treatment, waste, carbon, remove, organism,
and nutrient indicate that TF2 covers processes or technol-
ogies using nutrients (e.g., nitrogen and carbon dioxide) in
wastewater or other waste material for the growth of algal
biomass.

The main IPCs of TF3 are B01D and C12M, where B01D
relates to separation technologies and methods, and C12M
relates to apparatuses for enzymology or microbiology. Terms
such as gas, water, light, culture, biomass, photosynthesis, and
carbondioxide are associatedwith algal cultivation. Specifically,
the terms tank and reactor indicate the cultivation of algae in
bio-reactors. Terms such as water, cell, wall, lipid, separate,
fraction, harvest, collect, and dried reveal that TF3 further
covers technologies, apparatuses or systems of removing water
from algal cells. Therefore, the label of TF3 is “culturing,
harvesting and dewatering technologies.”

In TF4, the terms oil, extract, water, protein, component,
and lipid indicate that TF4 focuses on the steam extraction
of lipids and proteins from algal oil or biomass. Terms such
as water, separate, biomass, and remove reveal that TF4
comprises dewatering steps prior to the extraction process.
Therefore, TF4 is labeled “dewatering and extraction
technologies.”

TF5 involves extracting fatty acids from algal biomass,
which can then be converted into biodiesel and biofuels, long
chain polyunsaturated fatty acids (e.g., omega-3 supplements),
and biomass residues for animal feed and plant fertilizers. The
terms biomass, fatty, acid, omega, oil, extract, lipid, chain, and
conversion present the technological content. TF5 also includes
the enzymatic extraction of ethanol; the terms ferment, ethanol,
and sugar present the technological content. Therefore, TF5 is
labeled “conversion of algal extracts to ethanol and nutritional
products.”

The main IPC of TF6 is C07C, which means acyclic or
carbocyclic compounds. By definition, C07C contains several
groups, with most being the preparation of hydrocarbons,
where the “preparation” means “purification, separation, stabi-
lization or use of additives.” Together with terms such as ester,
hydrocarbon, hydrogen, alcohol, fuel, triglyceride, diesel, and
biodiesel, TF6 is found related to technologies that convert algal
biomass into viable fuels, including hydrogen, alcohols, hydro-
carbons, and biodiesel.

TF7 has the highest patent count among the seven TFs and
covers several IPCs, primary among them A61K, C02F, and
C12P. These three IPCs are for ablution systems or medical
purposes, waste water or sewage treatment, and fermentation
or enzymatic synthesis. Most terms in TF7 relate to the
chemical compositions of algal extracts, such as composition,
compound, acid, extract, polymer, and oxidant. A61K, the first
part of chemical composition in TF7, relates to algal extracts for
medical and cosmetic applications that are potential co-
products of biofuel production. Based on C02F, the second
part of chemical composition in TF7 is associated with water
treatment for removing harmful substances by algae. The terms
material, carbon, salt, and metal represent the technological
content. Therefore, TF7 is labeled “applications and potential
co-products.”

As shown in Table 3, the seven patent fields, in chronolog-
ical order by mean granted years, are TF2, TF7, TF3, TF4, TF6,
TF1, and TF5. Early technology researchers engaged in using
microalgae to recycle carbon dioxide and wastes (TF2) and
extracting high-value products from microalgae (TF7). Con-
version of microalgal extracts to ethanol and nutritional
products (TF5) is the most recent field.

4.4. Identification of technological opportunities

A feasible production chain of microalgal biofuels, shown in
Fig. 6, has been described. The chain beginswith themicroalgae
ecosystem and biology. Microalgae comprise multiple strains,
with diverse characteristics, and can be found in a variety of
habitats, both aqueous and terrestrial. Knowledge of these
ecosystems and of microalgae biology (e.g., photosynthetic
processes and capabilities, light utilization, and growth condi-
tions) enables researchers to identify and select potential
strains for biofuel feedstocks. Our analytical results show that
SF1 and SF2 focus on this knowledge discovery while SF3 and
TF1 address approaches to improve strains through genetic
engineering approaches. Then, the feedstocks of the selected
microalgae strains require processing of cultivation, harvesting,
dewatering, and biomass extraction to obtain fuel precursors
such as lipids and carbohydrates. The corresponding fields
include SF4, SF5, SF6, SF8, TF3, and TF4. After processing, the
extracted biomass requires conversion technologies to convert
biomass to biofuels (e.g., biodiesel and renewable hydrocar-
bon) and useful co-products (e.g., nutritional products or feed).
SF9, TF5, TF6, and TF7 study the conversion technologies and
end-products. After humanuses, the electricity andheat energy
yielded by biofuels, the wastewater, emitted carbon dioxide,
and residuals can be recycled to further cultivate microalgae;
furthermore, SF6, SF7, and TF2 investigate the integration of
microalgae cultivationwithwastewater treatment and recycling.

To compare annual scales of different stages in the chain,
Fig. 7 displays paper and patent sizes for each field using two
bubble charts, where the horizontal axis, vertical axis, and
bubble area present year, field (nominal scale), and document
count, respectively. The fields in the vertical axis correspond
with the production chain of Fig. 6. As shown in Figs. 6 and 7,
the upstream fields in the chain, algal ecosystem (SF1) and
microalgal photosynthesis and light utilization (SF2), are fields
where scientists focus attention, but lack technological litera-
ture. One possible reason is that these fields investigate natural
principles, such as natural laws, natural phenomena, or naturally
occurring relations, which are not patentable (USPTO, 2013).
However, discoveries of promising microalgae strains and
corresponding metabolic pathways and growth physiologies,
undoubtedly benefit downstream biofuel production.Moreover,
the large bubble areas in Fig. 7 show that the paper counts for
the two fields are considerably larger relative to other fields,
implying an abundance of scientific output for technological
researchers and engineers to potentially apply.

Science and technology interact and co-evolve from the
midstream to downstream fields in the production chain,
which includes fields from genetic engineering applications to
biofuel generation (SF3 to SF9, TF1 to TF6). The field of
“synthesis, harvesting, extraction, and conversion of lipids
(SF8)” has great and increasing bubbles by size from 2009,
demonstrating recent attention and productive efforts. The
corresponding technological field is TF4, with a relatively small
bubble size. Considering the difference in sizes between



Fig. 6. Concordance of scientific and technological fields. Note: The SF and TF in parentheses are abbreviations for scientific and technological fields, respectively.
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scientific and technological fields, the scientific field may have
developed an abundance of basic knowledge for technological
applications, thus presenting further opportunities for applica-
tions in the fields of synthesis, harvesting, extraction, and
conversion of lipids.

In the downstream fields, two non-fuel end-products of
microalgal conversion (TF5 and TF7), which are related to
applications and potential co-products of biofuel productions,
respectively, are discovered. The terms and IPCs of TF7 indicate
that the majority of documents in the field are not directly
related to biofuel productions; rather, they focus on developing
non-fuel end-products such as chemical compositions for
health food supplements. As described in Section 3, a broader
query to retrieve technological literature than for scientific
literature is adopted because patent applicants typically submit
genus claims. As a result, fields relating to non-fuel end-
products may only exist in the technological, and not scientific,
literature. Based on analytical results from the scientific
literature, which include purely microalgal biofuel studies, an
obvious cluster that contains both the terms “biofuel” and
“non-biofuel end-products” was not detected, which implies
that studies that investigate the production of high-value non-
fuel products, and are associated with microalgal biofuel, are
not yet advanced enough to form a distinctive scientific field.
Using every component of microalgal biomass is an effective
approach to improving the economics of microalgal biofuel
production (U.S. DOE, 2010); therefore, more scientific explo-
ration is required to achieve new breakthroughs.

Our results are supported by the 2010 National Algal
Biofuels Technology Roadmap, published by the U.S. DOE
(2010). A major objective of the roadmap is to understand the
status of algal biofuels in research, development, and deploy-
ment (RD&D) activities, and presents information that supports
and guides RD&D investment. The roadmap summarizes three
aspects of content for microalgal biofuel: technology, economy,
and policy. The scientific and technological fields identified are
consistent with the contents of technology described in the
roadmap. The evolutionary history of algal biofuels introduced
in the roadmap confirms the mean published year sequence
derived for the scientific fields. Additionally, a report by
International Energy Agency (IEA) stated that, “The production
of liquid transportation fuels from algal biomass is technically
feasible. However, there is a need for innovation in all elements
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of algal biofuels production to address technical inefficiencies”
(Darzins et al., 2010). The technological fields identified contain
activities at the upstream and downstream ends of the
production chain, which could be reflected in the statement of
“technically feasible” in the IEA report.

For each field, papers by the first author's affiliation and
patents by the first applicant's are organized. The affiliations
with largest paper counts from SF1 to SF9, respectively, are:
Chinese Academy of Science (n = 15), Chinese Academy of
Science (n = 29), Chinese Academy of Science (n = 12),
University of Almeria (n = 8), Oregon State University (n= 7),
Monash University (n= 7), University of Minnesota (n= 8),
Chinese Academy of Science (n = 29), and University of
Minnesota (n = 7). The applicants with the largest patent
counts from TF1 to TF6, respectively, are: DuPont Company
(n = 33), Heliae Development LLC (n = 13), Heliae Develop-
ment LLC (n = 15), Heliae Development LLC (n = 12), Xyleco
Inc. (n = 16), UOP LLC (n = 14), and Martek Biosciences
Corporation (n = 9).

5. Discussion and conclusions

Text mining and the ORCLUS algorithm, which is capable of
clustering highly dimensional data, to identify technological
opportunities for microalgal biofuels is used. In conclusion, we
acknowledge the limitations of this study and suggest future
research directions.

The first aspect relates to a methodological extension.
Shibata et al. (2010) propose extracting potential technological
opportunities by comparing fields in science and technology
literature. To identify scientific and technological fields, they
adopt a citation-based clustering approach and analyze the
largest components of the literature citation networks. This
study notes that certain emerging technologies may be
underdeveloped, with an insufficient basic knowledge base
and citation network. Takingmicroalgae as an example, Fig. 8(a)
illustrates the total annual number of papers and the annual
number of papers in the largest component of the citation
network. Fig. 8(b) displays the same data for patents. By
citation-based clustering approach, totally 27% and 59% of
papers and patents should be removed because the approach
considers only the largest component. Therefore, this study uses
a text-based clustering approach to identify fields in the entire
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literature domain.Moreover, up to two years could pass before a
paper/patent receives citations from subsequent papers/patents
(Shibata et al., 2010). As a result, the text-based clustering
approach might have higher chance to identify important
emerging fields than the citation-based one.

Compared with the citation-based clustering approach,
our text-based clustering approach has the disadvantage that
the validity of clustering results is severely affected by the
preciseness of document wordings. In our experience of
clustering scientific papers, the clustering results are quite
consistent under different parameter settings, and cluster
meanings are easy to identify because the wordings in papers
are generally precise. In contrast, patent applicants typically use
genus terms to enlarge their claims, and these wordings
increase the challenges to our text-based clustering approaches.
This study can detect meaningful clusters, under expert
support, and referring to the IPC's definitions. Future research
can develop approaches to integrating IPCs into text-based
clustering approaches to enhance the clustering performance.

Previous studies analyzed the performance of text-
based approaches, and some studies concluded that text-based
approaches performworse than citation-based ones (e.g. Shibata
et al., 2011a). Regarding the results, our experience is that, if the
number of extracted features is not large enough, then text-
based approaches perform poorly because the matrices
representing the corpuses prune excessive information. If the
number of extracted features is large enough, to the best of our
knowledge, none of the previous studies examined the nature
of these data, which exist in high-dimensional spaces,with high
sparsity. In these spaces, conventional similarity measures
become invalid. This study reminds the necessity to adopt
appropriate techniques for handling high-dimensional data
which are generated through standard text mining processes.

As introduced in Section 2, high-dimensional data contains
three classes of clustering: subspace, generalized subspace, and
pattern-based. Previous studies have proposed several algo-
rithms for each class, and each is characterized by its underlying
cluster model and parameterization of the resulting cluster. It is
important to first know which algorithm would be suitable for
what kind of problems. So far, to the best of our knowledge,
there is no empirical evaluation with respect to the effective-
ness and efficiency for the algorithms in the second and third
classes. Three papers have systematically evaluated state-of-
the-art algorithms in the first class (Müller et al., 2009; Moise
et al., 2009; Günnemann et al., 2011). Based on the new
evaluation measures proposed by Müller et al. (2009) and
Günnemann et al. (2011), PROCLUS outperforms others in
several measures. When PROCLUS is applied to our empirical
data, very unbalanced dimensional numbers of subspaces are
obtained, meaning that most clusters exist in subspaces with
only two to three dimensions, and one cluster occupies a space
with high dimensionality. The results are unrealistic to the
case of microalgal biofuels; thus, from the class of generalized
subspace clustering algorithms, this study selects ORCLUS, an
extended version of the algorithm PROCLUS, and obtains
acceptable results. This study has the drawback of not
systematically evaluating all algorithms, which requires
further research to remedy. Once the appropriate algorithm
has been identified, future research can further compare
the performances of text- and citation-based clustering
approaches.
In this study, experts identify the clustering parameters and
relationships between TFs and SFs. This process demands
considerable time and effort, and future research can improve
the process by referring to Shibata et al. (2011b), which
calculates the similarity between paper and patent clusters. The
resulting similarity can serve as reference for identifying
relationships between TFs and SFs.

The second aspect of the conclusion relates to technological
opportunities that this study extracts. On the production chain
of microalgae biofuels, our results demonstrate that many
scientists address research questions at the upstream side in
two fields: algal ecosystems, and microalgal photosynthesis
and light utilization. However, no technological literature
published in these fields is apparent. The paper counts of the
two fields are significantly large, so technological developers
can advance by referring to the abundant research outcomes of
the two scientific fields.

Science and technology interact and coevolve from the
midstream to downstream fields of theproduction chain,which
includes genetic engineering applications, microalgal cultiva-
tion, harvesting and dewatering processes, biomass extraction,
biofuel conversion processes, and end-products of biofuel
production. Among the fields where science and technology
coevolve, the field of synthesis, harvesting, extraction, and
conversion of lipids attract considerable scientific attention, and
the number of papers has notably grown from 2009. The
corresponding technological field has few patents and does not
have an apparent growth trend; thus, technological opportuni-
ties potentially exist in this field.

In the second aspect, this study is limited by the scope of the
document databases used for data collection. Papers indexed by
the SCIE database and technological patents granted by the
USPTO, to offer suggestions about technological opportunities
formicroalgal biofuel are collected. Future research can broaden
the scope of document databases employed. In scientific
databases, future research could also include Scopus, which is
a well-structured citation database. In technological databases,
future research could include the USPTO patent-application
database to obtain relatively current technology information,
and also include patents published by other patent offices, to
enrich the sources of technology information.

This study shares some limitations with Shibata et al.
(2010). The first is time lag. It takes several months from
submitting scientific findings to the publications on academic
journals and some years from filing technological innovations
to being granted by patent offices. Consulting expert insight is a
feasible means to capture the possible contents of papers or
patents in examinations. Second, the analytical results should
serve as an intellectual basis for constructing R&D strategies,
rather than being strategies themselves. Third, not all academic
knowledge is represented by patents, which hinders explora-
tion on technological opportunities. Some technological devel-
opers protect their technological inventions by means of trade
secret, rather than applying for patents; others may not apply
for patents if they evaluate the technologies as lacking market
potential or requiring more than 20 years' lead time.
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