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Abstract-We investigate the evolution and growth of information production processes 
(in short IPPs). An important role in this investigation is played by the Lorenz curve of 
concentration and the majorization poset. This leads to a number of relations between 
the total number of sources, the total number of items, the average production, and the 
maximum production of an IPP, when one or several of these quantities show an evo- 
lution in time. We also establish a relation between the 80/20 rule and the Lorenz dom- 
inance order. We conclude that Lorenz curves and the majorization poset are important 
tools in the investigation of evolution and growth. 

1. INTRODUCTION 

Traditionally, informetrics (or bibliometrics) studies bibliographies or publication lists; yet, 
more generally, most theoretical work in informetrics can be described using the framework 
of information production processes (in short IPPs), introduced by Egghe (1989) and stud- 
ied in Egghe (1990a,b). In the discrete case an IPP is defined as follows: 

1.1 Definition: discrete IPPs. A discrete IPP is a triple of the form (S, I, i), where S 
and Z are countable sets and where, for every s E S, i(s) c I. The elements of the set S are 
called sources, and those of Z are called items. The function i assigns to the source s the set 
of all items produced by s. 

1.2 Two examples 
(a) Lotka (1926) studied a group of researchers (the sources) and the number of pub- 

lications (the items) they had produced. This gave rise to the well known Lotka distribution: 

f(r) = $ 
wheref( JJ) denotes the number of sources (researchers) producing y items (articles), and 
D and p are strictly positive parameters. In this particular case the function i assigns to ev- 
ery researcher the set of papers of which he or she is the senior author. 

(b) In database design (Casas & Sevcik, 1990) sources can be database blocks, and 
items are accesses to these blocks. In Casas & Sevcik (1990), it is assumed that block ac- 
cesses are distributed according to a Bradford distribution, a distribution closely related. to 
Lotka’s, which has been the subject of intensive research in the field of informetrics (Egghe 
& Rousseau, 1990). 

For other examples we refer the reader to Egghe (1989,199Oa) and Rousseau (1991). 
This article will study the evolution of IPPs. In particular, we will investigate the re- 

lations between the total number of sources, the total number of items, the average pro- 
duction, and the maximum production. We will show that the Lorenz curve (for a definition 
we refer the reader to section 2.1) and the Lorenz dominance order (see section 2.2) can 
play an important role in these investigations. 
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General IPPs will be characterized by the following parameters. A : the total number 
of items; T: the total number of sources; m: the maximum production, that is, the num- 
ber of items in the source containing the largest number of items (when sources are ordered 
in decreasing order (according to production), this is the production of the source ranked 
first); and p: the average number of items per source. When comparing two different IPPs, 
the respective characteristic numbers will be denoted: A (i), T(i), m(i), and p(i); i = 1,2. 
We note the following relations between these characteristic values. 

and if there are no empty sources: 

TlAlmT. (3) 

When the total number of sources (T) stays fixed, then 

PC(~) < ~(2) #A(l) <A(2). (4) 

This means that if the number of sources is fixed, average growth is equivalent to growth 
in the number of items. Further down, less obvious relations will be established; for exam- 
ple, if we have two Lotka distributions without gaps and the Lorenz curve of the first lies 
strictly under the Lorenz curve of the second, then we were able to show the following in- 
equality (cf. Theorem 3.2), involving the maximum productions (m(i), i = 1,2) and the 
means (h(i), i = 1,2)): 

m(l).(2p(2) - 1) < m(2).(2p(l) - 1). 

1.3 Definition: Rank-frequency vectors andpure frequency vectors. In our investiga- 
tions we will use two different kinds of vectors. The first are simple rank-frequency vec- 
tors (also called R-vectors), denoted as: 

R= (.zI,z~ ,..., zr). (5) 

Here Z,i is the production of the source ranked at the ith position; zi = m 2 z2 L . . . zr > 0 
(in this article we will always assume that all sources are non-empty). Of course, it often 
happens that there is a functional relation between the zi, that is, zi = g(i), as in Zipf’s 
law, where g(i) = C/i and C is a positive constant (cf. Egghe & Rousseau, 1990, Section 
4.1.3.3). 

The second kind are pure frequency vectors (F-vectors), denoted as: 

F= (l,,l, ,..., 1,). (6) 

Here ii denotes the number of sources with production i. Usually 1, = 1 (i.e., there is only 
one source with the maximum production). If all productions between 1 and m actually oc- 
cur, then F is an m-tuple, but this is not necessarily the case. In general, we will consider 
F as a p-tuple, with 1 5 p I m. We will often assume a functional relation between the 1;s: 
Ii =f(i), as in Lotka’s square law, where f(i) = D/i2 and D is a constant (cf. Egghe & 
Rousseau, 1990; Section 4.1.3.1). Because of the relation with Lotka’s law, we have used 
the symbols /i for the components of this frequency vector. 

Every F-vector can be interpreted in two ways. The first way is to consider this vec- 
tor a p-tuple as such. The second way is to interpret it as a different representation of an 
R-vector, as above. When F = (I,, f2,. . . , I,), then the associated R-vector, denoted as 
R(F), is: 

(m ,..., 2 ,..., 2,1,..., I), 
uu 
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where we have assumed that there is only one source producing the maximum production 
m. Of course, if necessary, we can as well convert an R-vector into an F-vector. 

We note that, for R(F) and F: 

T= $ti = gf(i) 
i=l i=l 

(7) 

and 

P = 5 jf(A/T. (8) 
j=l 

When referring to the average, p, of an F-vector, it will always be in the second interpre- 
tation (8). 

1.4 Definition. We will say that two IPPs with frequency vectors F1 = (f,(l), . . . , 

!‘I (m(l))) and FZ = (h(l), . . . , fi (m (2))) are t-related (‘t ’ from ‘by truncation’) if there 
exists a function f, defined on the natural numbers and numbers K, and KZ such that 

and 

fi(n) = K,f(n), for every n = 1,. . . ,m(l) (9) 

fi(n) =&f(n), for every n = 1,. . . ,m(2). (10) 

In the case that C,“,,f(n) = 1 and when m(i) is large, K, is an approximation for 
T(i), i = 1,2. 

2. THE LORENZ CURVE IN CONCENTRATION THEORY 

2.1 Construction of a discrete Lorenz curve (cf. Rousseau, in press) 
In 1905 Lorenz presented a method to visualize inequality by using a curve, which since 

then is known as the Lorenz curve. In the discrete case, this curve is constructed as follows. 
Let X = (x, , x2, . . . ,xN) be a general vector, x1 2 . . . r_+;thenweputfori=l,..., N, 

Xi 
ai = - 

5% 
(11) 

j=l 

In this article the notation ai will always be used for relative frequencies. In the applica- 
tions X will be a rank-frequency vector R (or R(F)), or a frequency vector F. 

The discrete Lorenz curve is then the polygonal curve joining the origin (0,O) to the 
points with coordinates 

( ‘) i,,$aj , i= l,..., N. (13) 

Note that 

(14) 

so that the Lorenz curve ends in the point (1,l). 
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The Lorenz curve of an N-tuple X is also the graph of a function. This function will 
be denoted as .Se,( t), 0 I t I 1. As the construction of the Lorenz curve uses relative 
numbers, all X-vectors that differ only by a multiplicative constant will have the same 
Lorenz curve. 

The equation of the function ge,(t) is given as: 

i=O,...,N- 1 

i+1 

$x(t) = c ak + Nai+, j - 
k=l 

( 2$). (1% 

Obviously, a Lorenz curve is an increasing curve. As the Xi, hence also the ai, are 
placed in decreasing order, the Lorenz curve is concave. We note here that, especially in 
econometrical investigations, it is customary to place the xi in increasing order. In that 
case the Lorenz curve is convex. 

2.2 The Lorenz dominance order and the majorization poset 
When Xi and X2 are two vectors, we say that Xi is dominated by Xz, denoted as 

Xi -C XZ if for all t E [O,l], A&,(t) 5 J&,(t). Lorenz dominance is only a partial order. 
Two distributions are not comparable whenever their Lorenz curves intersect. The Lorenz 
dominance order -C is sometimes also referred to as the majorization poset (Hardy et al. 
1952; Marshall & Olkin, 1979). These notions will be applied to R-vectors as well as to 
F-vectors. 

Finally, we note that when two vectors Xi and X2 have the same Lorenz curve, we 
will say that they are equivalent, denoted as X = Y (cf. Rousseau, 1992a). Here we note 
the following (trivial) result, 

2.3 Proposition 
If two vectors F, and F2 are t-related and m( 1) = m(2), then F, E Fz. 

3. EVOLUTION OF IPPs 

In this section we begin our investigations on the evolution of IPPs as shown by the 
influence that the change of parameters has on the Lorenz curve and on the dominance 
order. 

3.1 Proposition 
Let F = (a,, . . . , aN) be an N-tuple, ranked in decreasing order, and let F’ be the Nk- 

tuple REPEATk(F) constructed by replacing every ai by k times ai/k; hence F = F’ = 
REPEATk(F). When p = xiai then p’ = kp - (k - 1)/2. 

Proof. By definition the mean p’ is equal to 

(1 + . . . + k)al/k 

+ ((k + 1) + . . . + 2k)aJk 

+ . . . 

+ (((i - 1)k + 1) + . . . + ik)ai/k 

-I- . . . 

+ ((N(k - 1) + 1) + . . . + Nk)aN/k. 
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k(k + 1) a ,k 

2 ’ 

k(k+ 1) 
- 2 

c1 ,k 
2 

+ . . . 

+ kN(kN+ 1) ( 2 

_ 

= lg 2ik -2k + ’ @ 

++. 

(i - l)k[(i - 1)k + 11 

2 

a,,k 
I 

k(N- l)[ktN- 1) + 11 
- 

a ,k 

2 
N 
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(16) 

(17) 
0 

THEOREM 3.2 

Let h, i = 1,2, be decreasing functions, defined in all points k, k = 1, . . . , m (i). The 
numerical values fi (k) are interpreted as the number of sources with k items. Considering 
now the F-vectors 

F1 = (fi(l),fi(2),. ..,f,(m(l))) 

F2 = (f2tl),f2(2), . . . ,f2(m(2))) 

then Ft -C F2 implies 

mtl)t2H) - 1) 5 mt2)(2dl) - 1) (18) 

where, as stated before, the averages p(i) refer to vectors R(Fi) . Moreover, equality in ( 18) 
only occurs if Fi = F2. 

Proof. If Ft -C F2, and if F, and F2 are not equivalent, the Gini index of F,, denoted 
as G (F, ) is strictly smaller than the Gini index of F2, denoted as G(F,). If all productions 
occur, as assumed, then, by Rousseau (1992a, 11.39) 

G(Fi) = 
m(i) + 1 -2p(i) 

m(i) 
) i= 1,2 

Consequently, F, -X Fz implies: 

m(1) + 1 - 2~(1) 

m(1) 

5 m(2) + 1 - 2~(2) 

m(2) 

(19) 

with equality only in the case of equivalence. After some calculations, this becomes: 

2m(l)p(2) + m(2) 5 2m(2)p(l) + m(1) (21) 
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m(l).(2p(2) - 1) 5 m(2).(2fi(l) - 1). (22) 
0 

This result leads to a number of important special cases. 

3.3 COROLLARIES 
(a) Under the assumptions of the previous theorem, and if m ( 1) = m (2)) then t.~ (2) I 

p( 1) with equality only if F, and Fz are equivalent. 
Indeed, this result follows immediately from (18). 
(b) Under the same assumptions and ifm(1) > m(2), then ~(1) > p(2). 
This result too is a simple consequence of (18). 
(c) Under the same assumptions, and if u( 1) = ~(2) then m ( 1) I m (2) with equality 

only if F, = Fz. 
(d) Finally, under the same assumptions and u, moreover, u(2) > p( 1)) this implies 

m(1) < m(2). 

3.4 Note 
We will show that a number of plausible converses of the results of 3.3 are actually 

false. 
Indeed, takeforinstanceF, = (6,3,2,2,2) andFZ= (5,4,3,2,1). Thenm(1) =m(2) =5, 

~(1) = 36/15 = 2.4 and ~(2) = 35115 = 2.333. Yet, F, = (5/15,4/15,3/15,2/15, l/15) and 
Fz = (6/15,3/15,2/15,2/15,2/15). From this we conclude that F, and F2 are not compa- 
rable in the Lorenz dominance order. This shows that the converse of 3.3a is false. 

The converse of 3.3b is false too. To see this, consider F, = (5,3,3,2,1,1) and F2 = 
(5,4,3,2,1) as above. Then m(1) = 6 > m(2) = 5; ~(1) = 2.6 > ~(2) = 2.333. Yet, F, and 
Fz are incomparable for the Lorenz dominance order. 

LEMMA 3.5 
When two IPPs are t-related then 

m(l) < m(2) * ~(1) < 1-42) (23) 

and 

m(1) = m(2) H ~(1) = p(2). (24) 

Proof. The inequality pI < p2 is equivalent to the inequality 

M(l) m(2) m(l) m(2) 

,g ,z if(i)f(j) < C C jf(i)f(j). i=l j=l 
(25) 

Now, m( 1) < m (2) implies (25), while m (1) 2 m (2) implies (25), but with the inequality 
sign < replaced by L. This proves that p( 1) < ~(2) is equivalent to m( 1) < m (2). Similarly, 
m(1) = m(2) is equivalent to ~(1) = p(2). cl 

The following example shows that the requirement to be t-related cannot be omitted 
from Lemma 3.5. 

EXAMPLE 3.6. We choose m(1) = 3. Let further be ci = fi (i)/T(l), then we choose 

c, = 0.4 

c2 = 0.35 

c3 = 0.25. 
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Then 

P(1) = t; kck = 1.85. 
&=I 

Next, we choose m(2) = 4 and di =&(i)/T(2), then we choose 

d, = 0.7 

d2 = 0.1 

d3 = 0.1 

d4 = 0.1. 

Then 

~(2) = i kdk = 1.6 < 1.85 = p(l), 
k=l 

although m(2) > m(1). 

THEOREM 3.7 

If R(F,) < R(Fz) and both 1PPs have sources with production one then 

(a) ~(1) 5 ~(2) 
@I m(l) 5 m(2) 
(c) m ( 1) p (2) I m (2) t.~ ( 1) (this result does not depend on the assumption of having 

sources with production I ) . 

Proof. When R(F,) -C R(F,) then the slope of the first segment of the Lorenz curve 
of R(F,) is smaller than the slope of the first segment of R(F2). This yields: 

fi(m(l)).m(l) f2(mCW.m(2) 
A(l) A(2) < - 

fi(m(l)) h(m(2)) 
T(l) T(2) 

01 

m(l) m(2) 
- I p(2) * CL(l) 

(26) 

(27) 

(28) 

Similarly, the slope of the last segment of the Lorenz curve of R(F,) is larger than the 
slope of the Lorenz curve of R(F2). This yields: 

f,(l) f2(1) - - 

--~A0 A(l) 

fl(l) f2(1) - - 

(2% 

T(l) T(2) 

IPM 29:4-6 
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=) p(1) 5 p(2). (30) 

Combining (28) and (30) yields m( 1) 5 m(2), 

COROLLARY 3.8 

n 

If R(F,) --c R(F2), both IPPs have sources with production I and m( 1) = m(2) then 

fiL(l) = CLG). 

3.9 Note 
The result of the previous theorem can be slightly generalized when using rank-fre- 

quency vectors. The point is that we have assumed that there are always sources with pro- 
duction 1. If this is not the case, the general notation for rank-frequency vectors (5) is 
somewhat easier to work with. Absence of sources with production 1 does not influence 
(28), but (29) now becomes: 

ZT(I) Z7.(2) -- 

A(l)>-* 
A(2) 

1 - 1 
(31) 

- - 
T(l) 7’(2) 

When zTC1) = zr(z), (31) = (29), showing that the assumptions that the lowest production 
is 1 is not necessary, we only have to assume that they are equal. On the other hand, when, 
for example, zr(l) = 1 and zr(2) = 2, we find 

and hence also 2pn (2) I m ( 1). 
In general, eqn (31) yields ~~(~~~(1) I ~~(~~~(2) and hence: 

znz,m(l) 5 ZT(l)m(2)- (32) 

Note also that this approach clearly shows that, for this result, we do not make the assump- 
tion that all productions between 1 and m occur. 

3.10 A negative result 
One could expect that when two IPPs are t-related, y(I) < ~(2) and m( 1) < m(2), or 

even m( l)jc(2) < m(2)~( 1) (cf. 3.7), then F1 _( F2_ That this is not true is shown by the 
following counterexample. 

Take F, = (4,4,1) and F2 = (4,4,1,1). Then p( 1) = 1.6667 and m( 1) = 3; ~(2) = 1.9 
and m(2) = 4 (hence mu = 5.7 < mu = 4.6667). Now 

F, = (4,4,4,4,4,4,4,4,1,1,1,1) = ($3 $, . . . , $9 8, &, $9 $) 

and 

F2=(4,4,4,4,4,4,1,1,1,1,1,1)=(~ ,... &j,&j,...&j). 

The ordinates of the vertices of the Lorenz curves are: 

for Fi : (&,$,, 140 160 165 1Ip . . * 
,iF@tiijGti@i~lSO~ 

175 180 ) 
i80* 180 

and 

for FZ: (&&,$$, 144 150 156 162 168 -- 174 180 . 
..~i@~~*iK~*iSB*ii@*i80'180 )* 

This clearly shows that in the first part the Lorenz curve of F2 is situated above the Lorenz 
curve of Fr , but that at the end the situation is reversed. Hence, both Lorenz curves cross 
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and F, and Fz are incomparable in the Lorenz dominance order, although 3.7 a, b, and c 
are satisfied. The reason for this phenomenon is that ~1 is a numerical value associated with 
numbers, as such, whereas the Lorenz dominance order and the Lorenz curve depend only 
on relative numbers. 

The next theorem shows a relation between T(i)& the total number of sources, and 
A( i)s, the total number of items. Note that we already know that for IPPs that are 
t-related, growth in the maximum production is equivalent to growth in mean (Lemma 3.5). 

THEOREM 3.11 

1f two IPPs are t-related with the same constants (i.e., the Kis in eqns (9) and (10) 
coincide), then 

T(1) < T(2) @A(l) <A(2) *,m(l) < m(2). 

Proof. 

m(l) m(2) 

K c f(.d <K C f(A 
j=l j=l 

# 

m(l) <m(2) 

m(l) m(2) 

K 2 &-(A <K c JY(A 
j=l j=2 

3.12 Note 

A(1) <A(2) 0 

When IPPs are t-related but with different constants, then it is possible that T( 1) c 
T(2), A(l) > A(2), m(l) > m(2), and CL(~) > p(2). 

An example: Take F, = (1000,900,190), and F2 = (1110,999). Then T(1) = 2090 < 
T(2) = 2109, yet m(1) = 3 > m(2) = 2, A(1) = 3370 > A(2) = 3108, and ~(1) = 1.612 > 
~(2) = 1.473; yet both IPPs are t-related. 

From the requirements ‘F, and F2 are t-related’ and T( 1) < T(2), we can conclude 
nothing concerning the Lorenz order between R(F, ) and R(F2). It is possible that R(F, ) -c 
R(F2), that R(F,) > R(F,), or that both are incomparable. Examples are: 

. 

. 

Take Fi = (2,l) and Fz = (4). These two vectors are t-related and T( 1) = 3 c 
T(2) = 4. As R(Fr) = (2,1,1) and R(F2) = (l,l, 1, l), we see that R(F,) -C R(F,). 
Take F, = (2,l) and F2 = (2,1,1). Also these frequency vectors are t-related and 
T(1) = 3 < T(2) = 4. 

AsR(F,) = (2,1,1)= (2,2,2,2,1,1,1,1,1,1,1,1)= (” 42 * 42 a 21 2) 
336,336~336*336*336,336,’ * * ,336 

and 

R(F2) = (3,2,1,1) = (3,3,3,2,2,2,1,1,1,1,1,1) = (” * * 12 = 12 * “). 336*3361336*336,3361336*336, * - * ‘336 

Here: R(F,) -C R(F2). 
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l In example 3.10, F, and F2 are t-related, T(1) = 9 < T(2) = 10, and both vectors 
are incomparable in the Lorenz dominance order. 

4. A RELATION WITH THE 80/20 RULE 

In its classical formulation, the 80/20 rule states that 20% of the sources (the most pro- 
ductive ones) are responsible for 80% of the total number of items. In general, one can for- 
mulate a 100 Q/100 x-rule, 0 < x, 8 I 1 (see, e.g., Egghe, 1986). 

4.1 Assertion: Generalized 80120 rule 
If two IPPs Fi and Fz are t-related and p( 1) I p(2), then x( 1) L x(2), for every 0 E 

[O,l[, i.e., R(F,) + R(F*). Furthermore, ~(1) < ~(2) impliesx(1) > x(2). 
This assertion has been proved (Egghe, 1991) for a number of distributions, includ- 

ing the geometric distribution and Lotka’s distributionf(y) = D/yO, with 0 = 1, 1.5, 2, 
or 3. 

4.2 Note 
The requirement to consider t-related functions cannot be dropped from the assump- 

tions of 4.1. Indeed, consider, for example, F1 = (5,4,3,2,1) and Fz = (6,3,2,2,2), as in 
3.4. ThenR(F,) = (5,4,4,3,3,3,2,2,2,2,1,1,1,1,1)andR(F2) = (5,5,4,4,3,3,2,2,2,1,1,1, 
l,l,l). Then ~(1) = g = 2.333 and ~(2) = g = 2.4. Yet, R(F,) and R(Fz) are incompa- 
rable for the Lorenz order. 

4.3 COROLLARY 

If we have two IPPs that are t-related, where the sources with lowest production have 
the same production, and such that the generalized 80/20 rule is valid, then 

RWI) -< W’d ++ CL(~) 5 ~(2). (33) 

Proof. This follows readily from Theorem 3.7, Note 3.9, and 4.1. 0 

5. GROWTH: ADDING ONE SOURCE 

This section investigates what happens when adding one source. The main result is that 
only in the case where the production of this source equals the average production, the orig- 
inal situation dominates the new one. 

5.1 Constructions 
LetR= (rl,r2,.. . , rT) and let S = ADD1 (R) = (Z, rl , . . . , t-r), where this new vector 

is not yet ordered. We assume that the new source, with production Z is ranked at the kth 
place. Then 

si = rj when 1 I i < k (if such an i exists) 

sj = z when i = k 

Si = ri-1 when k < i I T + 1 (if such an i exists). (34) 

Let us agree that in case of equality, the new source is placed at the highest possible rank. 
Of course we have the following equality: 

x 3 = ($5) + ‘* (35) 
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We assume from now on that the components of S are placed in decreasing order and put 

ri 
a.= - i= l,...,T; 

’ ,$Q 

and 

bi=&-, i=l,..., T+l. 

C sj 
j=l 

We further put 

A; = i aj, and Bi = i bj; A0 = Bo = 0. 
j=l j=l 

We note that C rj = TpR and, finally we put 

Crj J=~rj+,=** 

(36) 

(37) 

(38) 

The symbols ai, Ai, bi, and Bi are related as follows: 

bi = cry+ I =aiJ when 1 I i < k (if such an i exists) 

bi= cr,f+I = 6 wheni=k 

bi = cyJl I = ai- J when k < i I T + 1 (if such an i exists); (39) 

and further: 

Bi = AiJ when I sick 

Bi=Ai_,J+ IJ whenksis T+ 1. 
TPR 

(40) 

Now, two remarks are in order. First, the abscissa of the vertices of the Lorenz curve 
of S are equal to i/( T + 1). These numbers fall between the abscissa of the vertices of the 
Lorenz curve of R, that is: 

i-l i-l i 
vi,i= l,...,T:- - - 

i i+ 1 
T+ll T IT+1 <T4 T+l (41) 

with equality on the left hand side only if i = 1, and on the right hand side only if i = T. 
Second, to express that the Lorenz curve .Sy of a general vector Y is situated above 

the Lorenz curve 2, of a general vector X, it suffices to require this inequality in the ver- 
tices, both of Sex and of Cy. This yields the following requirements: 
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R -c S = ADD,(R) , that is: the Lorenz curve of R is situated under the Lorenz curve 

OfS 

Vi= l,..., T - 1 Ai I B; + $ bi+l (42) 

i+l 
&vi=O,...,T-1 A;+,-ai+l- 

T+l 
I Bi+l. (43) 

For S < R the inequality signs in (42) and (43) must be reversed. 
To obtain inequalities (42) and (43) we have written the equations of the line segments 

connecting (i/(T+ l), Bi) to ((i + l)/(T + l), Bi+,) and similarly for the segments con- 
necting (i/T,Ai) and ((i + l)/(T+ l),Ai+i). Next we have expressed that (i/T,A,) is sit- 
uated under the first segment, and similarly that ((i + l)/(T + l), Bi+l) is situated above 
the second (see Fig. 1). 

For the case S = ADDI we will formulate simpler conditions to satisfy the require- 
ments R -c S or S < R. We will first give necessary conditions and we will later investi- 
gate whether these conditions are also sufficient. If R < S the slope of the first segment 
of the Lorenz curve of R must be smaller than the slope of the first segment of S. Simi- 
larly, the slope of the last segment of the Lorenz curve of R must be larger than the slope 
of the last segment of the Lorenz curve of S. For the relation S < R these conditions must 
be reversed. 

5.3 S < R: A first necessary condition 
The requirement for the first segment leads to: 

Ta, L (T+ 1)bi (44) 

TPR 
H Ta, 2 (T+ l)al ~ 

TPR +I 

ifk> 1 

(45) 

Fig. I. The relation between the Lorenz curves CR and Cs. 
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Ta, 2 (T+ 1) ~ 
TPR +I 

(46) 

HI2 T2a, PR 
T+ 1 - Ta,’ 

(47) 

We finally note that when k = 1, the relation I > r, = a, pRT 2 /LR holds automatically. 

5.4 S -C R: A second necessary condition 
The condition on the last segment leads to: 

TaT I (T + l)br+r 

PRT 
H TaT 5 (T + l)ar ___ ifk< T+ 1 

PRT+I 

w aTI s aTpR. (50) 

As we assume that all cells are non-empty, this is equivalent to: 

Il/.lR. 

If k = T + 1 we find: 

I 
TarI (T+ 1) ~ 

TPR +I 

eZL 
T2aTAv 

T+ 1 - Tar’ 

Note that k = T + 1 implies that 1 I rr 5 pR. 

5.5 Analysis of a necessary condition to ensure that S < R 
From 5.3 and 5.4 we see that S -C R if the following conditions are satisfied: 

(I?pR&IsrI)v 
T2al PR 

1s T+l_Ta &z>r, 
1 )I 

(IspR&z>rT)v 12 Tz”p”ka &IsrT 
T )I 

(this means: I= fiR and not the equality situation) 

IzpR&Iirl&Iz 
T2WR 

T+ 1 - Tar 
&15x, 

(48) 

(4% 

(51) 

(52) 

(53) 

(54) 

(55) 

(this means: Z = ,.bR in the equality situation). 

Hence we conclude that I = pR is a necessary condition for S -C R. We will now show 
the main result of this section, namely, that this condition is also sufficient. 
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S = ADD,(R) < R 

Proof. We already know that S -C X implies I = &. We only have to show the op- 
posite implication 2 = pa * S -C R. To do this, we have to consider four cases: 

(a) vi < k: A; L Bi + (i/T) bi+l (cf. (42)) 
(b) vi < k : Ai - ~i (i/T + 1) 1 Bi (cf. (43)) 
(c) vi 1 k :Ai 2 Bi + (i/T) bi+l (cf. (42)) 
(d) vi 1 k : Ai - a; (i/T + 1) L Bi (cf. (43)). 

Proof of (a). Let i < k - 1, then we have to show that 

Ai ~ AiPRT ’ PRT 

PRT+ I 
+ + Ui+* ~ 

PRT+Z 

This inequality is always satisfied because the ai are placed in decreasing order. 
If i = k - 1, then we have to show that 

Ai L 

*Ai(l-&) L 

HAi2 

AiPRT + ipR 

PRT + PR T(PRT + PR) 

AiT i 

l+T + T(T+ 1) 

i 

T(T+ 1) 

i 

7’ 

This inequality is also satisfied because the ai are placed in decreasing order. 

Proof of(b). We have to show that 

T 
Ai - ai & 2 Ai - 

T+l 

0 

Ai L iai, 

which is true. 
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Proof of(c). We have to show that 

A; 1 A;-lT T i 

+ T(T+ 1) + Tai 

T 

l+T l+T 

WAi2 
TAi_1 + 1 + iai 

(T+ 1) 

oAiT+Ai? TAi-Tai+ 1 -iai 

ol-Air(T-i)ai; 

also this inequality is satisfied because the ai are placed in decreasing order. 

Proof of(d). We have to show that 

0 

Ai_lai2 TAi-1 + 1 

T+ 1 T+ 1 

a (T+ l)(Ai_l + Ui) - iai 2 TAi-1 + 1 

w Tai + Ai- + ai - iai 2 1 

0 1 - Ai- L Oi(T + 1 - i), 

which is also true. 0 

In Rousseau (1992a) we have also investigated when the curves OCR and _X?, cross 
(hence R and S are incomparable) and when R -c S = ADDI( For details we refer the 
reader to Rousseau (1992a). 

6. CONCLUSION 

We have investigated the relations between the total number of sources, the total num- 
ber of items, the average production, and the maximum production in an IPP, when one 
or several of these quantities vary. It is shown that the Lorenz dominance order and the 
Lorenz curve can play an important role in these investigations. Hence, we propose that, 
in informetric studies, more use should be made of these tools. 
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