
D
o

W
H

a

A
A

K
A
S
C
C

1

p
w
c
a
t
B
h
a
(
t
1
2
a
s
i
c
I
a
(
S
o
d

(

0
d

Research Policy 40 (2011) 69–80

Contents lists available at ScienceDirect

Research Policy

journa l homepage: www.e lsev ier .com/ locate / respol

ivergent paths to commercial science: A comparison
f scientists’ founding and advising activities

averly Ding ∗, Emily Choi
aas School of Business, 545 Student Services #1900, University of California, Berkeley, CA 94720, United States

r t i c l e i n f o

rticle history:
vailable online 29 October 2010

a b s t r a c t

This paper investigates the difference in the profiles of university scientists who have founded or advised
companies. We analyzed the commercial activities of a sample of 6138 university life scientists and found
ey words:
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cientific advisors
ommercial science
ompeting risks

that the profiles of scientists who become academic entrepreneurs are different from those who become
companies’ scientific advisors. Founding activity occurs earlier during a scientist’s career than advising.
Factors such as gender, research productivity, social networks and employer characteristics also differ
in their effects on the propensity for founding and advising. In addition, regression analysis shows that
being a company’s scientific advisor decreases the probability of becoming an academic founder. Overall,
evidence from our analysis suggests that founding and advising are two divergent paths for commercially

tists.
oriented university scien

. Introduction

Scholars of university–industry relations have revealed multi-
le channels through which university scientists may be involved
ith commercializing research. At a minimum, scientists may dis-

lose their research to the technology transfer (licensing) office
t their universities, which then negotiates with industrial firms
hat wish to license the research discovery (Jensen et al., 2003;
ercovitz and Feldman, 2008). Over the past decades, universities
ave increased the number of licensing deals with technology firms
nd often the scientist inventors are actively involved in the process
Thursby and Thursby, 2002, 2004). Researchers have also studied
he patenting behavior of university scientists (Henderson et al.,
998; Owen-Smith and Powell, 2001b; Agrawal and Henderson,
002; Balconi et al., 2004; Fabrizio and DiMinin, 2008; Stephan et
l., 2004; Azoulay et al., 2007a,b, 2009). Alternatively, some univer-
ity scientists engage in collaborative research with industrial firms
n the form of contract research (Blumenthal et al., 1986, 1996),
onsulting (Jensen et al., 2006) or joint R&D projects (Lam, 2007).
n the life sciences, there are a significant number of scientists who
re members of scientific advisory boards in biotechnology firms

Stephan et al., 2005; Ding et al., 2007; Murray and Graham, 2007;
tuart and Ding, 2006). Finally, academic scientists may start their
wn company to commercialize their discoveries. Over the past few
ecades, there have been an increasing number of university scien-
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tists who have founded for-profit firms to develop their scientific
breakthroughs (Etzkowitz, 1983; Shane and Khurana, 2003; Stuart
and Ding, 2006).

The majority of existing investigations on the commercializa-
tion of university knowledge each focuses on only one of the
possible routes to commercialization, e.g., disclosure, patenting,
licensing, advising or forming companies. With regard to the few
studies that have investigated more than one route to commer-
cial involvement, there are significant limitations. For example,
Louis et al. (1989) investigated five types of commercial activities
in their survey of 1594 scientists from 40 top universities, which
included engaging in externally funded research, earning supple-
mental income, gaining industry support for university research,
patenting, and forming and holding equity in private companies.
While their study examined factors associated with these dif-
ferent types of commercial activities, the cross-sectional survey
design did not allow one to identify the determinants of com-
mercial activities. In addition, commercialization activities have
been much more intense since their survey, which was conducted
in 1985. Audretsch and Stephan (1996) studied 445 university
scientists in 54 biotechnology firms that went through an initial
public offering (IPO) between 1990 and 1992. Though they dis-
tinguished between the role of university scientists as a founder,
scientific advisory board member, scientific advisory board chair, or
major equity holder, their focus was limited to explaining the geo-

graphical link between scientists and firms. A more recent study
by Stuart and Ding (2006) about the social structural determi-
nants of academic activities included both founding and scientific
advising of young biotechnology firms that went through an IPO
over the past three decades. However, the authors did not dif-
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What types of scientists are sought by companies to join their
scientific advisory boards? Audretsch and Stephan (1996) postu-
lated that university scientists facilitate three key functions: to
transfer knowledge from universities to firm R&D labs, to give sig-
nals to external stakeholders about the quality of the firm, and to

1 The male pronoun is used to reflect the gender distribution of the scientist-
0 W. Ding, E. Choi / Rese

erentiate between the activities in their study; hence, they also
verlooked identifying different determinants of commercializa-
ion activities.

We believe that a more integrated approach that identifies
hen and why university scientists embark on different commer-

ialization routes is important. First, activities such as disclosure,
atenting, advising and founding companies call for different
mounts of time and effort, and can have different impacts on scien-
ists’ productivities and career trajectories. A comparative analysis
f the profiles of scientists who have engaged in various types of
ctivities would help to understand who are inclined to engage in
hich type of activity and at what stage of their career. Second, each

f these activities requires different financial and social resources.
or example, disclosure and patenting might require scientists to
imply have research that is worth reporting and seeking patent
rotection. In comparison, advising and founding probably calls for
ore human and social capital. It is therefore necessary to carry out
comparative analysis of how individual and social contextual fac-

ors (e.g., research productivity, status and social networks) affect
he likelihood of pursuing different commercial activities. Third, an
ntegrated approach is instrumental in revealing the relationship
mong the activities. For example, does relatively “light” commer-
ial involvement such as patenting and consulting trigger the more
ntensive ones such as founding a company, or is it the case that
cientists sort themselves into different camps—i.e., those who are
ore entrepreneurially oriented versus those who are only willing

o devote a fraction of their time to commercial activities?
With above interest in mind, we provide in this paper a com-

arative analysis of two types of commercial activities by life
cience researchers—participation in a firm’s scientific advisory
oard (SAB) versus founding a company to commercially develop
discovery. We choose to focus on these two activities for three

easons. First, compared to patenting, subsidized research and ad
oc consulting arrangements, advisory and entrepreneurial roles
equire scientists to be more intensively involved with a firm’s
peration on a regular basis. In these roles, scientists have more
ontrol over the commercialization process in a firm. Hence, SAB
embers and academic entrepreneurs may exert more impact

n the relevant industries than scientists who merely patent or
onsult for industries. Second, existing theoretical models offer
nconclusive predictions of who will become an advisor or founder
f a company and when either transition happens in a scientist’s
areer. For example, while role identity theory predicts that the
ntrepreneurship transition would happen early in a scientist’s
areer, the scientific life-cycle model suggests that it would occur
t the mid-to-late stage of a scientist’s career. It is worthwhile to
mpirically assess the relative strength of the various theoretical
odels in explaining the similarity and differences between advi-

ors and founders. Lastly, the choice is also driven by empirical
onstraints. While it is always possible to survey current scientists’
ctivities and opinions of the various commercial activities, sys-
ematic longitudinal data are hard to find on the various types of
ctivities discussed above. Advising and founding activities, how-
ver, are customarily reported in firms’ public documents. From
hese documents, historical data can be reconstructed to trace the
istories of scientists who advise and form companies.

We have assembled a data archive with career histories of
pproximately 6100 life scientists who have various degrees of
nvolvement in commercial science, ranging from no significant
ommercial involvement, to patenting, advising and founding com-
anies. Because the number of scientists participating in advising

nd founding activities is small, we employed a sampling procedure
nown as the “case cohort” design. We analyzed the propensity that
scientist embarks on either advising or founding activities using
vent history models, correcting for possible bias caused by our
ampling design.
olicy 40 (2011) 69–80

We found that the timing of advisory and entrepreneurial activ-
ities differ in a scientist’s career cycle. The hazard of first-time
involvement in founding activity peaks much earlier than that
of advising activity in a scientist’s life-cycle. This pattern holds
true for male and female, older and younger cohort of scientists,
and for scientists employed at universities with different rank-
ing. Second, we also identified differences in antecedents of the
two activities including gender, research productivity, social net-
work and employer influence. Lastly, in a Cox regression analysis
of whether prior advising activity increases the likelihood of a
scientist’s transition to entrepreneurship, we find no evidence sup-
porting a sequential engagement argument. In fact, our analysis
indicates that being an advisor to a firm decreases the likelihood of
transitions into entrepreneurship.

2. Comparing scientists’ advising and founding activities

Academic entrepreneurship is a process in which a university
professor starts a new firm to turn his1 breakthrough scientific
discovery into commercially viable products.2 The form and func-
tion of firms’ scientific advisory boards and the responsibilities and
benefits of the members of these boards, however, receive much
less research attention. SABs have neither fiduciary responsibility
nor a formal place in a firm’s governance structure. Neverthe-
less, they have become a quite common organizational feature in
technology-intensive industries. Typically these boards are formed
by the founding scientist(s) very early in the development of the
firm. The founders will identify key scientific areas in which the
firm will need to seek expert advice and then invite university
scientists who have the required expertise and (ideally) some com-
mercial experience. The boards usually have between five and ten
members. Board members are compensated with stock grants and
consulting fees.

Below we outline some extant theories and empirical investiga-
tions that help explain the factors underlying a scientist’s transition
to entrepreneurship or the advisory role. We break down our
review of the theories and empirical evidence into demand-side
explanations, which is related to the opportunity structure for
scientists’ commercial engagement and supply-side explanations,
which is related to the motivation and intention of scientists. Key
predictions of advisor and founder profiles based on the explana-
tions are summarized in Table 1.

2.1. Demand side explanations

We start from the demand side explanations for scientists’ tran-
sition to SAB. Little theory exists that help predict demand side
factors influencing the process of transition to an advisory role. We
rely on existing empirical investigations of SABs (Audretsch and
Stephan, 1996; Stephan and Everhart, 1998; Murray and Graham,
2007; Ding et al., 2007) to understand how opportunity structure
shapes scientists’ transition to becoming members of SABs.
turned advisors and founders.
2 The concept of academic entrepreneurship is sometimes used broadly in the

commercialization literature to refer to various types of commercial activities
including patenting, consulting, sponsored research and formation of companies
(Franzoni and Lissoni, 2009). In this paper, we use the term of academic entrepreneur
to refer to those who have founded companies.
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Table 1
Predictions of advisor and founder profiles.

Advisor Founder Profiles converge
or diverge

Demand-side explanations Advanced career stage, well-networked,
prestigious affiliations; more hurdle for women to
break in

Mixed; young scientists might be favored because
of productivity and state-of-the-art knowledge;
but some empirical evidence suggests more
experienced and networked scientists are more
likely to get the resources for venture founding

?

Supply-side explanations
Social psychological approach Compared to founder profile, less desire for

autonomy, research to have an impact in the real
world, and wealth

Have a specific psychological profile: more desire
for autonomy, desire for his research to have an
impact in the real world, desire for wealth

Diverge

Role Identity change Advisors are more likely to be older in professional
age

Founders are more likely younger in professional
age; social structural influence will have stronger
effect on founding than on advising

Diverge

Academic life-cycle approach Both founding and advising activities occur at a Converge
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later career stage, after a scientist has reached
milestones (e.g., tenure)

Status perspective Advisors occupy a high status position

elp chart the scientific direction of the firm. In two more recent
nvestigations of SAB scientists, Murray and Graham (2007) and
ing et al. (2007) conducted in-depth interviews of about 50 sci-
ntists who have either joined SABs or are in fields that are often
nvited to such boards. Their interviews provide direct evidence
f the role of SAB members. Broadly speaking, SABs perform three
rimary functions for companies. First, technology-intensive firms
ely on these scientific advisors for their expertise, ranging from
ery specific tacit knowledge to general advice on broad scien-
ific strategy and experimental design. SAB members support the
rm’s internal research activities; during board meetings, scien-
ists assess and critique experiments designed by the firm’s internal
esearchers and debate the direction of the next series of exper-
ments. In general, advisors often have a combination of deep
cientific expertise and a basic understanding of business issues.
econd, SAB members are also chosen to signal scientific quality
o external investors. In the interviews, some scientists who have
erved on SABs likened their advisory role to “window dressing”. In
ffect, prestigious academic scientists lend their reputations to the
arly stage firms they advise, which is thought to aid firms in the
rocess of attracting resources (Stephan et al., 2005). Third, advi-
ors bridge the firm to their academic networks (Stuart et al., 2007).
dvisors, through their collaborations, assist in identifying other
cademics who might be a critical resource for the firm, and they
ocate suitable students to be hired by the firm.

The above findings suggest a certain profile of a scientific advisor
n demand by industrial firms. Given the time needed to build up
cientific expertise and reputation about the expertise, one would
xpect that scientists at an advanced career stage are most likely
o appear on the firms’ radar screens. In addition to the age profile,
he status profile would most likely be scientists who command
great deal of prestige in his field. He will be more likely affili-

ted with prestigious institutions, and in possession of an extensive
etwork in academia. Ding et al.’s (2007) study also suggests that
AB members will be predominantly male. The study found that
he invitation-based process of SAB selection presents hurdles for
omen scientists. Because of the documented gender gap in sci-

ntific productivity and eminence, and women scientists’ lack of
omparable networks to their male colleagues, women scientists
ag behind in the rate of joining SAB.

What types of scientists found a company? Scientists’ transition

o entrepreneurship can also be shaped by the opportunity struc-
ure around them, as they need to obtain resources from investors
nd other stakeholders to start a firm. What will be the common
xpectations for an academic entrepreneur? The most important
onsideration perhaps is that university-scientist-founded firms
Academic entrepreneurs occupy either high or low
status in the academic hierarchy

Diverge

are supposed to exploit cutting edge knowledge generated from
universities, often by the scientific founder himself. This suggests
that successful entrepreneurs are likely to be those who have high
productivity and possess cutting edge scientific breakthroughs.
Given the documented academic productivity curve (Levin and
Stephan, 1991), the typical academic entrepreneur is likely to be
younger and at an early-to-mid-career stage. In contrast, a study by
Shane and Khurana (2003) about inventions patented and commer-
cialized from MIT between 1980 and 1996 showed that a scientist’s
past commercialization experience and his academic rank is pos-
itively related to the probability that a firm will be formed to
exploit his invention. Shane and Stuart’s (2002) study also sug-
gested that scientists who are well-networked are more likely
to have a successful venture. Such evidence depicts a profile of
academic entrepreneurs that is similar to the profile of scientific
advisors.

To summarize, empirically based demand-side explanations for
SAB participation and entrepreneurial transition do not offer clear
predictions of whether advisors and founders share similar pro-
files. While the perceived standard for an ideal SAB member is one
who is more established, occupying high status in academe, well-
networked, and most likely male, the standard for an ideal founder
is mixed. On the one hand, younger scientists may be preferred by
investors and external stakeholders because of their high level of
productivity and close proximity to the most cutting edge scientific
development. On the other hand, older scientists may be preferred
because they are more experienced (both in terms of their academic
rank and commercial involvement).

2.2. Supply side explanations

Below we review four different theories that inform scien-
tists’ motivation for engaging in commercial science. Though
some of the theories were developed explicitly for explaining
entrepreneurship, to some extent they also apply to the explanation
of participation in SAB. While some theories suggest that academic
entrepreneurs should have a different profile and be motivated by
different factors from advisors, other theories and empirical evi-
dence find commonalities between founders and advisors.

Social psychological research on entrepreneurship suggests that
entrepreneurs display more unique traits than the general popula-

tion. For example, Schere (1982) and Sexton and Bowman (1985)
found that entrepreneurs have a higher tolerance for ambiguity.
They also found that entrepreneurs generally have a higher need
for autonomy, dominance and independence, and a lower need
for support and conformity. Shane’s (2004) study of university-
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ing event set) and 174 founders with Ph.D.s (which constitute our
founding event set).4

We then drew a stratified, random sample of 13,564 doctoral
degree holders listed in the UMI Proquest Digital Dissertation

3 For companies that filed papers to go public after 1995, IPO prospectuses are con-
veniently available in the SEC’s EDGAR database (http://www.sec.gov/edgar.shtml).
We acquired the remaining S-1 forms at the SEC’s reading room in Washington, DC.
Not every S-1 provided detailed information about founders and advisors; we were
only able to obtain this information for approximately 70% of the companies.
2 W. Ding, E. Choi / Rese

cientist-turned entrepreneurs confirms some of these findings
mong the academic entrepreneur population. He found that those
cientists who have managed to transition to entrepreneurship
ave a stronger desire for wealth, a desire to bring the technologi-
al breakthroughs into practice, and a desire for independence and
utonomy. The psychological perspective on entrepreneurship thus
ill suggest that academic founders have different social psycho-

ogical and behavioral patterns than the advisors.
A scientist’s transition to entrepreneurship can also be under-

tood from the perspective of role identity change (Ibarra, 1999).
niversity scientists have acquired strong professional identity
iven the duration and intensity of their academic training and
he prevailing norms in most academic institutions. The transi-
ion to commercial activity is not likely a smooth process because
f the role contradictions (Owen-Smith and Powell, 2001a). Jain
t al. (2009) analyzed the cognitive micro-processes of academic
ntrepreneurs’ transition to entrepreneurship using a combination
f both qualitative and quantitative data. They found that scientists
ngage in a sense-making process of recognizing and internalizing
heir new commercial role identity. During the process, scientists
re motivated by a desire for wealth, yet they are concerned with
ow they will be perceived in their new role as an entrepreneur and
he level of collegial and institutional support from the environ-

ent. Assuming that a university scientist’s identification with his
ole of an academician strengthens with the duration and intensity
f the socialization process in academia, scientists who have stayed
n academia for a long duration will have a more difficult time

aking the transition to entrepreneurship. These scientists have
nternalized the ethos of the public science more deeply than their
unior colleagues. Hence, they face greater impediments during
he transitional process. This assumption suggests that scientists
ho have successfully made the transition to entrepreneurship

re likely to be at an early stage of their career, and have inter-
alized the academic value system to a lesser extent. Given the
ocumented effect of social context on an individual’s role iden-
ity change (Ebaugh, 1988; Ibarra, 1999), one would expect social
tructural factors such as association with peers, attitudes of collab-
rators and institutional support to affect the transition to founder
nd advisor roles differently. Academic entrepreneurship, the more
adical transition compared to becoming an advisor, is probably
ore subject to the influence of social structural factors. Accord-

ng to this perspective, scientists who are more established in their
areers are less likely to transition to entrepreneurship.

A third perspective on the academic-entrepreneur transition is
tephan and Levin’s (1996) academic life-cycle model. The authors
roposed a model that accounts for university scientists’ devel-
pment of human capital and allocation of time and attention
hroughout their career cycle. In this model, academic scientists
nvest the early part of their career in accumulating human capital
oth for creating an area of expertise and for achieving important
ilestones (e.g., attaining tenure). This suggests that most univer-

ity scientists devote the bulk of their attention to basic science
esearch early on in their career. Once these career goals have
een reached, scientists then have more opportunities to embark
n activities that help gain financial returns on their human capi-
al, among them is the creation of ventures to commercialize their
esearch. Some empirical evidence lends support to this model
Audretsch, 2000; Klofsten and Jones-Evans, 2000). From this per-
pective, we would expect that scientists at a later career stage and
ave more established reputation in their research areas to become
cademic entrepreneurs. Such a profile contradicts the prediction

ased on role identity theory and is more consistent with the profile
f a scientific advisor.

A fourth perspective that offers insight into the academic-
ntrepreneur transition is from the research on status. It indicates
hat individuals occupying the middle range of a status hierarchy
olicy 40 (2011) 69–80

are less likely to engage in activities that do not conform to external
expectations. This is because individuals in a high status position
are likely to have adequate resources to withstand the risks associ-
ated with any deviant behavior. At the same time, individuals in a
low status position have little to lose if they deviate from the pre-
scribed norms, hence have more tolerance of the risks associated
with novel practices (Phillips and Zuckerman, 2001). During the
past few decades, venture creation was a controversial behavior
for most academicians (Bok, 2003). Under such circumstances, one
might expect that scientists who engage in entrepreneurial activ-
ities occupy either the high or the low end of the academic status
hierarchy, both in terms of their academic reputation and pres-
tige of their employers. This perspective, again, suggests a profile
of academic entrepreneurs that is different from that of academic
advisors along the dimensions of experience, human capital, pres-
tige and affiliation.

To summarize, several theories predict that academic advi-
sors and founders should differ in their profiles even though
they share some commonalities. While advisors are more likely
to come from the pool of senior, established scientists, there are
reasons for expecting founders to emerge from both the senior,
established scientists and the younger, less established ones. Aca-
demic entrepreneurs are expected to be more tolerant of risks and
uncertainties than those who engage only in advising companies.
While advisors’ roles are to offer expertise, prestige and academic
networks to the firms they serve, founders are eager to exploit
opportunities to turn their technologies into practice. Indeed, to
what extent do these two types of scientists differ from each other
is an empirical question to be answered by the data.

3. Data, estimator and variables

3.1. Data and sample characteristics

We assembled a data archive with career histories of
approximately 6100 life scientists to empirically examine the
determinants, timing and rate of SAB versus founding activities.
Because these commercial activities are rare in the population of
university scientists, we employed a sampling procedure known as
the “case cohort” design. This method was developed by biostatis-
ticians and was often used to analyze events that are rare in general
populations (Prentice, 1986; Prentice and Self, 1988).

To construct our dataset, we first collected information about
all Ph.D. scientific advisors and founders at every biotechnology
firm that has filed an IPO prospectus (form S1, SB2, or S-18) with
the U.S. Securities and Exchange Commission.3 A total of 533 U.S.-
headquartered biotech firms have filed papers to go public between
1972 (when the first biotechnology firm went public) and January,
2002. From these companies, we identified 821 unique members of
scientific advisory boards with Ph.D.s (which constitute our advis-
4 A disadvantage of this design is that we missed the university researchers who
have advised and founded firms that have never initiated an IPO procedure. Sys-
tematic data about university scientists involved in founding and advising private
biotech companies over the past three decades are very difficult to collect. Hence, the
advising and founding activities we analyzed in this paper are limited to relatively
more successful biotech companies.

http://www.sec.gov/edgar.shtml
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Table 2
Top 15 scientific disciplines spawning biotechnology company founders and scien-
tific advisors.

UMI subject
code

UMI subject description Match sample frequency

487; 303 Biochemistry 1,161 (22.5%)
306 Biology, General 608 (11.8%)
410 Biology, Microbiology 503 (9.7%)
369 Biology, Genetics 301 (5.8%)
419 Health Sciences, Pharmacology 298 (5.8%)
490 Chemistry, Organic 288 (5.6%)
433 Biology, Animal Physiology 253 (4.9%)
786 Biophysics, General 234 (4.5%)
301 Bacteriology 192 (3.7%)
982 Health Sciences, Immunology 181 (3.5%)
307 Biology, Molecular 114 (2.2%)
485 Chemistry, General 98 (1.9%)
472 Biology, Zoology 74 (1.4%)
494 Chemistry, Physical 71 (1.4%)
571 Health Sciences, Pathology 71 (1.4%)
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he table reports the 15 disciplines that produced the most biotechnology company
ounders and SAB members. The table also reports the number of scientists (and
roportions of the overall total) in our random sample. The proportions are set to
atch the disciplinary composition of the SAB members.

atabase, matching the disciplinary composition and Ph.D. year
istribution with our event set (e.g., 15% of biotechnology firms’
dvisors are biochemistry Ph.D.s earned in 1975, so the random
ample also contains 15% biochemistry Ph.D.s earned in 1975).5

hus, the randomly drawn sub-cohort of scientists resembles the
vent set scientists in the distribution of subject fields and degree
ears. The majority of scientists in our sample are in the life sci-
nces and Table 2 reports the top 15 subjects in the sample. The
embers of this sample are then prospectively followed from the

ime they earned a Ph.D. degree. We created publication histories
or all scientists in our database and used the affiliations listed on
apers to identify each scientist’s employer and, assuming frequent
nough publications, to track job changes. After deleting from the
riginal sample those who were not employed by academic insti-
utions, the final matched sample contains 5143 scientists in the
andomly drawn sub-cohort, augmented by the 995 event cases
i.e., founders and SAB members).

.2. The estimator

We modeled the hazard rate of scientists’ advising or found-
ng biotech startups with an adjusted Cox model that employs

pseudo-likelihood estimator (Barlow, 1994) to account for
ver-representation of the event observations. Each scientist is con-
idered at risk of engaging in commercial science at the later of: (i)
he time the individual is issued a Ph.D. degree, or (ii) the year 1961,
hen the first biotechnology company was established.6 We used

n adjusted Cox model because the standard model will produce
iased estimates if applied to case-cohort data. This occurs because

ncluding all events in a population and a randomly drawn sub-

ohort of (mostly) censored cases causes the proportion of events
n the dataset to over-represent the proportion of events in the
ctual population. This in turn results in an incorrect computation
f the event cases’ contribution to the Cox score function. To address

5 The size of the random-draw sample results from the matched sampling process.
or example, if there were two company founders and advisors who had a Ph.D. in
icrobiology in 1975, we randomly drew ten names from the pool of those who

led their dissertation with the UMI database in microbiology in 1975.
6 Some scholars believe that biotech started in the 1970s, particularly with the

ounding of Genentech in 1976. We tested our models with this assumption and
tarting our risk set in 1976 in our models. Our results from this specification do not
iffer meaningfully from our original set.
licy 40 (2011) 69–80 73

this problem, we use a pseudo-likelihood estimator proposed by
biostatisticians (Barlow, 1994). A weight is assigned to each obser-
vation in the model to adjust for the observation’s contribution to
the score function in our estimation. With the application of dif-
ferent weights, the contribution of the event and matched sample
observations are more in line with the (true) underlying popula-
tion. More details of the adjusted Cox model for case-cohort data
can be found in Stuart and Ding (2006).

3.3. Variables

We analyzed two commercial activities by university scien-
tists: (i) founding one or more for-profit companies and (ii) joining
companies’ scientific advisory boards. We identified advising and
founding information from the biotech firms’ IPO prospectus docu-
ments. Most firms report their founders in their IPO prospectuses.
Even though this is not legally required, research-intensive firms
such as biotech often opt to report its founders to increase its
legitimacy, particularly when university-affiliated scientists are
involved in the founding process. For companies that do not report
founder information in the prospectuses, we conducted a thorough
web search to fill in the missing information. We used the date of
firm incorporation as the year in which a scientist founded the firm.
Hence, for an entrepreneurial scientist, the incorporation year of
the first firm he or she founded is the year of his or her first-time
transition to entrepreneurship.

In comparison, there is more information about a company’s SAB
members, if the company has an SAB. However, for SAB members,
the difficulty is that most prospectuses do not provide information
on when a scientist joined the SAB. We assumed that a SAB member
joins at the time of firm founding. Thus when a scientist joins a SAB,
we coded the individual’s SAB event equal to when the firm he or
she joined was founded.

We constructed several measures of individual level variables
that may affect commercial activities. We coded gender based on
scientists’ first names. The literature on naming conventions sug-
gests that gender is the primary characteristic choosers seek to
convey in the selection of given names (Alford, 1988; Lieberson
and Bell, 1992). When a first name is androgynous, we searched the
web for the scientist’s vitae, bio-sketch or pictures, and code gender
accordingly. We were able to confidently identify gender for 98% of
the scientists in our data, either based on first names or from web
searches. We assumed that all remaining scientists with androgy-
nous first names are male. Most of the gender-ambiguous names
belong to foreign-born scientists of East Asian decent. Given the
well-documented gender imbalance in science education in these
countries, we think it is reasonable to assume that these individuals
are male.

From the Web of Science we retrieved annual research publi-
cation count (publication flow) for each scientist. We counted all
papers in which a scientist is listed as an author. We also computed
each scientist’s cumulative research publication count (publication
stock) and updated the measure annually. To measure a scientist’s
standing in academia, we computed the total citation count a sci-
entist has received. The Web of Science database supplies the total
citation count for each published article at the time we down-
loaded the data (i.e., 2002). Thus, we know the total number of
citations garnered by all articles in our database between the date
of publication and calendar year 2002. However, to compute the
annually updated citation counts we need to know the total number
of citations each article has received up to any given year. We there-

fore must distribute each paper’s total citations backward through
time. We did so by assuming that the arrival of citations follows an
exponential distribution with hazard rate (i.e., inverse mean) equal
to 0.1. The bibliometric literature suggests that citations accumu-
late according to an exponential distribution (Redner, 1998). We
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Table 3
Descriptive statistics.

Mean Std. dev. Min. Max. N

Publication flow 2.214 3.595 0 157 121,094
Publication stock 28.91 55.45 0 2262 121,094
Total citation count 16.01 21.42 0 647.4 121,094
Research patentability score 0.048 0.085 0 4.112 121,094
Number of industry coauthors 2.025 9.548 0 453 121,094
Patent flow 0.069 0.462 0 36 121,094
Patent stock 0.594 3.404 0 142 121,094
Number of coauthors 21.16 36.54 0 1134 121,094
Number of AE coauthors 0.222 0.873 0 32 121,094
Employer in top 20 0.274 0.446 0 1 121,094
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Employer has TTO 0.469
Employer patent count 81.73 18
Experience (career age) 13.58
Female 0.177

ssumed that this distribution is true of the typical paper in our
atabase.

We included several measures for the commercial orientation
f the scientists’ research. First, using the informative keywords
eflected in the titles of scientists’ research papers; we computed
patentability score to proxy the extent of the commercial appeal
f a scientist’s research. The details of this measure are described
n Azoulay et al. (2009). Second, since collaboration with company
cientists often indicate projects to solve industrial problems, we
ounted the total number of company scientists with whom a scien-
ist has coauthored by a given year, and again updated this variable
very year. Third, we gathered the scientists’ patents from NBER
atent database and computed yearly updated patent application
ow and stock. High research patentability score, high number of

ndustrial collaborators, and more patent applications are associ-
ted with stronger commercial orientation of a scientist’s research.

We also included two measure of a scientist’s network structure.
irst, as a general measure of a scientist’s academic network, we
omputed the total number of coauthors he has accumulated in his
esearch publications. Having more coauthors indicates an exten-
ive social network in academia. Second, we counted and annually
pdated the number of scientist-turned-entrepreneurs (i.e., uni-
ersity scientists in our sample who have already become founders)
ith whom a scientist has co-authored publications.

At the institutional level, we included three measures of a
cientist’s employing university. First, we enter a dichotomous
easure of the ranking of a scientists’ employer, which is a dummy

ariable indicating whether in a given year a scientists’ employer
as ranked in the top 20. Specifically, we collected the Gourman
eport rankings for all institutions in our dataset. Gourman rank-

ngs are available at the field level and were issued for the first
ime in 1980. We assigned universities the 1980 ranking for all
ears prior to 1980 (and updated them every other year for the
ubsequent period). Second, we used the AUTM survey (AUTM,
003) to create a technology transfer office (TTO) dummy variable,
hich is set to one in all years when a scientist’s employing
niversity has an active TTO. Finally, we counted the number of
atent applications filed by a scientist’s employer university and
sed the employer patent count as a more nuanced measure of
ow effective the university’s TTO is in facilitating the transfer of
cademic science to the commercial sector.

To control for period-specific effects, we created a series of dum-
ies of 3-calender-year windows. These dummies and the Ph.D.

ubject field dummies are included in all models.
. Results

We conducted the following comparisons of scientists’ advis-
ng and founding activities. First, we drew unconditional hazard
0 1 121,094
0 2189 121,094
0 45 121,094
0 1 6138

graphs to reveal the timing of scientists’ first-time engagement
in advising or founding activity. Second, we ran Cox proportional
hazard models to estimate the effects of individual, peer and insti-
tutional factors on the likelihood that a scientist engages in one of
the activities. Table 3 reports descriptive statistics.

4.1. Unconditional hazard profiles

When do scientists start engaging in advising and founding
activities? Fig. 1 summarizes unconditional hazard of the first time
commercial engagement, broken out by activity type. In the found-
ing graph of the top row, we present the probability that a scientist
founds a company at different stages of his professional life-cycle.
The graph for advising activity in the first row presents the prob-
ability that a scientist becomes a SAB member at different stages
of his professional life-cycle. Kernel smoothing method is used in
drawing the unconditional hazard graphs.

The graphs suggest that the two activities take place at dif-
ferent points in a scientist’s career cycle. Audretsch and Stephan
(1996) and Ding et al.’s qualitative evidence (2007) suggests that
advising tends to happen at a later professional age, as the role
of a scientific advisor requires that the scientist has established
his human capital and reputation in the academic community and
has accumulated an extensive academic network. Based on the
top row in Fig. 1, we observe the following. Advising happens
quite late during a scientist’s career. In comparison, those who
founded companies to commercialize their discoveries are rela-
tively younger—the hazard of founding a company peaks at around
12 years after the Ph.D. is granted while the hazard of joining a SAB
peaks at a much later point, about 31 years after earning the Ph.D. In
addition, the propensity to advise companies climbs up gradually
as a scientist gains more experience. For founding activity, how-
ever, the propensity increases relatively more precipitately during
a scientist’s career, but decreases gradually once it has peaked. This
pattern lends some support to the prediction of role identity theory
that young academic scientists have an easier time transitioning
into an entrepreneurial role. The transition into the advisor role,
however, is not as dramatic as the transition into entrepreneurship;
hence any role identity benefit associated with earlier transition
to SAB probably will be outweighed by human and social capital
considerations.

The next three sub-graphs in Fig. 1 break down the comparison
by cohort, gender and employer prestige. First, we ask whether
the career cycle effect on SAB and founding activities is stable
over time. Past research has suggested vintage effects on scien-

tists’ research productivity (Levin and Stephan, 1991, 1992) and
commercial orientations (Ding et al., 2007). We examined the haz-
ard curves separately for two different Ph.D. cohorts—those who
obtained their Ph.D. in or before 1973 (shown as a solid line) and
those with a Ph.D. between 1974 and 1984 (shown as a dashed
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Fig. 1. Comparison

ine).7 The hazard of both founding and advising companies for
he younger cohort increases faster than the older cohort of sci-
ntists. Also, the younger cohorts are more active at an earlier
rofessional age than the older cohorts. The hazard of founding
ctivity of the younger cohort peaks around 10 years after the Ph.D.

s granted, much earlier than the 16th year point of peak hazard for
he older cohorts. A similar trend is found for the hazard of advis-
ng companies. It seems that the younger cohorts are more open
o commercial opportunities overall. The other key point to note

7 The year 1973 is the cutoff because it is the median value of the Ph.D. year
ariable. In drawing these graphs, we excluded scientists with a Ph.D. degree after
984 because the window of observation might not be long enough to draw the
azard graph properly.
In top 20Below top 20

onditional hazards.

is that again we find that founding events tend to take place at an
earlier career stage than advising. This suggests that the hazard pat-
terns we observed in the main (first) sub-graph are not affected by
the choice of cohort in the analysis.

The two graphs in the third row of Fig. 1 break down the hazard
rate of the two events by gender. Consistent with prior research
(Ding et al., 2007; Murray and Graham, 2007), women are much
less likely to either found or advise companies. For both activities,
the hazard rate of women scientists never passes those of men. The
general pattern in the overall sample—that founding tends to hap-

pen earlier than advising, remains valid for both men and women
scientists. However, it is worth noting that the hazard of women’s
advising activity peaks much earlier than men’s (for women, the
hazard of advising peaks around 20th year after the Ph.D. is granted,
which predates the 33-year-or-so wait time for male scientists to
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each peak hazard). This may have to do with the demographics
f female advisors. Ding et al. (2007) found that female scientists
ho venture into the commercial arena (e.g., patenting research
iscoveries) are more likely to come from the younger cohort, who
eems to be less hesitant at commercial engagement at an earlier
areer stage. Though the hazard of founding for women scientists
eem to peak earlier than men in the left panel of this sub-graph,
t may not be appropriate to give too much weight on this finding
ue to the small number of women founders in the data (N = 10).

The last row in Fig. 1 compares the hazard of founding and
dvising across scientists employed by universities with different
evels of prestige. For a scientist working at a university ranked
elow the top 20 (shown as a solid line), the hazard of founding
ompanies arrives at its peak around the 13th year after the Ph.D.
s granted, much earlier than that of advising companies, which
eaks close to the end of a scientist’s career. It is also interesting
o note that although overall hazards of founding and advising are
ower for lower ranked university scientists, the shape of the haz-
rd curves for these scientists is quite different from the curves
f their counterparts employed in higher ranked universities. For
ounding events, scientists working at lower ranked universities
re at their highest risk much earlier than those working in top
anked schools. In contrast, for advising events, scientists working
t lower ranked universities are at their highest risk somewhat later
han their counterparts in top schools. Two reasons might explain
his observation. One, lower ranking university scientists have less
ested interests. As the status dynamics perspective would predict,
hey stand to lose less in transitioning towards entrepreneurship,
ence they might have more incentives to make the transition
arly on in their career. Two, advisors are invited based on their
eep expertise, academic reputation and extensive social networks.
igher-ranked university scientists would have more opportuni-

ies to obtain credentials and be desirable as an advisor faster than
cientists working for less prestigious employers.

We also observed a convergence of the founding and advising
azard peaks for the top 20 university scientists. There are likely
hree reasons causing the convergence. First, firms are founded
o exploit scientists’ inventions, so timing of the founding events
s associated with the level of scientific productivity. In general,
tephan and Levin’s research productivity cycle model predicts
igh productivity and cutting edge knowledge most likely occurs
t the early-to-mid-career stage. At the higher-ranked universities,
owever, because of the more conducive research environment,
cientists at a more advanced professional age may still be at the
orefront of their fields. The academic selection and attrition pro-
ess helps re-enforce this effect. This suggests top-20 universities
ay produce more eligible founders who are at a later career stage.

econd, there are high opportunity costs for junior scientists at top
niversities to engage in entrepreneurship. Such engagement may
istract one from research, lower productivity, and reduces one’s
hance of obtaining tenure at the top university. The opportunity
osts could have deterred junior scientists in top universities from
ursuing entrepreneurship early during their career. Third, we also
bserved an earlier peak time for the hazard of advising for top-20
niversity scientists (around 26 years after Ph.D.) than the time for
cientists at lower ranked universities (around 31 years after Ph.D.).
his is likely due to more opportunities for top-tier university sci-
ntists to be invited to a SAB after they have obtained tenure.

Our conclusions based on the unconditional hazard graphs of
ounding and advising are two-fold. First, the finding about the
elationship between career stage and the two types of commercial

ctivity partially confirms Stephan and Levin’s life-cycle model of
esearch scientists. The academic life-cycle model predicts that at
very early career stage, scientists focus on basic science research
nd develop their academic reputation by publishing research find-
ng in scientific journals without any delay. Commercialization is
olicy 40 (2011) 69–80

not a key concern for this group of scientists. Note that even though
founding hazard peaks much earlier than that of advising, its peak
is 12 years after Ph.D., which has passed the time for tenure evalua-
tion, a key milestone in the academic life-cycle. Only after scientists
have accumulated enough knowledge and more job security in
the tenured academic employment system, do they start to seek
financial returns to science.

Second, several of the theories discussed in our Section 2 predict
divergent profiles of scientist advisors and founders. It takes more
than twice the amount of time for the advising hazard to reach
its peak than it does for founding. This pattern holds even if we
break down our analysis by gender, cohort and rank of employer.
Moreover, the last sub-graph also hints to us that founders and
advisors are likely to command different levels of human or social
capital.

4.2. Antecedents of founding and advising companies

In this section, we assess the impact of factors that can poten-
tially influence scientists’ propensity to advise or found a biotech
company. Table 4 reports Cox proportional hazard models of found-
ing and advising companies, with weights included to adjust for the
case cohort sampling design. Models 1a and 2a use the full sample
as the risk pool. Models 1b and 2b replicate the results in 1a and 2a,
respectively, with a restricted sample—in 1b, all advising scientists
(i.e., those who advised one or more companies in their life time,
regardless of the timing of their first advising activity) have been
excluded and in 2b, all founding scientists (i.e., those who founded
one or more companies in their life time, regardless of the timing
of their first founding activity) have been excluded. These models
are estimated to ensure that different specifications of the risk set
do not lead to significant difference in the results. Because the set
of results of models 1a and 2a do not differ substantially from those
of models 1b and 2b, we focus on comparing the results of 1a and
2a in the following section.

Our first observation is that the directions of the effects of most
of the included variables do not differ between founding and advis-
ing activities. Fig. 2 presents the standardized coefficients of models
1a and 2a in Table 4. Except for the effects of publication stock
and number of coauthors, most factors either increase the prob-
ability of both founding and advising activities or decrease these
probabilities.

However, when examining the strength of effects of these fac-
tors, we find that several of them show notable differences. Among
the factors that significantly shape the propensity for founding or
advising activity, the impact of gender is one of the strongest. Based
on model 1a of Table 4, the hazard ratio (relative probability) of
female scientist becoming a founder to male scientist becoming
a founder is 0.22 (=exp[−1.533]) to 1, i.e., female scientists are
about one fifth as likely as male scientists to become an academic
entrepreneur. The hazard ratio of female to male scientists becom-
ing an advisor is 0.37 (=exp[−0.981]) to 1 based on model 2a in
Table 4. Though in both areas female scientists lag behind male sci-
entists, the gender gap for advising, a less deviant and risky activity
for university scientists is about one third narrower than the gender
gap in founding.

Next, research productivity affects advising and founding differ-
ently. Contemporaneous research productivity (publication flow)
has a weakly significant and positive effect on founding but no
significant effect on advising. The magnitude of the effect of pub-
lication flow is also much higher in the founding model than in

the advising model. This suggests that contemporaneous produc-
tivity is more important for founders than for advisors. In contrast,
long-term research productivity (publication stock) has signifi-
cant effects on advising and no effects on founding. This might be
because scientists who found companies attempt to capture the sci-
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Table 4
Cox proportional hazard model of advising and founding firms.

(1a) (1b) (2a) (2b)
Founding Founding Advising Advising

Female −1.553 −1.342 −0.981 −0.937
(0.437)** (0.382)** (0.185)** (0.185)**

Publication flowt−1 0.061 0.062 0.009 0.006
(0.036)† (0.043) (0.016) (0.016)

Publication stockt−2 −0.002 0.001 0.006 0.006
(0.004) (0.003) (0.001)** (0.001)**

Total citation countt−1 0.012 0.013 0.013 0.013
(0.001)** (0.002)** (0.002)** (0.002)**

Research patentability scoret−1 2.820 3.573 3.927 3.939
(0.247)** (0.643)** (0.264)** (0.270)**

Number of industry coauthorst−1 0.004 −0.021 −0.024 −0.021
(0.017) (0.036) (0.017) (0.016)

Patent flowt−1 0.192 0.188 0.177 0.185
(0.041)** (0.041)** (0.028)** (0.028)**

Patent stockt−2 0.014 0.016 0.009 0.006
(0.012) (0.012) (0.008) (0.008)

Number of coauthorst−1 −0.0004 −0.001 0.003 0.003
(0.003) (0.003) (0.001)* (0.001)*

Number of AE coauthorst−1 0.205 0.401 0.254 0.260
(0.064)** (0.085)** (0.066)** (0.067)**

Employer in top 20 0.448 0.346 0.716 0.691
(0.208)* (0.211) (0.116)** (0.118)**

Employer has TTO 0.520 0.508 0.311 0.284
(0.212)* (0.218)* (0.110)** (0.111)*

Employer patent count 0.001 0.002 0.001 0.001
(0.0004)** (0.0004)** (0.0003)** (0.0003)**

Risk pool excluding Advising scientists Founding scientists
Number of subjects 6138 5381 6138 5995
Number of events 174 174 821 786
Time at risk 119,885 97,772 111,953 109,444

Notes: (1) All models control for 3-year period dummies and Ph.D. field dummies. (2) Founding-event-specific Barlow weights are applied to models 1a and 1b to adjust for
over-sampling of founders; advising-event-specific Barlow weights are applied to models 2a and 2b to adjust for over-sampling of advisors. (3) Robust standard errors in
parentheses.

† Significant at 10%.
* Significant at 5%.

** Significant at 1%.

Fig. 2. Antecedents of advising and founding activities: comparison of standardized coefficients. The figure compares the standardized coefficients reported in Table 4. The
value for each variable is obtained by multiplying the raw coefficient for the variable with its standard deviation. The exceptions are made for the three dummy variables:
“female”, “employer in top 20”, and “employer has TTO”. The values for these variables presented in the graph are obtained by multiplying raw coefficients with value 1. The
values for the variable “female” are also rescaled (divided by 3) for this presentation purpose.
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ntific opportunities in their recent surge of scientific discoveries.
ence, when a scientist has a good run of research and has made

ome discoveries with commercial potential, he is likely to capi-
alize on the scientific breakthrough and make the transition into
ntrepreneurship. In comparison, advisors are sought after for their
eep expertise and academic reputation. Hence, when a scientist
njoys a high level of research publication stock, it makes him an
ttractive scientific advisor candidate. Total citation count seems
o equally affect founding and advising activities.

How does scientists’ research orientation affect founding and
dvising? Among the variables, the research patentability score
ncrease both founding and advising propensities. Based on models
a and 2a of Table 4, one standard deviation increase in research
atentability score raises the probability of founding by 27% (This
ercentage is calculated by taking the inverse of the natural log-
rithm (i.e., the exponent) of the product of the coefficient in
able 4 and one standard deviation of the research patentabil-
ty score found in Table 3 = exp[2.82 × 0.085]) and the probability
f advising by 40% (=exp[3.927 × 0.085]). The other factor that
ignificantly affects both founding and advising is the scientists’
atent flow. This factor increases the propensity for founding by
.3% (=exp[0.192 × 0.462]) and the propensity for advising by 8.5%
=exp[0.177 × 0.462]) with one standard deviation change in patent
ow count, again based on models 1a and 2a. The number of indus-
ry coauthors and patent stock do not affect the two commercial
ctivities significantly. Hence, overall scientists’ research orienta-
ion has similar effects on founding and advising.

A scientist’s social network is important in explaining aca-
emic scientists’ commercial engagement (Shane and Cable, 2002;
tuart and Ding, 2006). In our models, two variables have been
ncluded. Among them, the effect of the number of academic
oauthors (measuring the overall extensiveness of a scientist’s
cademic network) on founding and advising differs substan-
ially. While the variable has no effect on founding, a good
cademic network helps increase the propensity to become an
dvisor significantly (one standard deviation increase in the num-
er of academic coauthors raises the hazard of advising by 11.6%
=exp[0.003 × 36.54]). However, the effect of the more instru-

ental type of network – ties to coauthors who have already
ransitioned to entrepreneurship – shows a different pattern for
he two activities. One standard deviation increase in the variable
number of academic entrepreneurs (AE) coauthors” raises the haz-
rd of founding by 19.6% (=exp[0.205 × 0.873]) while one standard
eviation increase in this variable raises the hazard of advising by
4.8% (=exp[0.254 × 0.873]). One key role of advisors is to help a
rm evaluate scientific projects and hire key employees by way
f connecting the firm to the advisor’s extensive academic net-
ork. Hence, maintaining an extensive academic network – both
ith academic and academic-turned entrepreneurs – is crucial for

dvisors. Founders, in contrast, benefit more from task-specific
ocial network ties than from a network of coauthors who have
ot specifically become entrepreneurs. Knowing other university-
cientist-turned entrepreneurs provides access to information on
ow to navigate through the patent process, negotiate with the TTO
ffice, negotiate contracts with potential business partners, or how
o manage a new venture. Thus, having entrepreneurial coauthors

ay reduce the hurdles in the process of the entrepreneurial tran-
ition and significantly increases the propensity for founding a firm.

Finally, the institutional environment may affect how scientists
erceive commercial activities (Krimsky, 2003; Kenney and Goe,
004). In our models, all institutional variables appear to affect the

ropensity for founding and advising. The effect of employer patent
ount is the same on founding and advising. However, employer
anking and institutional support for commercial activity show
ifferent impacts on founding and advising. Being employed by
he top 20 universities helps increase the propensity for found-
olicy 40 (2011) 69–80

ing by 57% (=exp[0.448]) and advising by 105% (=exp[0.716]). The
effect of a prestigious employer on advising is about twice that on
founding. Consistent with previous research (Colyvas, 2007), being
employed by universities with a technology office raises the prob-
ability of founding by 68% and the probability of advising by 36%.
Thus founding activity seems to be influenced by university insti-
tutional support while the advising activity seems to be influenced
by university prestige.

To summarize, we find that antecedents of scientists’ commer-
cial activities differ by the activity type. First, female scientists are
less likely than male scientist to become either founders or advi-
sors, but the negative effect of gender is stronger for founding than
for advising. Second, research productivity affects the two activities
differently. While the surge in contemporaneous research produc-
tivity is associated with a higher probability of founding firms, high
level of long-term research productivity is associated with a higher
probability of advising firms. Third, founding and advising are also
affected by a scientist’s social network. Having network ties with
other scientists who have already become entrepreneurs increases
the propensity for founding more than advising, but it is the gen-
eral academic network that helps scientific advisors most. Lastly,
institutional support at a scientist’s employing university (e.g., hav-
ing a technology transfer office) raises the propensity for founding
a firm about twice as much as that of advising a firm while the
university employer’s prestige increases a scientist’s advising risk
twice as much as it does to the founding risk.

4.3. Are advisors more likely to found companies?

In this section, we explore whether advisors are more likely to
become founders, or whether scientists focus on one activity and
ignore the other. Many of the theories discussed in Section 2 predict
a divergence in the profiles of the two types of scientists. If this is
true, we should expect engagement in one activity does not trigger
the other. Among all scientists in the sample who have founded or
advised companies, 71 (7%) of them have engaged in both founding
and advising companies. Among these cases, it is possible that being
an SAB member triggers a scientist’s interest in going further down
the commercial path and becoming an entrepreneur. There is also
the possibility that in an advisory role, a scientist could learn the
operations of a new company and such knowledge facilitates his
transition to entrepreneurship.

Table 5 reports results from the adjusted Cox model of hazard of
founding a firm. The first model in this table uses the full sample and
the same set of variables as in Table 4. The new variable included
in this model is a “SAB dummy”, which indicates whether a sci-
entist has been a scientific advisor at any point during his career.
The result of model 1 in this table suggests that those scientists
who have or will become advisors are less likely to become com-
pany founders. Being an advisor lowers the probability of founding
a company by half.

Model 2 uses a different indicator of a scientist’s advising activ-
ity. We included a “SAB regime dummy” which is coded 1 in years
after a scientist has advised a company. This is to test whether the
actual advising experience increases the likelihood of founding a
firm. Because the randomly selected university scientists can dilute
the risk pool, we used a restricted sample of all scientists who have
experienced either a founding or advising activity in this model.
The result in model 2 suggests that once a scientist has advised
a company and entered the advisory regime, the probability that
he becomes a founder is reduced by about half when compared to

other commercially oriented scientists.

In both models, being on an SAB or the experience of being on an
SAB appears to have a negative effect on a scientist’s propensity to
found a company. The last two models conduct robustness check
with a restricted sample of scientists who graduated after 1973.
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Table 5
Cox proportional hazard model of founding firms.

(1) (2) (3) (4)

Female −1.430 −1.342 −1.162 −1.268
(0.391)** (0.644)** (0.456)* (0.705)†

Publication flowt−1 0.047 0.034 0.068 −0.028
(0.032) (0.039) (0.047) (0.066)

Publication stockt−2 −0.001 −0.007 −0.001 −0.001
(0.003) (0.004)† (0.006) (0.013)

Total citation countt−1 0.011 0.001 0.011 −0.012
(0.002)** (0.002) (0.003)** (0.009)

Research patentability scoret−1 2.148 0.417 2.246 0.882
(0.239)** (0.499) (0.317)** (0.382)*

Number of industry coauthorst−1 0.007 0.006 0.018 0.020
(0.006) (0.004) (0.017) (0.009)*

Patent flowt−1 0.195 0.187 0.300 0.222
(0.045)** (0.065)** (0.092)** (0.112)*

Patent stockt−2 0.003 0.011 0.001 −0.028
(0.016) (0.028) (0.033) (0.051)

Number of coauthorst−1 0.0005 −0.001 0.0004 −0.008
(0.002) (0.003) (0.003) (0.006)

Number of AE coauthorst−1 0.088 0.003 0.212 0.207
(0.058) (0.085) (0.113)† (0.146)

Employer in top 20 0.402 −0.286 0.262 −0.350
(0.198)* (0.271) (0.291) (0.417)

Employer has TTO 0.571 0.153 0.415 −0.113
(0.203)** (0.244) (0.299) (0.386)

Employer patent count 0.001 0.001 0.001 0.0006
(0.0004)** (0.0004)† (0.0005)* (0.0006)

SAB dummy −0.687 −2.116
(0.309)* (0.709) **

SAB regime dummy −0.729 −1.749
(0.298)* (0.579)**

Risk pool All Founders and advisors All Founders and advisors
Ph.D. cohorts All All >1973 >1973
Number of subjects 6138 936 3296 396
Number of founding events 174 174 87 87
Time at risk 119,889 24,728 47,858 7211

Notes: (1) All models control for 3-year period dummies and Ph.D. field dummies. (2) Founding-event-specific Barlow weights are applied to all models. (3) Robust standard
errors in parentheses.

† Significant at 10%.
*
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Significant at 5%.
** Significant at 1%.

his test is performed because scientists of earlier cohorts might not
ave the opportunity to engage in advising activity since there were

ew biotech firms in existence before 1970. The SAB coefficients
urn out to be both significant and negative, suggesting that the
re-1973 cohort of scientists and the stage of the biotech industry
id not influence our results. Together, the results in Table 5 sug-
est that founding and advising are two separate paths and those
cientists who are likely to advise companies are no more likely to
ound companies than the group of scientists who have never been
n advisor.

. Conclusion

We investigated the question of whether university scientists
ho have become company scientific advisors differ in profile from

hose who have become company founders. We constructed a case
ohort sample that consists of (i) all Ph.D.-trained university sci-
ntists who have been reported in biotech firms’ IPO documents
s either founders or scientific advisory board members, and (ii) a
tratified random sample of scientists who are university faculty

embers, from corresponding Ph.D. years and fields. We followed

he career development, research productivity and commercial
ctivity for a combined sample of approximately 6100 scientists.
e analyzed the timing and determinants of advising and founding

ctivities of these scientists.
Our results showed differences in the effects of scientists’ career
cycle on founding and advising activities along with other deter-
minants of founding and advising. First, when examining the
timing of founding and advising activities during scientists’ career
cycle in unconditional hazard graphs, we found that the prob-
ability of founding rises relatively faster than that of advising
and peaks much earlier in one’s career cycle. This is consistent
with prior qualitative evidence regarding the opportunity struc-
ture for scientists to join a SAB. The finding is also consistent
with several of the theoretical predictions discussed in our Sec-
tion 2. For example, cognitive theories of entrepreneurship, role
identity theory and status dynamics theories all predict differ-
ences in the profile of founders and advisors. Indeed, we observed
different life-cycle effects for founders and for advisors in our anal-
ysis.

Our regression analysis suggests that human capital, social cap-
ital and institutional characteristics affect founding and advising
differently. The gender gap is more significant for founding than for
advising. Contemporaneous research productivity boosts founding
while long-term research productivity boosts advising. Different
types of social networks and institutional support also contribute

differently to advising and founding activities. Lastly, regressions
that assess the effect of scientists’ advising experience on found-
ing show that being an advisor negatively influences the likelihood
of becoming a founder. Together, these results lend more support
to the view that founding and advising follows divergent paths for
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ommercially oriented scientist, rather than the view that one is a
tepping-stone for another.
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