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ABSTRACT 

In this article we examine how R&D networking affects an organization's innovative output. Using empirical 
data on 419 research organizations in transgene plant research over a 20-year period, we test several hypotheses 
relating their sociometric position in an R&D network to their innovative output. Attention is paid to the relative 
importance of in-house versus collaborative research. Least squares dummy variable models are used to analyze 
cross-sectional data across different time periods. The results show that (I) an organization's "network embed- 
dedness" positively influences its innovative output; whereas (2) involvement in collaborative R&D has a curvilin- 
ear effect on innovative performance. © 1996 Elsevier Science lnc. 

Introduction 
Network ing  in R&D has a roused  increasing interest  a m o n g  s tudents  o f  the innova t ion  

process [1-4]. In the past  decade organiza t ions  increasingly turned  to co l labora t ive  R&D 

to suppor t  their  innova t ive  activities [5, 6]. Three  m a j o r  explanat ions  are p rov ided  for  

this evolu t ion .  First ,  par tners  in the co l l abora t ion  process  benefit  f r o m  mutua l  learning 

and knowledge  exchange,  which enables them to o v e r c o m e  the complex  indivisible scien- 

tific p rob lems  none  o f  them can solve individual ly  [7-10]. Second,  in many  emerging  

fields, the cost o f  R&D is forc ing firms to share scarce R&D resources.  Hence ,  co l labora-  

t ions a m o n g  gove rnmen t  labora tor ies ,  universit ies,  hospitals ,  new technology-based  

firms, and established firms have  become  a necessity [11]. Third ,  co l labora t ive  R&D 

al lows the  par tners  to internal ize par t  o f  the posi t ive externali t ies o f  their  research activ-  

ities under  condi t ions  o f  incomple te  pa tent  pro tec t ion  and technologica l  spil lover effects 

[12-15]. 

So far,  m u c h  research has focused on the condi t ions  under  which R&D ne tworks  

emerge.  Transac t ion  cost  economics  [16], evo lu t ionary  economics  [17], game theory  [4], 

and  learning theory  [6] have p rov ided  analyt ical  or  empir ica l  f r ameworks  to explain the 
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growth of collaborative R&D. However, even though an increasing number of innovations 
are the result of network-like arrangements, only a few studies have explored the relation- 
ship between networks of collaborations and innovative performance [6, 18]. Especially 
in the case of more radical innovations, involving emerging technologies (i.e., demand- 
creating research), this relationship remains ambiguous at best [13]. The few existing 
models are rather limited in scope and they are primarily analytical. They suggest that 
toward the basic end of the R&D spectrum, collaboration enhances the innovative produc- 
tivity of the firm [2, 4]. In this respect, Weelwright and Clark [19] point to the importance 
of participating in knowledge networks to complement in-house research as a necessary 
(but not sufficient) condition for generating successful technological breakthroughs. How- 
ever, at the same time, many propositions on the necessity of R&D networks and alliances 
lack empirical support. 

As a consequence, the aim of this article is to analyze the potential impact of positions 
in R&D networks on the innovative performance of a research organization. To this end, 
we test a theoretical model based on industrial economics [1, 2, 13] and social theory 
[20-22]. 

Technological  Community  as a Market of  Ideas 
Since we are concerned with demand-creating research that cannot satisfactorily be 

managed by a single organization or group of organizations, an appropriate level of 
analysis is required. Constant [23] and Thomson [24] both suggest that technological 
development takes place within a community of practitioners where traditions of practice 
develop. Gray [25] advocates a domain level of analysis to study interorganizational 
relations. The domain consists of "the set of actors (individuals, groups, or organizations) 
that become joined by a common issue or problem." Obviously, this domain-level ap- 
proach can be applied to technological development as well. The domain then becomes 
the group of individuals and organizations committed to solve a set of interrelated scien- 
tific and technological problems. We have defined this group of individuals and organiza- 
tions as the technological community [26], which essentially is a market of ideas that 
become embodied in publications and patents. 

As far as the plant biotechnology community is concerned, four groups of actors 
have been discussed: universities, government-sponsored research laboratories, new bio- 
technology-based firms, and established firms (mostly seed firms, see [27]). Each actor 
attempts to maximize his innovative output, given his own strengths and weaknesses. 
The academic actors, for instance, may possess more fundamental research know-how 
than the established firm, but less financial and marketing resources. The new bioteehnol- 
ogy firms may command less financial resources than academic or large industrial labora- 
tories, but more entrepreneurial dynamism. But also within the same group, research 
organizations are different. Certain universities have a lot of expertise and experience, 
whereas others are relatively new to the field. Hence, collaboration may offer a promising 
avenue to overcome individual weaknesses and subsequently improve innovative output. 

We consider the technological community to be a homogeneous goods industry 
with demand Q = Q(q), where Q stands for the number of innovative ideas on the 
technoscientific problem (which is an indicator of industry output) and q is the quality 
of those ideas. Hence, on the market of ideas, the number of innovative ideas is a function 
of their quality. Demand meets supply at a quality q*, above which an idea will be diffused 
across the community. The n actors in the technological community, whose in-house 
research efforts and external collaborations may all be unequal, try to maximize their 
market share on the market of ideas. Each of them is stimulated and constrained by the 
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research ideas of all others. Indeed, each publication or patent (embodying the prolifera- 
tion of ideas within the community) may provide new insights, though at the same time 
impede others from pursuing the same research results. 

This dilemma is well known. For instance, the isolation of a part of the Hepatitis 
C virus genome by Chiron (Emeryville) which accounts for almost 90% of all non-A, 
non-B hepatitis in the late 1980s has encouraged a lot of research organizations to further 
explore the virus for diagnostic assays, vaccines, or therapeutic applications. However, 
it has impeded other actors like Mitsubishi Kasei (Yokohama, Japan), who announced 
to be close to its isolation one year before the Chiron publications, from publishing or 
patenting the bulk of their research efforts. Given these mechanisms, the market of ideas 
is assumed to behave similar to an industrial product market. 

Publications as Proxy Measure for Innovative Output 
Patent counts are frequently used as a measure of innovative performance (for a 

review, we refer to [28]). However, as far as fundamental research is concerned, patents 
have serious limitations. Moreover, in emerging fields such as plant biotechnology, patent 
regulations often are very fuzzy. Besides legal requirements such as the newness of an 
idea, ethical, political, and historical elements play a major role in the patenting process 
[29]. These issues not only refrain research organizations (especially universities) from 
applying for a patent, they also lengthen the time gap between the application and the 
patent grant. Searches on the American Patent Search and the World Patents Index 
showed that in the case of plant biotechnology, the average time lag between application 
and publication was more than 3 years. On the contrary, a random sample of 200 scientific 
articles revealed the time lag between first version received and publication date to be 
on average less than 6 months. 

However, is each valuable idea published in the scientific literature? Are firms not 
reluctant to publish information because of secrecy imperatives? Nelson [3] points out 
that secrecy is much less important in emerging technologies (demand-creating research) 
than in product development (applied research). Furthermore, it has been shown that 
publishing after a patent application does not significantly hurt an organization's intellec- 
tual property rights [30]. A combined patent and publication search on transgene plants 
revealed that in 95% of the cases, the idea was published before the patent grant (though 
in the same year as the patent application). All topics patented were described in the 
literature. Thus, publications provide at least as much information as patents, while being 
much easier to collect. 

But there is another advantage to publications which is still more important given 
the aims of our research. Where patents primarily serve as a means to protect intellectual 
property rights, publications perform a role as "signals of scientific competence" [6]. 
Actors in the technological community (i.e., universities, government research labora- 
tories, new biotechnology firms, and established firms) have an incentive to diffuse these 
signals for various reasons. First, they improve the actor's professional standing in the 
community. This prestige position augments the actor's ability to recruit the best scientists 
in the field. A common example is the development of plant biotechnology research by 
Dr. Schneiderman at Monsanto (St. Louis, MO) in the 1980s [31-33]. 

Second, these signals may play an important role in attracting customers. Especially 
new biotechnology based firms value an article on the front cover of Science or Nature 

as the best reference for future research contracts. Major seed companies such as Sandoz, 
Limagrain, ICI Seeds, Rh6ne-Poulenc, Monsanto, and Ciba-Ceigy are collaborating with 
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small biotechnology firms and universities with a reputation in the community. This form 
of  dynamic complementarity is to a large extent driven by the publication market [34, 35]. 

Third, these signals have a symbolic importance to the financial stakeholders (i.e., 
private and public stockholders, venture capitalists, government, etc.). As long as no 
new technology-based products are commercialized, they are major  criteria to "make 
stockholders happy and to attract new capital" [3]. 

Hence, we advocate that a research organization's yearly number of  publications 
can be used as a direct measure of  its innovative output in the technological community. In 
addition, an organization's yearly market share on the market of  ideas (read: publications) 
serves as an indicator of  its relative innovative performance in the technological com- 
munity. 

Determinants of Innovative Output: Research Cooperation, 
Network Embeddedness, and In-House Research 

It is obvious that collaborative R&D takes on many forms. Industrial economics, 
for instance, views cooperation as a means to share research costs and to internalize 
positive spillover effects. Starting from symmetric oligopolistic models, industrial eco- 
nomics is not so much interested in whom the actors are cooperating with as it is interested 
in the extent to which the actors in the technological community are cooperating [2, 13, 
18]. Social theory, on the other hand, approaches cooperation as a way of  getting access 
to scarce resources and power [21,22, 36, 37]. Consequently, its interest is directed toward 
whom the different actors are cooperating with (i.e., the different knowledge sources they 
have access to) and toward how power over these resources is dispersed across the actors 
in the community (i.e., who is dependent on whom). Hence, social theory focuses on 
the R&D organization's social embeddedness (i.e., the extent of its social capital) in the 
technological community as a determinant of  its innovative output [21]. 

Under conditions of  imperfect patent protection and in the presence of  increasing 
returns to scale due to technical learning, industrial economists have proven that coopera- 
tion is beneficial to all the cooperating firms [2, 12]. Bozeman et al. [38] and Grossman 
and Shapiro [12] both show that this is especially the case with basic (i.e., demand-creating) 
research. Hence, in the case of  basic research (e.g., transgene plant research), R&D 
cooperation may increase the innovative output of  the actors in the technological com- 
munity. 

However, due to the longitudinal approach adopted in this article to study the evolu- 
tion of  innovative output and its relationship to R&D networking, we have to explicitly 
take into account the changing volume of  collaborative activities f rom year to year in 
the community. For instance, organization ~, active in year x is involved in five R&D 
collaborations. In year x, we find a total of  35 collaborations in the community. In year 
x + 5, the total number of  collaborations has reached 500; while organization ~ is still 
involved in 5 R&D cooperations. Clearly, this is a network position that strongly differs 
from the one in year x. 

Hence, for each year of  observation, we prefer to use an indicator of the relative 
position of  the organization in the community R&D network. This indicator (defined 
as the organization's relative collaborative position) is calculated by dividing (for each 
observation period) the number of  collaborations the individual members of  the commu- 
nity are involved in by the number of  collaborations of  the organization that is having 
the highest number of  collaborations for that observation period. Hence, the relative 
collaborative position indicator varies from 0 (no collaborations) to 1 (for the organization 
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with the maximum number of collaborations) for each observation period. Given indus- 
trial economic theory just discussed, we hypothesize that: 

H I :  The relative network position of an organization in the technological commu- 
nity will be positively related to its innovative output and its market share on 
the publication market. 

In addition, many students of the R&D process stress the importance of in-house 
research to monitor, to evaluate, and to exploit external technical knowledge [7, 9, 39]. 
Collaborative and in-house R&D do not substitute for each other; rather they are comple- 
mentary. Therefore, we create an index capturing the importance of collaborative R&D 
efforts in the organization's total R&D output. For each organization and for each observa- 
tion period, the numerator of the index contains the number of publications that are 
the result of cooperative R&D, whereas the denominator contains the total number of 
publications (i.e., those resulting from in-house research as well as those resulting from 
collaborative R&D). Given the complementary nature of internal and external R&D, we 
hypothesize that: 

1-12: The ratio of collaborative output to total output will have a curvilinear relation- 
ship to the organization's innovative output and its related market share on 
the publication market. 

To measure the social embeddedness of an organization in the technological commu- 
nity, sociometric techniques are used [20, 40-42]. They allow us to compute several 
indicators of an organization's position in the community. As social theorists stress the 
importance of having access to a variety of resources, the first network indicator simply 
reflects the size of the network to which an individual organization belongs. To this end, 
we do not count the number of relations in which an organization is involved, but the 
number of distinct organizations to which the focal organization is related. When these 
contacts increase, the organization's exposure to knowledge sources increases. Access to 
multiple knowledge sources may in turn increase the innovative output of the focal organi- 
zation: 

1-13: The number of distinct organisations with which a focal organization cooperates 
will be positively related to its innovative output and its related market share. 

Network size alone does not yet reflect the power or prestige an organization has 
within the technological community. Prestige increases with the demand for the focal 
organization's time and energy by other actors in the network. To this end, we assume 
that the relative network position a focal organization occupies in the community can 
serve as a proxy for its relative power or prestige [40, 41, 43]. Burt's prestige index provides 
a well-established measure of an organization's relative position in the network. Prestige 
is defined as the extent to which the focal organization is the object of exclusive relations 
from all alters, weighted by the relative position of all those alters [43]. Exclusive relations 
between ego and alter are computed on the basis of the number of relations between ego 
and alter divided by the total number of relations alter has with all others except with 
ego. Multiplication of the focal organization's exclusive relations by the power of their 
sources yields its absolute prestige position. In other words, prestigious research organiza- 
tions are those organizations that have attained powerful network positions in networks 
with powerful others. To allow for longitudinal comparisons, the absolute prestige value 
is normalized using the value of the most prestigious actor as a scale parameter in the 
denominator. It then is straightforward to hypothesize that: 
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t14: The prestige of a focal organization in the technological community will have 
a positive relationship to its innovative output and its related market share on 
the publication market. 

Finally, as discussed previously, in-house R&D still remains important to monitor 
and to evaluate external technical knowledge. Two frequently used indicators of internal 
R&D efforts are the number of researchers and annual R&D expenditures [9]. Of course, 
data on research expenditures are difficult to collect when performing a community-level 
study. Moreover, R&D expenditure data are subject to variations in reporting procedures 
and accounting rules. Therefore, the number of researchers is used as an indicator of 
organizational R&D efforts. For each research organization in the dataset, the cumulative 
number of researchers active in the technological community is calculated for each obser- 
vation period. Of course, given our methodological approach based on bibliometric data 
(cfr. infra), we only take into account those researchers who visibly contribute to knowl- 
edge creation in the technological community. Drawing on previous research, we assume 
that these internal R&D investments increase the innovative output of a research organi- 
zation. 

H5: The cumulative number of researchers belonging a focal organization in the 
technological community will be positively related to its innovative output and 
its related market share on the publication market. 

The cumulative number of researchers is used as a proxy measure for an organiza- 
tion's R&D efforts. This implies the existence of constant returns to scale associated with 
increases in R&D efforts. However, due to technical learning, organizations with a long 
history in a particular field may generate more output than those that are relatively new 
to the field. Hence, the longevity of the organization's association with the technology 
may positively influence its innovative output: 

H6." The duration of an organization's association with a particular technology will 
positively relate to its innovative output and its related market share on the 
publication market. 

Research Site 
In the study, we have chosen the field of plant biotechnology (transgene plants) as 

a research site. Plant biotechnology is a subdomain of biotechnology, applying the tech- 
nique of genetic engineering to plant varieties. The genetic engineering of transgene plants 
has resu'lted in three major application areas: (1) plant crop protection, (2) plant quality 
improvement, and (3) plant hybrids (for a review: see [44]). Interest in plant quality 
improvement was first aroused in the 1950s as a result of research into tissue cultures 
and the restrictions of tissue cultures. The emergence of genetic engineering in the 1970s, 
combined with the specification of the tumor-inducing plasmid (Ti-Plasmid) in 1974, 
caused a renewed interest in the field. More specific, the identification of the Ti-Plasmid 
laid the foundations of a field that would become known as plant genetic engineering 
in the 1980s. 

The first plants to be genetically engineered appeared in 1983. Transgene plant re- 
search has shown three major foci of interest. Plant crop protection aims at developing 
virus-free plants with increased stress, herbicide, or disease resistance. Plant crop quality 
improvement aims at the engineering of proteins with increased nutritional value, control 
of ripening, prolongation of shelf life, and control of flower coloring. On the one hand, 
the production of hybrid seeds implies the conversion of open pollinated varieties to 
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hybrids in order to provide farmers with superior quality seeds. On the other hand, it 
allows seed companies to protect the value they create through research and breeding. 
The first commercial products in all areas are predicted in the period 1994-1996. Thus, 
between the early 1980s and 1994, transgene plants have moved from being a scientific 
curiosity to a promising commercial activity (for a current state-of-the-art, we refer 
to [45]). 

Data Collection and Methods 
Journal articles, research notes, conference papers, and patents in a given field repre- 

sent a detailed archival record of the research efforts performed by each organization in 
the domain. Moreover, whenever two or more research organizations jointly publish an 
article, a conference paper or a patent application, this can be identified as the outcome 
of a collaborative research effort (i.e., regardless whether this collaborative research effort 
is the outcome of an institutionalized agreement between two or more actors in the 
community or not). Operationalizing collaborative research in this manner has some 
maj or advantages: (1) as the publication conventions ensure a level of quality and authen- 
ticity, the research collaborations detected are assumed to attain a certain minimum 
quality threshold; (2) as the data are public, the data collection process can be easily 
replicated; and (3) bibliometric databases provide detailed information on both the re- 
search organizations and the individual researchers involved in each collaboration. 

We used the databases of the Institute for Scientific Information (Philadelphia, U.S.) 
to identify publications related to the field of transgene plants. For the period before 
1982, we used the ON-LINE version. From 1982 onward, the quarterly updated CD-ROM 
versions were used. Both databases were searched using a search strategy containing a 
Boolean combination of 18 key terms. The search strategy was verified with three indepen- 
dent experts. As the boundaries of a field are fuzzy to a certain extent, we extensively 
checked the completeness of the ISI databases. To this end, we compared the ISI docu- 
ments for 1990 with a sample drawn from the biological abstracts database (provided 
by DIALOG). The ISI sample contained 189 unique documents whereas the DIALOG 
sample revealed the existence of 163 unique documents, 160 of which also appeared in 
the ISI sample. In addition, we checked our database against a sample of 100 hardcover 
articles selected by one of the experts: 80°7o of the publications in the sample were retrieved 
with the electronic search strategy. 

The data collection procedure resulted in the identification of 1,792 unique source 
documents published between 1974 and 1993. It revealed the existence of 3,220 researchers 
employed at 419 research organizations that were active in the field over the 20-year period. 
For each research organization, we created a statistical database containing time-varying 
covariates. Thus, for each organization, the variables are recomputed each year of obser- 
vation. Because the number of publications in the domain was very low during the initial 
period from 1974 to 1980 (32 publications), this period was collapsed into 1 year of 
observation. For a detailed description of the variables, we refer to Table 1. 

DEPENDENT VARIABLES 
As described above, we used the cumulative number of publications as a measure 

of innovative output. In our analytical approach, the explanatory variables computed 
for time period x are assumed to influence the dependent variable in time period 
x + 1. Hence, a 1-year time lag is observed in the computations of the dependent variable 
versus the independent variables. As a consequence, for 1993 (the last period of observa- 
tion in the database) only data on the dependent variable are included in the analysis. 
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TABLE 1 
Variables in the Least Squares Dummy Variable Model 

Variable name Explanation 

Dependent variables 
Innovative output 

Market share 

Control variables at community level 
Number of publications 
Herfindahl index 

Density 

Density:/1000 

Percentage of connected organizations 

Cooperative research covariates at 
organizational level 

Relative collaborative position 

Ratio collaborative output to total output 

Prestige 

Contacts 

Covariates measuring in-house 
research efforts 

Cumulative number of researchers 

Time 

Cumulative number of publications an organization has 
produced up to a given year of observation. 

Cumulative number of publications an organization has 
produced up to a given year divided by the cumulative number 
of publications produced by all organizations still active 
that year. 

Cumulative number of publications each year of observation. 
Herfindahl index of concentration of researchers among the 

various research organizations. 
Number of organizations active in the technological 

community [46] 
Number of organizations 2/1000, i.e., contemporaneous 

density measure [46]. 
The number of organizations connected to each other (clique) 

divided by the total number of organizations active in the 
field each year of  observation. 

The number of collaborations each organization is involved in 
divided by the number of collaborations of the organization 
cooperating most in a given year. 

The cumulative number of publications that result from 
cooperative research divided by the total cumulative number 
of publications for each organization in the dataset. 
Range: 0 = all publications result from in-house research 
activities-to-1 = all publications are the result of 
collaborative efforts. 

This variable is an indicator of the prestige position of 
each organization relative to the most prestigious organization 
in the dataset. The absolute prestige position for each 
organization is computed according to Burt [43]. This 
absolute value for each organization is then divided by the 
prestige value of the most prestigious organization. Based on 
this definition, the prestige of an organization i increases 
with the demand of i's network time and energy. 

Number of other organizations in the community with which 
the organization has collaborated on the basis of 
co-authorships or co-inventorships. 

Cumulative number of authors/inventors at the organization 
for each observation period. 

Number of years the organization has been active in the 
community. 

T h e  m a r k e t  s h a r e  o f  e a c h  o r g a n i z a t i o n  o n  t h e  m a r k e t  o f  p u b l i c a t i o n s  is o u r  s e c o n d  

d e p e n d e n t  v a r i a b l e .  I n  a d d i t i o n  t o  t h e  a b s o l u t e  g r o w t h  in  i n n o v a t i v e  o u t p u t  a t  t h e  o r g a n i -  

z a t i o n a l  level ,  t h i s  v a r i a b l e  c a p t u r e s  t h e  s t r u c t u r a l  c h a r a c t e r i s t i c s  o f  t h e  p u b l i c a t i o n  m a r -  

ke t .  F o r  e a c h  o b s e r v a t i o n  p e r i o d ,  it is c o m p u t e d  b y  d i v i d i n g  t h e  c u m u l a t i v e  n u m b e r  

o f  p u b l i c a t i o n  c o u n t s  f o r  e a c h  o r g a n i z a t i o n  in  t h e  c o m m u n i t y  b y  t h e  t o t a l  n u m b e r  o f  
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publication counts in the technological community. Again, a 1-year time lag between 
the market share variable and the explanatory variables is taken into account. Unlike 
innovative output, market share on the publication market is directly affected by the 
entry and exit patterns in the technological community. To compute exits, we considered 
research organizations as having left the field if they had not contributed for more than 
two subsequent years. Also, it is important to note that when a domain grows because 
of new entries, incumbents have to publish proportionally more than the new entrants 
in order to maintain their previous market shares. 

EXPLANATORY VARIABLES 
Three variables are included that account for the degree of competition among organi- 

zations in the technological community. They provide measures of density, contempora- 
neous density [46], and concentration of resources among actors in the community [11, 
47]. The density and contemporaneous density variables are based on population ecology 
theory. They are indicators of increased legitimacy or competition within a technological 
community due to changes in the number of organizations belonging to that community. 
Density is measured as the number of organizations active in the technological community 
during each year of observation. When increased levels of competition enhance organiza- 
tional output, this variable is assumed to exert a positive influence on innovative output 
and market share. Contemporaneous density [i.e., density2/1000] captures the second- 
offer effect of competition. It predicts that an increase in the level of competition enhances 
innovative output, though only at low levels of competition [46]. At high levels of competi- 
tion, however, innovative output is constrained. Obviously, competition does not only 
result from changes in density. Also the concentration of scarce R&D resources among 
the actors in the community determines the level of competition. Therefore, we use the 
Herfindahl index of concentration to measure the dispersion of researchers among the 
different actors. 

In addition to the three indicators of competition, we included one control variable 
for the total market size and one for the intensity of cooperation in the community. The 
first is operationalized by counting the total number of publications for each observation 
period. The second is calculated using the sociometric technique of clique detection [43]. 
For each observation period, the numerator contains the number of organizations that 
are in one way or another connected to each other, whereas the denominator contains 
all organizations in the community. Hence, the index stands for the level of information 
sharing in the community. Evolutionary economists [3] have argued that "everyone would 
be better off if everyone shared." 

The variables related to H1 to H4 are described in Table 1 heading "cooperative 
research," whereas those related to H5 and H6 are described under the heading "in-house 
research." Each of those variables is subsequently used in the analyses. 

Analysis and Results: Discussion 
Pooled time series analysis was used to study the innovative output and market 

shares of the organizations in the transgene plant community [48-50]. This kind of analysis 
contains a variety of methods that can be used for studying cross-sections of data at 
different points in time. The cross-sections in our dataset are the different research organi- 
zations each year of observation. Heteroscedastic errors are produced, because it is not 
plausible to assume that the variance over the full pool is constant. Pooled time series 
methods use techniques to correct for autoregression and heteroscedasticity. As we assume 
that the direction of the relationship between our explanatory variables (see HI to H6) 
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and the dependent variable(s) remains constant for all cross-sections and all time periods, 
we may adopt a relatively simple model called the least squares dummy variable (LSDV) 
model [48, 49]. 

The LSDV model uses an intercept to capture the effects unique to the cross-sections 
and those that might be unique to time. The pool permits us to treat the unique effects 
of time as if time were a surrogate for systematic effects observed in time. To this end, 
the intercept is simply a characterization of the variance that attempts to minimize the 
bias in the true explanation. The intercept has been called specific ignorance, in contrast 
to our general ignorance, which is captured in the error term [49]. The basic model in 
our analyses can be written as follows: 

Yn,+l = a,~ + X,~[3k + u,t 

with 

for n = (I...N) cross-sections and t = (1...T) time series. The problems of autoregression 
and heteroscedasticity are avoided by incorporating the restriction: 

Z~,= E~n=0 
t n 

The vectors of errors due to autoregression and heteroscedasticity [)., and ~t,] are fixed 
conditionally in the intercept; while the matrix of overall error terms ~,, is assumed to 
be random. X,, is the matrix of covariates, and [3~ is a vector of unknown regression 
parameters. We use the panel data module of the econometric software program LIMDEP 
to estimate the LSDV-model [51]. The model was estimated in a sequence of steps by 
adding sets of explanatory variables into the equation (see Table 2 for innovative output 
and Table 3 for effects on market share). 

Models 1 and 4 estimate the effects of the competitiveness and cooperation variables 
at the community level on innovative output (model 1) and market share (model 4). 
Models 2 and 5 introduce the variables on cooperative R&D and networking that are 
related to H1 to H4. Finally, models 3 and 6 present the estimations with all variables 
included. For each model, three R 2 values are computed. The first one is the adjusted 
R E due to the explanatory variables. The second one stands for the variation explained 
by the explanatory variables and the group dummies, created to control for cross-sectional 
differences. Finally, the third value captures the variation explained by the explanatory 
variables and the dummies created for group and time effects. As can be seen in Tables 
2 and 3, including the collaborative R&D and network variables enormously improved 
the overall quality of the model. 

In models 1 to 3, the statistically significant negative sign of the contemporaneous 
density variable combined with the statistically significant and positive sign of the density 
variable implies an inverted U-shaped relationship between the intensity of competition 
(due to the number of organizations) and innovative output. This means that an increase 
in competition enhances innovative output at low levels of competition, though the organi- 
zation's innovative output decreases at high levels of competition. 

Interestingly, in models 4 to 6, both variables are statistically significant though in 
the reverse direction. This is explained easily, because the dependent variable in these 
models is affected by changes in entry and exit patterns (i.e., in organizational density). 
The signs should be interpreted as follows: at low levels of competition (i.e., when a 
technological community contains a small number of actors), a rather large innovative 
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TABLE 2 
Estimation of Innovative Output Using the Least Squares Dummy Variable Model 
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Explanatory variables Model 1 Model 2 Model 3 

Degree of competition and cooperation (community level): 
Number of publications 0.007* 0.004 0.001 

(0.003) (0.002) (0.001) 
Herfindahl index - 16.509 3.956 3.165 

(15.340) (11.080) (7.251) 
Density 0.076~ 0.088~ 0.1M3~ 

(0.021) (0.018) (0.012) 
Density2/1000 - 0.236t - 0.306~t - 0.120~ 

(0.071) (0.053) (0.037) 
Percentage of connected organizations 0.865 - 3.518 - 3.511 

(4.119) (2.963) (1.938) 
Cooperative research indicators (organizational level) 

Relative collaborative position - 5 . 5 9 0  - 11.423 
(23.590) (15.680) 

Ratio collaborative output to total output -3.049, -0.615t 
(0.387) (0.272) 

Prestige 8.280:~ 5.675~t 
(1.139) (0.760) 

Number of contacts 2.041, 0.803:~ 
(0.084) (0.068) 

In-house research indicators (organizational level): 
Cumulative number of researchers 0.394:~ 

(0.012) 
Time 0.063 

(0.073) 

Scale parameter - 5.602:~ - 3.893~ 
(1.510) (0.937) 

R 2 (X variables only) 0.005 0.693 0.856 
R 2 (X variables and group effects) 0.714 0.869 0.940 
R 2 (X variables, time and group effects) 0.639 0.860 0.940 

Significances: * 0.05 < p < 0.01; t 0.01 < p < 0.001; ~t p < 0.001. Standard errors of estimates between 
parentheses. Total number of research organizations = 419. Total number of 1,424 lines of observation. 

output comes from the contributions of new entrants. Hence, an increase in competition 
decreases the market shares of the incumbents at low levels of competition. However, 
as a domain grows, relatively more innovative output is generated by the organizations 
already belonging to the technological community. As a consequence, new entrants con- 
tribute relatively less to the community. Therefore, at higher levels of competition, con- 
temporaneous density positively affects market shares. 

In addition, at the level of the community, the concentration of researchers across 
actors seems to affect only market shares, not innovative outputs. Its positive sign points 
to a concentration of researchers among fewer organizations having a positive relationship 
to market shares. 

The results further indicate that three out of four hypotheses relating cooperative 
research and networking to innovative output receive support. The positive sign of the 
prestige and contacts variables (t7 < .  001) indicate that social embeddedness in the techno- 
logical community is positively related to an organization's innovative output (H3 and 
H4). This is also true, although less outspoken, for the market share dependent variable 
(see model 5). 
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TABLE 3 
Estimation of Market Share Using the Least Squares Dummy Variable Model 

Explanatory variables Model 4 Model 5 Model 6 

Degree of competition and cooperation (community level): 
Number of publications 0.00025 0 .000015  0.000025 

(0.0000) (0.00000) (0.00001) 
Herfindahl index 0.11355 0.07579I" 0.085015 

(0.0258) (0.02394) (0.02287) 
Density - 0.00035 - 0.000215 - 0.000245 

(0.0000) (0 .00004)  (0.00004) 
Density2/1000 0.00031" 0.00008 0.000565 

(0.0001) (0.00011) (0.00012) 
Percentage of connected organizations 0.02325 0.00937 0.01534[ 

(0.0069) (0.00633) (0.00613) 
Cooperative research indicators (organizational level) 

Relative collaborative position -0.780675 -0.479665 
(0.04489) (0.05047) 

Relative collaborative output to total output -0.007205 -0.00425:~ 
(0.00066) (0.00089) 

Prestige 0.00607t" -0.00014 
(0.00221) (0.00244) 

Number of contacts 0.001435 0.000561" 
(0.00016) (0.00022) 

In-house research indicators (organizational level): 
Cumulative number of researchers 0.000155 

(0.OOOO4) 
Time - 0.001125 

(0.00032) 

Scale parameter 0.02085 0.01464:[: 0.019835 
(0.0027) (0.00289) (0.00301) 

R 2 (X variables only) 0.168 0.610 0.665 
R E (X variables and group effects) 0.871 0.877 0.883 
R 2 (X variables, time and group effects) 0.836 0.862 0.876 

Significances: * 0.05 < p < 0.01; t 0.01 < p < 0.001; $ p < 0.001. Standard errors of estimates between 
parentheses. Total number of research organizations = 419. Total number of 1,424 lines of observation. 

The negative sign of  the ratio collaborative output to total output  indicates that at 

least some in-house R&D capacity is beneficial to innovative output (as well as to market 

shares). Further inspection of  the data shows that, depending on the panels studied, 

optimal balances for the ratio collaborative-to-in-house output do exist, pointing to a 

curvilinear relationship and thus supporting H2. This is shown in Figure 1. 

This finding is also illustrated by the following descriptive data. The top 20°70 of  

the organizations in terms of  innovative output  realize, on average (i.e., for the observa- 
tion periods considered in our panel), between 21070 and 56070 of  their output as a result 

of  collaborative research with very little variation across the organizations belonging to 

this category. The bot tom 20070 of  research organizations in terms of  innovative output,  

show much more dispersion with respect to collaborative research patterns. Either they 

tend to perform the bulk of  their research in-house (i.e., they are social isolates) or, if 
not, they do it in collaboration with others. This means that the most productive organiza- 
tions in terms of  innovative output  have been able to achieve a better balance between 
in-house and external R&D activities than their less productive counterparts. The only 
hypothesis not receiving support concerns the relationship between relative collaborative 
position and innovative output (HI).  
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Innovative output 
for observation periods considered 
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for observation periods considered 

y 

Fig. 1. Relationship between innovative output and the relative importance of collaborative research 
for the panels considered. 

However, turning to market shares, a close look at models 5 and 6 reveals that the 
relative collaborative position is negatively related to an organization's market share. 
This seems puzzling at first. However, this result can be explained by the entry and exit 
patterns in the community. When a technological community matures, entry barriers 
build up. Therefore, an obvious way for new entrants to become involved in the field is 
through cooperation with incumbents [52]. As, in a proportional sense, incumbents must 
publish more than the new entrants to maintain their market share; those who publish 
a lot in cooperation with new entrants tend to lose market share. 

Combining models 2 and 5 for the relative collaborative position variable, the data 
show that the majority of incumbents involved in frequent collaborations have the bulk of 
these collaborations with new entrants. However, these incumbents are not exceptionally 
productive (see model 2: a strong relative collaborative position does not significantly 
affect innovative output), whereas their collaborations with new entrants tend to decrease 
their market shares. Note that the number of collaborations is independent of the number 
of contacts. On the other hand, the statistically significant prestige index (models 2 and 3) 
indicates that exclusive collaborations with prestigious actors indeed influence innovative 
output. As a consequence, future analyses might include a variable controlling for the 
type of collaborations an organization is involved in. Organizations involved in a few 
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joint research projects with incumbents should be more productive than organizations 
involved in many collaborations with one or more new entrants. 

Furthermore, we find support for H5 relating the number of researchers to innovative 
output and market share. H6 relating time to innovative output does not receive support 
(model 3). Though, in model 6, the coefficient is statistically significant, its sign indicates 
that the time an organization is involved in the technological community is negatively 
related to its market share. This can be explained as previously. As the community grows 
over time [in 1986-87, the field experienced an explosive growth in terms of new entrants], 
it becomes increasingly difficult for incumbents to maintain their market shares even if 
their innovative output grows. 

Conclusion 
The empirical data described and analyzed in this article provide a longitudinal 

insight into the dynamic effects of networking on innovative output and market shares 
within a technological community. The pooled time series analysis, applied to the 
transgene plant community, demonstrates how collaborative R&D influences an organiza- 
tion's innovative output and even its share on a rapidly growing publication market. As 
alluded to, R&D networks are too complex a social structure to be understood solely in 
terms of the number of collaborations an organization is involved in. Therefore, future 
analytical models should include an indicator of the relative weight these collaborations 
have in the domain. Moreover, collaboration should be viewed as a complement to in- 
house research, not as a substitute for it. 

The results reveal that there is an obvious need to embed organizational research 
activities in the larger technological community. It is the relative position an organization 
possesses in the field that influences its innovative output, not merely the number of 
collaborations it is involved in. Moreover, community-level variables affect the innovative 
output of the incumbents through technical breakthroughs, bandwagon effects, legitima- 
tion, competition, entry and exit patterns, and resource distribution. 

To conclude, participation in R&D networks has been shown to improve an organiza- 
tion's innovative output. However, performing high-quality in-house R&D provides the 
best starting point for any kind of cooperation. As a consequence, the major contribution 
of community-level research is believed to be its ability to examine empirically in what 
manner and to what extent community-level phenomena such as R&D networks, re- 
searcher concentrations, etc., either constrain or facilitate the innovative performance 
of research organizations. Obviously, the present analyses and their results point to the 
many interesting research questions that lie ahead of us. 
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