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a b s t r a c t

In recent years the European airline industry has undergone critical restructuring. It has evolved from a
highly regulated market predominantly operated by national airlines to a dynamic, liberalized industry
where airline firms compete freely on prices, routes, and frequencies. Although several studies have
analyzed performance issues for European airlines using a variety of efficiency measurement methods,
virtually none of them has considered two-stage alternatives – not only in this particular European
context but in the airline industry in general. We extend the aims of previous contributions by
considering a network Data Envelopment Analysis (network DEA) approach which comprises two sub-
technologies that can share part of the inputs. Results show that, in general, most of the inefficiencies are
generated in the first stage of the analysis. However, when considering different types of carriers several
differences emerge – most of the low-cost carriers’ inefficiencies are confined to the first stage. Results
also show a dynamic component, since performance differed across types of airlines during the decade
2000–2010.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Interest in measuring the relative performance of airline
companies has developed considerably since the open sky dereg-
ulation experience of the US airlines in the late 1970s, which
motivated most of the research to focus upon the consequences of
this experience in the US. Some studies compared the efficiency
differences between the deregulated US airlines and the highly
regulated European airlines, which have often been criticized on
the grounds that they are inherently less efficient than US carriers
[27]. During the last two decades however, the European airline
industry has undergone critical restructuring and has evolved
from a highly regulated market predominantly operated by
national airlines to a dynamic, liberalized industry where airline
firms compete freely on prices, routes, and frequencies. Liberal-
ization reforms in the European airline industry created a new
market environment which deserves a closer look to find out more
about the recent performance record of the airlines.

In this study, we focus on efficiency and productivity issues in
the European airline industry post-liberalization over the period
between 2000 and 2010. During our study period, a number of
factors led to episodes of turbulence in international air transport,
such as the 9/11 attacks in 2001 and the global financial crisis
which began in 2008. We examine the impact of those major
events on the performance of European airlines.

The industry provides an interesting case study since full-
service carriers coexist alongside the low-cost carriers that
entered the liberalized market after the introduction of the
reforms. Compared to US deregulation, liberalization in European
airline industry was slow and gradual. Starting in 1987, successive
reform packages were introduced to remove economic barriers,
with the ultimate aim of establishing a fully liberalized Single
Aviation Market. Drastic measures in pricing and market access,
however, came with the third liberalization package in 1993, and
full deregulation only came into force during 1997. The reforms
created a competitive environment which is expected to foster
growth in productivity and efficiency. European airlines in the new
environment are expected to improve their efficiencies in order to
remain competitive. Our paper examines this aspect to find out if
there has been any efficiency and productivity change over time.

Few studies in the literature have been devoted solely to
analyzing the efficiency and productivity of European airlines.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/omega

Omega

http://dx.doi.org/10.1016/j.omega.2015.06.004
0305-0483/& 2015 Elsevier Ltd. All rights reserved.

n Correspondence to: Hull University Business School, University of Hull, Hull,
HU6 7RX, United Kingdom. Tel.: þ44 1482463244

E-mail addresses: m.duygun@hull.ac.uk (M. Duygun),
tortosa@uji.es (E. Tortosa-Ausina).

Omega 60 (2016) 2–14

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2015.06.004
http://dx.doi.org/10.1016/j.omega.2015.06.004
http://dx.doi.org/10.1016/j.omega.2015.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2015.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2015.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2015.06.004&domain=pdf
mailto:tortosa@uji.es
http://dx.doi.org/10.1016/j.omega.2015.06.004


Our paper seeks to fill this gap by concentrating on the recent
evolution of the performance of airline firms in Europe and
specifically analyzing the impact of recent major events on the
industry. The great majority of studies do not capture this as they
mostly use data from the 1980s or 1990s.

More specifically, we attempt to contribute to this literature in
two additional ways. First, we use a unique data set which
facilitates capturing recent developments in the industry with
more precision. We follow [27], as well as [49] and [50], to
construct our dataset to include all the relevant input and output
variables. We use a number of sources, such as the International
Civil Aviation Organization (ICAO), Avmark and Platts to construct
our comprehensive dataset.

Second, although there are now a remarkable number of
studies measuring different aspects of airline efficiency and
productivity, there is still scope for more detailed modeling. As
we will see in the literature review section, the previous literature
dates back as far as the 1970s, when [12] assessed US airline
productivity. More recent empirical contributions have dealt
explicitly with airline efficiency issues, generally considering fron-
tier methods. Although some studies have used the parametric
Stochastic Frontier Analysis (SFA), they are outnumbered by Data
Envelopment Analysis (DEA) applications.

DEA efficiency studies in the airline industry have generally
treated their reference technologies as “black boxes”, where inputs
are transformed into outputs, and the transformation process is
generally not modeled explicitly. However, as [24] note, in some
cases researchers might be interested in adding more structure to the
model to better suit the application. Modeling these “black boxes” is
the objective of network DEA models. To produce outputs (y), inputs
(x) are transformed using the production process (P)—i.e., network
DEA models aim at disentangling the “black box” or production
process (P), which may be quite intricate. Network DEA is also more
general than two-stage network structures and, therefore, is more
popular due to its ability to accommodate more complex structures.
As a consequence, several varieties have been proposed in the
literature (see,for instance [23,25]).

In the particular case of the airline industry, very few studies
have considered two-stage DEA models; of these several have
considered the case of airport – not airline – efficiency and
therefore cannot be strictly regarded as related literature (see,
for instance [1,56]). One of the few studies which have explicitly
modeled airline performance using a network process is [58], who
considers fuel, salaries, and other factors in the first stage
resources to maintain the fleet size and load factor. The other is
[37], who propose a two-dimensional efficiency decomposition
(2DED) of profitability for a production system to account for the
demand effect observed in productivity analysis. Although these
applications deal with related issues, they differ in both the
settings and specific models considered. Regarding the time span,
Zhu's study covers the years 2007 and 2008 and Lee and Johnson's
2006 to 2008. In contrast, we focus on a longer and more recent
period (2000–2010). The selected sample also differs, since while
we analyze the European airline industry, [37] look at US airlines,
and [58], a mix of the two.

However, and most importantly, [58] uses the centralized
model of [39], whereas [37] consider network DEA as a part of
their study, but not a central part. Specifically, their study
considers two parts, and network DEA is only used in the first
one to identify four components of efficiency (capacity design,
demand generation, operations, and demand consumption),
whereas the second dimension decomposes the efficiency mea-
sures, integrating them into a profitability efficiency framework. In
addition, the application to the airline industry is basically an
illustration of their model, whereas in our case it is a central part
and the model is particularly tuned to illustrate these issues.

Specifically, we define a network DEA comprising two sub-
technologies that can share a portion of the inputs. This proposal
opens up an avenue that could be completed in the near future by
the study of the advantages of re-allocation of specific inputs,
perhaps in the line of [19] and [20]. Our work is related to the
proposals by [34] and [15]. Although similar, our proposal presents
significant variations, however: variable returns to scale as an
acceptable technological assumption, shared inputs between the
sub-technologies, inclusion of intangible inputs related to custo-
mer loyalty and satisfaction, and orientation towards the increase
of the final output, and not focusing on averaging the specific
efficiency of sub-technologies to define the overall efficiency.
Indeed, the additive efficiency decomposition could be of interest
in another sector and context, but this is definitely not applicable
to the transportation service, as the sole generation of transporta-
tion services, without considering the level of use by customers,
could never be regarded as a desirable situation.

The paper is organized as follows. After this introduction, the
modeling framework and estimation methods are detailed in
Section 3. Section 4 gives a brief overview of the data and variables
used in the analysis while Section 5 discusses our empirical
findings. Section 6 concludes. We also include an appendix in
which the construction of the data set, for which we followed [49]
and [50], is presented in detail.

2. Literature review

There is now a remarkable number of studies devoted to
measuring different aspects related to the efficiency and produc-
tivity of airlines. Some early (TFP) applications assessed US airline
productivity during the 1970s [12]. Others examined TFP for
international airlines, comparing US airlines under deregulation
with non-US airlines (see [26,13,55]). These early findings, in
general, showed an increase in the productive efficiency of US
airlines after deregulation, and that US airlines performed better
than non-US carriers.

We identify another two broad strands of empirical literature
which use frontier methodologies; nonparametric and parametric
methods in airline efficiency studies. Among the former, Data
Envelopment Analysis, (DEA) [14] has traditionally been the most
popular choice, whereas among the latter Stochastic Frontier
Analysis (SFA) [2,41] predominates.

While DEA has the great advantage of being able to handle
multiple inputs and outputs more easily, it is criticized for its
inability to accommodate either measurement errors or other
noise in the data. In contrast, SFA is a parametric methodology
that is not subject to these limitations. Unfortunately, SFA also has
its drawbacks, the most stringent limitation being that it is subject
to the parametric “straitjacket”—since both a functional form for
the production function, and the distribution of the efficiencies
has to be chosen.

The literature, however, has made progress both in the para-
metric and nonparametric fields—especially the latter (see for
instance [52]). Several comparisons of both strands have appeared
in the literature (parametric vs. nonparametric methods), among
which we can highlight the recent study by [6]. These authors
compare the kernel SFA estimator of [22] with the nonparametric
bias-corrected DEA estimator of [35], finding conditions under
which both estimators would yield similar results. A more recent
comparison of DEA and SFA is provided in the bibliometric analysis
of [36].

In the particular case of the airline industry, several published
studies considered both parametric and nonparametric methods.
Some studies based on SFA (or other parametric methods) have
focused on the case of US airlines [3], others have compared the
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performance of US and European airlines [27,29,40], while others
[9,31] have compared performance among international airlines; a
further group [18] deal with the impact of ownership on
productivity.1

However, airline studies using DEA outnumber those based on
SFA, and relevant contributions include [45,17,43,16,46], and
[8,10,11,42], to name just a few. Among their main findings, some
of the DEA studies confirm that during the 1980s European
carriers were technically less efficient than other carriers [45,17].

As indicated in Introduction, however, some particular variants
of DEA are especially suited to dealing with some problems in the
airline industry. This is the case of network DEA [24], whose
advantages in this particular field have been highlighted above,
and which has no parametric alternative—i.e., the parametric
counterpart, “network SFA”, does not exist. In addition, it is a
promising field of research, as shown by the relatively high
number of recent contributions such as, for instance,
[5,21,30,54], among which we may also find survey papers [33].
However, despite this expansion, the number of studies focusing
on the efficiency of airlines that consider network DEA models are
few and relatively recent, and would include [58] and [37].

3. Methodology

Estimations of efficiency are usually based on the relationship
that can be established between the inputs consumed and the
outputs obtained. The estimation method can be very sophisticated,
but in most of the cases the technology assumed is extremely
simple, as no information is provided about the types of internal
processes. These models, in the words of [24], treat the production
process as a “black box”, provided that no information about the
internal flow of operations is needed to estimate the efficiency
coefficients. An example of this production process, adapted to the
airline industry, is presented in Fig. 1, where it can been seen that in
the airline industry the efficiency assessment requires us to know
the xs inputs consumed (i.e., labor, material consumption and
capital as fixed inputs) and the yf output (Revenue Tonne Kilo-
meters, RTK, which is a standard metric used to quantify the
amount of revenue generating payload carried, taking into account
the distance flown; RTKs comprise the passengers, freight and mail
carried multiplied by the distance flown). In the airline industry,
this description is too superficial and does not help to disentangle
what the real sources of firms’ inefficiencies are.

The advantage of the simplicity in this approach is that it can
perform the analysis without the need for sophisticated methods.
This is the case of the situation presented in Fig. 1, which can be
assessed by using the conventional DEA methods. So, under the
assumption of variable returns to scale, the situation described in
Fig. 1 can be assessed through the output-oriented BCC fractional
program [7]:

min:
PS

s ¼ 1 vsx
o
s;t�ωoPF

f ¼ 1 uf yof ;t
s:t:PS

s ¼ 1 vsxsk;t�ωoPF
f ¼ 1 uf yfk;t

Z1; k¼ 1;…;K;

uf Zϵ; vsZϵ: ð1Þ

where uf are the output weights, vs the inputs weights, ω the
coefficient indicating the prevailing type of returns to scale and ϵ is
a small non-Archimedean number. As is well known, the objective
function includes the observed outputs and inputs corresponding to

the DMU under analysis (which is described with the superscript
“o”) and the K restrictions refer to each of the DMUs in the sample.

This general model is clearly too limited, which increases the
difficulties of understanding the real causes that are generating
inefficiency. One good alternative consists of defining the produc-
tion process and the existent technology in a more detailed way
(as presented in Fig. 2). In the airline industry, and more generally
in the transportation sector, it is useful to separate the production
process into two basic stages or sub-technologies. In the first one,
firms consume inputs in order to provide a service to their
potential customers (say, to offer services in the form of seats-
kilometers), but the decision to use the service depends on the
organization of the routes, their design and/or the level of
customer satisfaction with the level of quality offered in previous
travel experiences. Therefore, a separation between the first stage
(the production of potential output) from the second (the con-
sumption of the real output) can be established. Zhu's [57] paper is
a precedent for this approach. In his paper, when assessing the
efficiency of a sample of quoted firms, [57] refers to two stages,
profitability as stage 1 and marketability as stage 2, where the
outputs of stage 1 are the inputs of stage 2.

Consistent with this approach, the two sub-technologies can be
assessed separately, which creates specific fractional programs for
each sub-technology:

Assessment of sub-technology 1

min:
PS

s ¼ 1 vsx
o
s;t�ω1PI

i ¼ 1 wiyoi;t
s:t:PS

s ¼ 1 vsxsk;t�ω1PI
i ¼ 1 wiyik;t

Z1; k¼ 1;…;K ;

wiZϵ; vsZϵ: ð2Þ
where yik;t stands for the i intermediate outputs for the DMU k in
time t and wi are the corresponding intermediate output weights.

Assessment of sub-technology 2

min:

PI
i ¼ 1 wiyoi;t�ω2PF

f ¼ 1 uf yof ;t
s:t:PI

i ¼ 1 wiyik;t�ω2PF
f ¼ 1 uiyfk;t

Z1; k¼ 1;…;K;

uf Zϵ; wiZϵ: ð3Þ

The problemwith the separate assessment of each sub-technology
is that nothing guarantees that the optimization of the first stage
would imply the most suitable solution being achieved for the second

Fig. 1. A black box model for the airline industry.

Fig. 2. A chained model for the airline industry.

1 From a theoretical point of view, see also [28].
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stage. In other words, it may well be that the increase in the amount of
kilometers in the first stage would not be the best option to increase
the number of passengers when, for instance, the issue to be solved in
order to improve overall efficiency is the poor level of service quality. If
this is the case, a suboptimal allocation of inputs in the first stage can
make it difficult to increase the number of satisfied passengers.
Summing up, the chained model can provide a suboptimal solution
because the inputs consumption can be far from the level desired to
achieve the best overall solution.

The use of network DEA can help to overcome these limitations.
In this regard, as [34] pointed out, network DEA can be defined by
taking the original overall efficiency and introducing the ratios
corresponding to the two sub-technologies as additional constraints.

This is precisely what we propose in Fig. 3 (the network model
for the airline industry) which includes differences from the
existing proposals. Our basic assumption of the network model
is that the assessment is done inside the “black box”, implying that
we consider a more detailed description of the process by defining
two sub-technologies that share the existent inputs. From the
outputs perspective, the network models assume the existence of
both intermediate and final outputs. The intermediate outputs are
produced in the first stage, which figure as additional inputs in the
second stage. From the inputs perspective, our proposal considers
the existence of shared inputs between the two sub-technologies,
accepting that the target to be achieved is the optimization of the
final output. Finally, we also assume that, apart from the tangible
inputs, there are other intangible inputs related to customer (or to
the brand value due to satisfaction with services provided in the
past) that can have a decisive influence on the design of the
service (first stage), and/or on the customer's decision to use the
travel services provided by a specific firm (second stage). The
advantage of the network models is that the decision variable to
be optimized is the final output (in Fig. 3 the RTKs), so the first
stage provides an intermediate output that should be consistent
with the target of optimizing the efficiency of the second stage.

Similarly to [34], our proposed network DEA model consists of
introducing the restrictions of the two sub-technologies into the
original overall efficiency model, so that the fractional network
DEA is defined follows:

Network DEA model considering the two sub-technologies

min:

PS
s ¼ 1 vsx

o
s;tþ

PF
f ¼ 1 vf y

o
f ;t�1�ω1�ω2PF

f ¼ 1 uf yof ;t

s:t:

PS
s ¼ 1 vsxsk;tþ

PF
f ¼ 1 vf yfk;t�1�ω1�ω2PF

f ¼ 1 uf yfk;t
; Z1 k¼ 1;…;K ;

PS
s ¼ 1 vsxsk;tþ

PF
f ¼ 1 vf yfk;t�1�ω1PI

i ¼ 1 wiyik;t
Z1; k¼ 1;…;K ;

PS
s ¼ 1 vsxsk;tþ

PF
f ¼ 1 vf yfk;t�1þ

PI
i ¼ 1 wiyik;t�ω2PF

f ¼ 1 uf yfk;t
Z1; k¼ 1;…;K ;

uf Zϵ; wiZϵ; vsZϵ: ð4Þ
The optimization of this fractional problem requires that, in the

optimal solution, the output and the input weights have to be
feasible for the overall program as well as for the two sub-
technologies. Additionally, it is worth pointing out that the
optimal weight of the intermediate output (wn

i ) should be exactly
the same for the two sub-technologies (in the first as an output
and in the second as an input).

From the previous fractional network DEA problem, it is easy to
follow [14] to define the multiplier version of the linear program:

min:
XS

s ¼ 1
vsxos;tþ

XF

f ¼ 1
vf y

o
f ;t�1�ω1�ω2

s:t:XF

f ¼ 1
uf y

o
f ;t ¼ 1;

�
XF

f ¼ 1
uf yfk;tþ

XS

s ¼ 1
vsxsk;tþ

XF

f ¼ 1
vf yfk;t�1�ω1ω2Z0; k¼ 1;…;K;

�
XI

i ¼ 1
wiyik;tþ

XS

s ¼ 1
vsxsk;tþ

XF

f ¼ 1
vf yfk;t�1�ω1Z0; k¼ 1;…;K;

�
XF

f ¼ 1
uf yfk;tþ

XS

s ¼ 1
vsxsk;tþ

XF

f ¼ 1
vf yfk;t�1

þ
XI

i ¼ 1
wiyik;t�ω2Z0; k¼ 1;…;K;

uf Zϵ; wiZϵ; vsZϵ: ð5Þ
From the primal program (the multiplier version) the dual

version (the envelopment version) expresses the output-oriented
network DEA model with variable returns to scale:

max:βt ;

s:t:XK

k ¼ 1
λkxsk;trxos;t ; s¼ 1;…; S;XK

k ¼ 1
λkyfk;t�1ryof ;t�1; f ¼ 1;…; F;XK

k ¼ 1
λkyik;tZyoi;tαt ; i¼ 1;…; I;XK

k ¼ 1
λk ¼ 1;XK

k ¼ 1
μkxsk;trxos;t ; s¼ 1;…; S;

Fig. 3. A network model for the airline industry.
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XK

k ¼ 1
μkyfk;t�1ryof ;t�1; f ¼ 1;…; F;XK

k ¼ 1
μkyik;tryoi;tαt ; i¼ 1;…; I;XK

k ¼ 1
μkyfk;tZyof ;tβt ; f ¼ 1;…; F;XK

k ¼ 1
μk ¼ 1;

λkZ0;μkZ0: ð6Þ
where βt is the output-oriented network efficiency coefficient for
the unit under analysis in period t. For the purposes of this study βt

represents the firm's performance level related to the final output
RTK ðtÞ. The term βt ¼ 1 indicates that the DMU (Decision Making
Unit, in our case the airline company) under analysis is efficient,
and βt41 indicates that the DMU is inefficient—the greater the βt,
the more inefficient the DMU is in generating revenues (to reduce
the scope of values, in the empirical section the results are
presented in terms of the inverse of the efficiency coefficient).
yi;t is the intermediate output vector of the DMU under analysis in
period t (we have one intermediate output: the service offered,
and αt is the required change associated with the intermediate
output consistent with the maximization of the final output, not a
desirable objective in itself), xos;t is the observed level of shared
inputs (material consumption, labor and capital) vector of the
DMU under analysis in period t that are required in both the first
and the second stages and yof ;t�1 represents the market intangible
assets generated up to the previous year t�1. These intangible
assets can be related to the brand value and to the customer
satisfaction that increases the level of customer loyalty, and are
represented by the variable RTK ðt�1Þ. Finally, yfk;t , yik;t , xsk;t , yfk;t�1,
refer to final and intermediate outputs, shared inputs and market
intangible inputs vectors for the k (k¼ 1;…;K) DMUs forming the
total sample, and λ and μ indicate the activity vector.

As previously mentioned, in contrast to “standard” DEA pro-
posals, this program has different steps, which are solved simul-
taneously. Step 1 coincides with the restrictions formed with the λ
vector, and step 2 includes the remaining restrictions, built with
the μ vector as the activity vector.

Previous studies in the field of network DEA include
[23,24,47,38,44,53], and [4]. In the particular case of slacks-based
measures, [32] has recently proposed a model in the context of
network DEA, showing that the network model has stronger
properties than its conventional “black box” counterpart. Our
proposal extends the existing proposals in the sense that
(i) shared inputs are taken into account not only for the optimiza-
tion of the intermediate output but also for the final output; and
(ii) the optimization of steps 1 and 2 is produced simultaneously to
maximize the final output, as the isolated optimization of step 1
(the chained model of Fig. 2) does not guarantee the achievement
of the maximum output in step 2.

Our proposal is also related to the recent works by [34] and
[15]. With regard to the work of [34], the theoretical development
is similar, although our technology assumes the presence of

variable returns to scale, while constant returns to scale is the
only assumption made by these authors. Other differences consist
of the presence of shared inputs in the two sub-technologies and
the consideration of temporal intangible inputs, which makes our
proposal closer to the industry under scrutiny. The work by [15]
differs from ours in the notion of efficiency under assessment.
Thus, while our proposal emphasizes the efficiency in terms of the
final output, [15] define an additive efficiency decomposition of
the overall efficiency in the two sub-technologies.

4. Data and variables

Our sample is comprised of 87 airlines from 23 European
countries during the period 2000–2010. The data is obtained from
various sources: (i) the International Civil Aviation Organization
(ICAO) (airline financial, personnel, traffic and fleet data); (ii) Platts
(fuel prices); (iii) AVMARK (historic market value per aircraft
model); (iv) Economic and Social Data Services (ESDS) and
(v) International Financial Statistics (IFS) (gross fixed capital
formation at both current and constant prices); (vi) Bloomberg
(the interest rate on Baa bonds for USA carriers); (vii) Penn World
Tables (PPPI).

The first of our inputs is flight capital (K), which we measure
using the number of aircrafts per airline. This information is
provided by ICAO fleet data, which reports the number of aircrafts
owned by each airline at the beginning of the year, the aircrafts
bought/sold (retired) during the year, and the number of aircrafts
owned at the end of the year. The variable is calculated as the sum
of the number of aircrafts at the beginning and the end of the year
divided by two. The second input is the labor Index (L); this is a
multilateral Törnqvist–Theil index constructed using the number
of pilots, cabin crew, mechanics, aircraft handlers, and other labor
by considering the mid-year count of full-time equivalent person-
nel in each category weighted by the annual expenses relevant to
each category. The third input is the material quantity index (MI), a
multilateral Törnqvist–Theil index, composed of the quantity of
non-flight equipment, quantity of other materials, quantity of fuel,
and quantity of landing services. We constructed our input and
output quantities following the approach recommended by [49]
and [50]. Full details on the construction of the input quantities
have been deferred to Appendix.

The output variable is the quantity of revenue output (RTK,
revenue ton kilometers). RTK is a standard metric used in the
airline industry and the literature to quantify the amount of
revenue generating payload carried, taking into account the
distance flown; RTK is comprised of the passengers, freight and
mail carried multiplied by the distance flown.

The description of the input and output variables is reported in
Table 1. Summary statistics for all variables are reported in Table 2
and, as can be observed, differences in size are substantial (the
biggest firm has 429 aircrafts while the smallest just 1). These

Table 1
Description of the inputs, output and control variables

Variable Variable name Definition Source/measurment

K Capital (flight
capital)

# of aircrafts Fleet data (ICAO), AVMARK

Inputs L Labour Quantity of pilots, cabin crew, mechanics, passenger and aircraft
handlers, and other labour (Divisia index)

Personnel data (ICAO)

MI Materials Quantity of supplies, outside services, and non-flight equipment (Divisia
index)

Traffic and financial data (ICAO,
Bloomberg, ESDS, IFS, Platts)

Intermediate
output

RTK=ðLOAD FACTORÞ Services
offered

RTK=LOADFACTOR ICAO, AVMARK

Final output RTK Revenue
output

Revenue ton kilometres ICAO
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considerable differences have been taken into account and, as a
result, program Eq. (6) has been defined assuming variable returns
to scale for the two sub-technologies. The list of airline companies
in the sample is reported in Table 3.

5. Results

The results of applying model Eq. (6) to our data are presented
in Tables 4–6. In each of these tables we report summary statistics
for the different stages of the production process, including
intermediate (α) as well as final (β) efficiencies. We also split
the results for pre-crisis (2000–2007) and crisis years (2008–
2010), as well as all years (2000–2010). In addition, we explore
some of the likely sources of heterogeneity, providing results for
low-cost and full-service airlines (Table 5) as well as airlines from
European Union (EU) countries, considering the EUmembership as
of 1995 (i.e., what is usually referred to as EU15) plus Switzerland
and Iceland (Table 6).

5.1. General efficiency trends

Table 4 shows that, in general, much of the inefficiency is
generated in the first stage of the analysis. Compared with the
final efficiencies (β), the values corresponding to the summary
statistics of the intermediate efficiency scores (α) show values
which are relatively similar, implying that they would explain
much of the final efficiency. Therefore, efforts to reduce ineffi-
ciencies should be concentrated mainly in the first stage of the
production process, and some reallocations of inputs and outputs
could be considered. Taking into account the entire period (2000–
2010), the average efficiency is particularly low (60.81%), indicat-
ing that inefficiencies could be reduced by almost 40%—on
average. The value corresponding to the median is slightly higher
(64.29%), which could imply that the results are partly driven by
relatively low performing airlines. This would occur because the
existence of airlines whose efficiencies are low would push the
average downwards, but would affect the median less seriously—
unless there were many low-performing airlines. The results
corresponding to the intermediate efficiencies (α) for the entire
2000–2010 period suggest that, considering both the mean and
the median, a non-negligible amount of inefficiencies is generated
in the second stage of the analysis. The median intermediate
efficiency score (72.26%), compared with the final efficiency
(64.29%) indicates that, although median efficiency in the second
stage is relatively high, some reallocations between the different
stages (if possible) might increase the efficiency of the production
process.

We also report results for both periods, considering pre-crisis
(2000–2007) and crisis years (2008–2010). Although, on average,
results are relatively close (the final efficiency is 61.29% in the pre-
crisis years and 59.39% in the crisis years), there are larger
discrepancies when focusing on other summary statistics such as
the median, whose values for the final efficiency are 66.58% and
59.69% for 2000–2007 and 2008–2010, respectively. However, in
the case of the efficiencies corresponding to the first stage of the

“black box”, the median values for both periods are quite similar
(72.31% for the pre-crisis and 72.22% for the crisis years), which
indicates that some of the most inefficient airlines’ performance is
also particularly poor in the second stage. Again, the discrepancies
between the median and the mean might be driven by particularly
low-performance airlines, whose low efficiencies push the mean
downwards.

Although the analysis of the median enables a better under-
standing of the underlying tendencies, these are only two sum-
mary statistics that conceal a great deal of information. The
structure of the data can be unveiled with more precision by
focusing on the densities corresponding to the efficiency scores,
both intermediate and final, which are provided in Figs. 4 and 5.
The densities have been estimated nonparametrically using kernel
smoothing methods and, in the case of the final efficiencies, we
considered the reflection method [51] in order to “reflect” the
probability mass beyond 1 (since βA ð0;1� there should be no
probability mass beyond 1). Both figures, especially 4, reveal some
tendencies concealed by summary statistics—not only the mean
and the median but also the standard deviation. In particular, there
is a remarkable amount of multi-modality, with two prominent
modes at both tails of the distribution of βs, especially at the
beginning of the period (Fig. 4a). Although the emergence of one
of these modes was to be expected, since it corresponds to the
efficient airlines, with a value of 1, the prominent mode in the
vicinity of 0.15 in Fig. 4a reveals a strikingly high number of quite
inefficient airlines. Although these pockets of poor performance
have been smoothed away over time, disparities still exist by the
end of the 2000s (Fig. 4c).

In the case of the intermediate efficiencies, whose densities are
shown in Fig. 5, the multi-modality is still present, although the
fact that some values for α are actually higher than 1 results in a
slight fraction of probability mass lying above 1. However, the
disparate performances persist, implying that the second stage
does actually exacerbate some of the inefficiencies found in the
first stage of the analysis.

5.2. Exploring efficiency differentials

We provide some insights on the likely sources of inefficiency
by splitting results for low-cost vs. full-service airlines, and EU15
(plus Iceland and Switzerland) vs. non-EU15 airlines. Results are
reported in Table 5 and Fig. 6, for low-cost vs. full-service airlines,
and in Table 6 and Fig. 7 for EU15 vs. non-EU15 airlines.

5.2.1. Low-cost vs. full-service airlines' efficiencies
In the first of the comparisons (low-cost vs. full-service airline

efficiencies), which also merits a study in its own right, in general
the differences are notable. However, the analysis by sub-periods
is pertinent in this particular case, since the discrepancies
increased during the crisis years. As indicated in Table 5, when
either the median or the average is considered, the low-cost
airlines outperform their full-service counterparts during the
pre-crisis years. During the crisis years these differences have

Table 2
Summary statistics on inputs and outputs.

Variable Mean Std.dev. Min. 1st quartile Median 3rd quartile Max.

K 44.34 72.17 1.0 7.0 19.0 44.0 429.5
Inputs L 1688.61 3981.84 4.29 76.32 302.46 1064.31 28,367.04

MI 352,542.57 684,635.59 121.80 19,971.97 70,597.67 313,405.04 3,584,498.04
Intermediate output RTK=ðLOAD FACTORÞ 2,606,015.16 5,693,738.08 329.18 90,920.42 422,010.61 1,711,816.35 29,601,644.44
Final output RTK 1,754,432.86 3,900,195.21 132.00 50,762.00 235,202.00 1,227,710.00 21,313,184
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Table 3
List of airlines in the sample (incomplete panel).

ID Country Company

1 ARMANIA ARMAVIA
2 AUSTRIA AUSTRIAN AIRLINES
3 CROATIA CROATIA AIRLINES
4 CZECH REPUBLC CZECH AIRLINES
5 CZECH REPUBLC TRAVEL SERVIS
6 ESTONIA AVIES
7 ESTONIA ELK-AIRWAYS
8 ESTONIA ESTONIAN AIR
9 FINLAND FINNAIR

10 FRANCE AIR FRANCE
11 FRANCE CORSE-MEDITERRANEE
12 FRANCE REGIONAL
13 GEORGIA GEORGIAN AIRWAYS
14 GERMANY DEUTSCHE LUFTHANSA
15 GREECE OLYMPIC AIRWAYS
16 ICELAND ICELANDAIR
17 IRELAND RYANAIR
18 ITALY LAUDA AIR ITALY
19 ITALY NEOS SPA
20 LATVIA AIR BALTIC
21 LITHUANIA AIR LIETUVA
22 LITHUANIA TRANSAVIABALTIKA
23 NETHERLANDS KLM ROYAL DUTCH
24 POLAND LOT (POLSKIE LINIE LOTNICZE )
25 PORTUGAL EUROATLANTIC AIRWAYS
26 PORTUGAL PORTUGALIA
27 PORTUGAL SATA AIR ACORES
28 PORTUGAL SATA INTERNACIONAL
29 PORTUGAL TAP AIR PORTUGAL
30 PORTUGAL WHITE AIRWAYS
31 ROMANIA BLUE AIR-TRANSPORT AERIAN
32 ROMANIA CARPATAIR
33 ROMANIA MIA AIRLINES
34 ROMANIA ROMAVIA
35 ROMANIA TAROM (ROMANIAN AIR TRANSPORT)
36 SPAIN AIR EUROPA
37 SPAIN AIR NOSTRUM (IBERIA REGIONAL)
38 SPAIN BINTER CANARIAS
39 SPAIN IBERIA
40 SPAIN IBERWORLD AIRLINES
41 SPAIN SPANAIR
42 SWITZERLAND SWISS (SWISS INTERNATIONAL AIR LINES)
43 SWITZERLAND DARWIN AIRLINE
44 SWITZERLAND EDELWEISS AIR
45 SWITZERLAND FARNAIR SWITZERLAND
46 SWITZERLAND FLYBABOO
47 SWITZERLAND HELLO
48 SWITZERLAND HELVETIC AIRWAYS
49 SWITZERLAND TAG AVIATION
50 SWITZERLAND BELAIR AIRLINES
51 UKRAINE AEROSVIT AIRLINES
52 UKRAINE DNIEPROAVIA
53 UKRAINE DONBASSAERO
54 UKRAINE MOTOR SICH
55 UKRAINE ODESSA AIRLINES
56 UKRAINE WIND ROSE AVIATION COMPANY
57 UKRAINE UKRAINE INTERNATIONAL AIRLINES
58 UNITED KINGDOM FIRST CHOICE AIRWAYS
59 UNITED KINGDOM AIR CORDIAL
60 UNITED KINGDOM MYTRAVEL AIRWAYS
61 UNITED KINGDOM ASTRAEUS
62 UNITED KINGDOM BA CITYFLYER EXPRESS
63 UNITED KINGDOM THOMSONFLY LTD
64 UNITED KINGDOM BRITISH AIRWAYS
65 UNITED KINGDOM BRITISH MEDITERRANEAN AIRWAYS
66 UNITED KINGDOM BRITISH MIDLAND AIRWAYS
67 UNITED KINGDOM BRITISH REGIONAL AIRLINES
68 UNITED KINGDOM JET2.COM
69 UNITED KINGDOM CITYFLYER EXPRESS
70 UNITED KINGDOM FLYGLOBESPAN.COM
71 UNITED KINGDOM EASYJET AIRLINES
72 UNITED KINGDOM EUROPEAN AVIATION AIR CHARTER
73 UNITED KINGDOM FLIGHTLINE
74 UNITED KINGDOM FLYBE.BRITISH EUROPEAN
75 UNITED KINGDOM THOMAS COOK AIRLINES (UK) LTD

M. Duygun et al. / Omega 60 (2016) 2–148



widened substantially—the median final efficiency for the low-cost
airlines is 83.70%, whereas for full-service carriers it is 56.66%.

In addition, for the low-cost airlines, the second stage of the
evaluation process is very efficient and, considering the entire
period (2000–2010), the values corresponding to the median for
the two stages of the evaluation are almost the same (75.28% and
74.89% for the intermediate and final efficiencies, respectively).
This is also apparent in Fig. 6, where the solid lines in both sub-
figures (Fig. 6a and b), corresponding to the low-cost airlines are
similar (except for the probability mass beyond 1). These facts
indicate that the low-cost firms have adapted much more quickly
to the economic downturn, and that most of the inefficiencies
correspond to the full-service carriers, as shown by the notable
bump of the dotted line in the vicinity of 0.2 (Fig. 6b).

5.2.2. European union vs. non European union membership
We also report results according to European Union member-

ship (Table 6 and Fig. 7), although EU membership is defined
previous to 2004, and also includes Iceland and Switzerland. We
therefore define as European Union countries those members up

to 1995 (i.e., EU15) plus Iceland and Switzerland (we will refer to
this group as EU15þ IS), whereas the rest of the countries are
classified as non-EU. We consider this classification in order to
analyze how the airlines from countries that had just joined the
EU, and which faced different competitive conditions and tech-
nologies, perform in terms of efficiency compared to their EU
counterparts. If their efficiency levels differed substantially this
might thwart the future viability of airlines in non-EU15 countries.

Summary statistics considering this classification are reported
in Table 6. They reveal that discrepancies do exist between the two
groups, and are notable. Considering the entire period (2000–
2010), the average final efficiency corresponding to EU15þ IS
airlines almost doubles that for non-EU airlines (68.27% vs.
36.63%); in the case of the median, it is actually more than double
(77.67% vs. 30.83%), suggesting that most of the airlines in non-
EU15 country group are quite inefficient. In this sense, the higher
value of the mean compared with that for the median might be
due to some airlines in these countries catching up faster with
their peers in EU countries.

This catching-up effect for non-EU15 airlines actually exists,
since results differ for the two sub-periods. Whereas in 2000–

Table 3 (continued )

ID Country Company

76 UNITED KINGDOM GB AIRWAYS
77 UNITED KINGDOM GO FLY LIMITED
78 UNITED KINGDOM MONARCH AIRLINES
79 UNITED KINGDOM TITAN AIRWAYS
80 UNITED KINGDOM VIRGIN ATLANTIC

Table 4
Efficiency scores in the network model, all airlines.

Pre-crisis years, 2000/07 Crisis years, 2008/10 All years, 2000/10

Intermediate efficiency (α) Final efficiency (β) Intermediate efficiency (α) Final efficiency (β) Intermediate efficiency (α) Final efficiency (β)

Mean 0.6769 0.6129 0.6659 0.5939 0.6741 0.6081
1st quartile 0.3676 0.2743 0.3811 0.3155 0.3706 0.2803
Median 0.7231 0.6658 0.7222 0.5969 0.7226 0.6429
3rd quartile 1.0000 1.0000 1.0000 0.9806 1.0000 1.0000
Std.dev. 0.3523 0.3437 0.3544 0.3388 0.3525 0.3422
# 365 365 123 123 488 488

Table 5
Efficiency scores in the network model, low-cost vs. full-service airlines

Pre-crisis years, 2000/07 Crisis years, 2008/10 All years, 2000/10

Intermediate efficiency
(α)

Final efficiency
(β)

Intermediate efficiency
(α)

Final efficiency
(β)

Intermediate efficiency
(α)

Final efficiency
(β)

Mean 0.6901 0.6570 0.7747 0.7494 0.7113 0.6801
1st
quartile

0.5226 0.4183 0.6362 0.5955 0.5399 0.4683

Low-cost airlines Median 0.7500 0.7375 0.7801 0.8370 0.7528 0.7489
3rd
quartile

0.8994 0.8999 0.9905 0.9903 0.9159 0.9397

Std.dev. 0.2755 0.3005 0.1998 0.2446 0.2600 0.2887
# 54 54 18 18 72 72

Mean 0.6746 0.6052 0.6473 0.5673 0.6677 0.5956
1st
quartile

0.3485 0.2666 0.3426 0.2684 0.3471 0.2670

Full-service
airlines

Median 0.7150 0.6512 0.6864 0.5666 0.7136 0.6298

3rd
quartile

1.0000 1.0000 1.0000 0.9597 1.0000 1.0000

Std.dev. 0.3643 0.3506 0.3721 0.3463 0.3660 0.3495
# 311 311 105 105 416 416
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2007 the average final efficiency is 33.75%, during 2008–2010 it is
42.95%, and the increase is even wider when considering the
median (from 24.78% to 37.34%). In contrast, for EU15 airlines the
tendency is for the final efficiency to worsen (the median

decreases from 78.73% to 71.80%), suggesting that airlines from
these countries have been most affected by the crisis.

The profound differences among airlines in the EU15þ IS group
and the rest is more apparent in Fig. 7. Regarding the final efficiencies,

Table 6
Efficiency scores in the network model, EU15a vs. non-EU15 airlines

Pre-crisis years, 2000/07 Crisis years, 2008/10 All years, 2000/10

Intermediate efficiency
(α)

Final efficiency
(β)

Intermediate efficiency
(α)

Final efficiency
(β)

Intermediate efficiency
(α)

Final efficiency
(β)

Mean 0.7448 0.6890 0.7183 0.6620 0.7386 0.6827
1st
quartile

0.4992 0.3829 0.5035 0.4156 0.5020 0.3855

EU15 airlines Median 0.8374 0.7873 0.8230 0.7180 0.8331 0.7767
3rd
quartile

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Std.dev. 0.3093 0.3156 0.3267 0.3328 0.3132 0.3195
# 286 286 87 87 373 373
Mean 0.4311 0.3375 0.5393 0.4295 0.4650 0.3663
1st
quartile

0.1544 0.0922 0.2784 0.1724 0.1636 0.1109

Non-EU15
airlines

Median 0.3345 0.2478 0.4207 0.3734 0.3651 0.3083

3rd
quartile

0.5263 0.5068 0.9072 0.6425 0.6918 0.5912

Std.dev. 0.3893 0.2989 0.3904 0.2975 0.3912 0.3002
# 79 79 36 36 115 115

a Airlines from EU15 countries plus Iceland and Switzerland.
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most airlines in non-EU countries are particularly inefficient (the
highest amount of probability mass concentrates under 0.4), whereas
for their EU peers results are just the opposite. The intermediate
efficiencies (Fig. 7a) suggest that a large fraction of the inefficiencies
were generated in the first stage of the analysis, although a non-
negligible share emerged in the second stage. This would suggest that
reallocations, if possible, could only marginally contribute to guarantee
the viability of the most inefficient airlines.

6. Conclusions

The main drivers of success in the airline industry are customer
satisfaction, cost minimization and efficient route system. An
airline wishing to maintain higher market share and profitability
should aim to excel at least in these three dimensions. However,
steering an airline company towards success is far from easy given
the increasing competition in the industry over the last two
decades. In particular, the European airline industry has under-
gone a significant transformation from being highly regulated to a
fairly liberalized industry through what is called open sky compe-
tition policy. The liberalization of the airline industry that took
place during the 1990s in Europe allowed airlines to compete
freely on prices, routes and frequencies.

The competitive environment created as a result of liberal-
ization has stimulated industry players to seek innovative
approaches to minimize costs and better utilize assets in order
achieve superior customer satisfaction than their peers. The arrival
of low-cost carriers to the industry has further stirred up competi-
tion in Europe and, consequently, put pressure on the legacy
carriers, or full-service carriers, to improve their performance,
service quality and minimize costs. The airline industry has also
frequently been subject to external shocks that have shaped its
future (among others, the 9/11 attack, European Union expansion,
fluctuations in the international fuel prices, and the global finan-
cial crisis in the late 2000s) and imposed further pressure on the
market players. The fierce competition and the impact of external
shocks have pushed the full-service carriers to switch their
business models towards re-routing and re-fleeting to maintain
high customer satisfaction levels. This was achieved by flying the
latest models of aircrafts on the new routes as opposed to past
practices of using old and cheap models on new routes.

The vibrant environment in which European air carriers now
operate opens up many research questions to be explored that will
enrich the literature for many years to come. This paper has focused
on an important and imperative feature of the airline industry, which
belongs to the league of capital intensive industries, namely, measur-
ing its performance, although with some notable differences. In
previous studies analyzing air carriers’ performance, either in Europe
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or in other contexts, estimations were based on the relationship
between the inputs consumed and the outputs obtained. Despite the
relevance of most of these studies, the technology applied was
generally simple, since no information on the types of internal
processes is provided—these are models that treat the production
process as a “black box”. A better way to approach this issue is to
describe the production process in an enhanced model, which in the
case of the airline industry implies considering two basic stages. In the
first one, airlines consume inputs in order to provide a service (such as
seats-kilometers), and in the second one the decision to use the
service provided depends on the organization and design of the
airlines, or the level of customer satisfaction with the level of quality
offered in their previous travel experiences. This implies that a
separation between the first stage (the production of potential output)
from the second (the consumption of the real output) should, ideally,
be established.

This is the rationale that usually underlies most network DEA
proposals but, to date, applications in the airline industry have been
extremely scant. We have attempted to fill this gap, by proposing a
network model that has several novelties with respect to the existing
literature. Regarding the outputs, we assume the existence of both
intermediate outputs (which are obtained in the first stage, but
operate as an additional input in the second stage) and final outputs.
Regarding the inputs, they can be specific to the stage we are in (as the
assumption is to share the inputs between the two sub-technologies)
and, in addition, there are intangible inputs related to customer loyalty
or brand value due to the services provided in previous years.

The results can be explored from multiple angles. The two-
stage analysis reveals that a remarkable amount of inefficiency is
generated in the second stage of the analysis. However, inefficien-
cies generated in the first stage predominate, which implies that
they can be reduced to a limited extent by reallocating inputs. In
addition, this finding is not generalized—either across firms or
over time. Regarding the former, we find that low-cost carriers are
more efficient than their full-service peers. Yet increasing effi-
ciency by reallocating resources is easier for legacy carriers, since
in this case inefficiencies emerge at both stages of the production
process. Taking the temporal dimension into account, the findings
of this research suggest that, regardless of the stage of the
production process considered, airlines in different groups have
had disparate performance levels. Low-cost carriers are adapting
more quickly to the new economic scenario that emerged after the
onset of the crisis in 2007–2008. In addition, airlines from
European Union countries (previous to the enlargements of the
2000s, plus Iceland and Switzerland) are much more efficient than
the rest, although a slow catching-up process is also taking place.

These results are also interesting because, apart from having
considered a relevant methodology in an industry undergoing
rapid change, we also used a very comprehensive data construc-
tion by following [49,50] and [27]. This detailed information on
inputs and outputs is not always available in performance assess-
ment studies and, therefore, in our case conclusions can be
considered particularly strong.
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Appendix A. Appendix: data construction

The input variables are constructed following the approach by
[49] and [50]. This is also a significant contribution of the paper,
since it provides very detailed information on airline industry data
but, to date, the number of studies using these methods is
relatively low. The inputs are constructed as follows:

Quantity of capital (K) : quantity of flights (fleet data ICAO),
namely,

QFlights¼QBeginningþQEnd
2

Labor quantity index (L) : the information on personnel count and
expenses (i.e., salaries) we obtain from the ICAO. The
labor input is an aggregate of four separate categories,
namely: (i) pilots, co-pilots, and others; (ii) flight atten-
dants; (iii) mechanics; and (iv) ticketing and sales. For all
these categories the expenses (EXP) are the salaries,
whereas the quantities (Q) correspond to the mid-year
count. The quantity labor index will then be defined as

Quantity Labor Index¼
X

φi � Qi

where φi is the weight of each personnel category
expenses relative to total personnel expenses:

φi ¼
PersonnelcategoryCostiP

AllPersonnelCost

Quantity of materials (MI) : the quantity of materials is a Divisia
index composed of four main input quantities, mainly
the quantity of non-flight equipment, other materials
and fuel. The material quantity index, MI, is defined as
follows:

Material quantity index ðMIÞ ¼
X

½ðW1 � QFuelÞ;
ðW2 � QNFEÞ; ðW3 � QOtherMaterialsÞ;
ðW4 � QlandingservicesÞ�

where W1, W2, W3 and W4 are weights of each quantity,
weighted by each item expenses to the total expenses.
We will consider the following as these four materials:

A. Non-flight equipment (NFE): in order to obtain the quantity of
NFE we need to obtain an economic price index for NFE
which we use to deflate the expenses of non-flight
equipment as follows:

QuantityNFEi ¼
Annual NFE

ðω0
iþλÞ � X � ζki

where

� ζki is the implicit deflator for GFCF from each country, obtained
from ESDS data, i.e.

ζki ¼
Gross Fixed Capital Formation at Current Prices ðGFCFÞ

Gross Fixed Capital Formation at Constant Prices

� λ is the equivalent annual depreciation rate for NFE¼ 6:667%,
“the assumption of 15 years expected life of NFE”.

� ω0
i is the adjusted price of capital calculated as follows:

ω0
i ¼ ð1þωÞ � X � ð1þγiÞ�1

� ω is the interest rate for long-term bonds, i.e. “it is the interest
rate on Baa bonds for USA carriers” (Bloomberg).γ
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� is the country risk premium for T-bond above the USA T-bond
calculated as follows:

γrisk premium ¼ 1þcountryiT�bondrate
1þUSAT�bondrate

� �
�1

(country T-bond rate and USA T-bond rate are provided by
Bloomberg).

B. Other materials (M): other material expenses, includes expen-
diture on supplies, services, and ground capital equip-
ment which are combined into a residual aggregate.
Since the data are all in US dollars we use the purchasing
power of one dollar or, if its market exchange rate
equivalent is not the same in all countries, we use the
purchasing power parity PPP exchange rate. Its quantity
is calculated as

Mi ¼
Annual ExpensesUSD

PPPIi

where i is the country index, and the price is PPPI
(obtained from the Penn World Tables).

C. Fuel (F): expenses of fuel from ICAO. The airline jet-fuel prices
are estimated as the weighted average of the domestic
fuel prices in Europe weighted by the domestic per-
formed tonne-kilometre added to the international jet-
fuel prices weighted by international performed tonne-
kilometer. This approach explicitly distinguishes
between the cost of fuel for international flights and
domestic flights. The Jet-Fuel price is expressed in USD
per barrels hence the quantity is in barrel. All informa-
tion on fuel prices is provided by Platts.

Q ¼ Fuel expenses
Weighted fuel price

D. Quantity of landing services: the quantity of landing services is
represented by the number of aircraft departures (ICAO).
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