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Abstrmct - This study describes a technique for statisti~y comparing bib~orn~~ mod- 
eb, and ilustrates its use with three different examples. The technique is based on the 
idea of comparing full and restricted models as developed in analysis of variance, regres- 
sion, and log-linear models. In bibliometrics, any two models where one is a special case 
of the other can be thought of as a full model and a restricted model. One can use the 
likelihood-ratio chi-square statistic, which has gained acceptance with log-linear models, 
as a test statistic to directly compare the full model and the restricted model. The first 
two examples involved Lotka’s law. In the first example we investigated the feasibility 
of applying a single set of global parameter values to eight different author productiv- 
ity distributions drawn from two different disciplines. In the second example we looked 
at whether or not a finite maximum productivity level was necessary as an additional pa- 
rameter in Lotka-type models of author productivity. The final example compared three 
different forms of a model of Iibrary circulation frequencies. 

Much of the work in bibliometrics invoives the fitting of theoretical probabiIity distribu- 
tions to empirical data that are in the form of frequency distributions (e.g., Nelson and 
Tague, 1985; Sichel, 1985). A variety of phenomena have been studied in this way, includ- 
ing book circulation, index term usage, citation age, and author productivity. In the sim- 
plest case the distribution of a single variable (a univariate distribution} is modell~, Much 
statistical modelhng in bibliometrics makes use of univariate distributions, and the work 
to be reported here focuses on these. Theoretical distributions that have been fit include 
the negative binomial, Poisson, and Zipf distributions, among others, 

Often these distributions have one or more parameters that must be estimated from 
the data. The values of the parameters are frequently chosen to maximize the fit between 
the theoretical distribution and the observed data. The methods of minimum chi-square, 
least squares, and maximum likelihood all foollow this approach, differing only in how they 
define the best fit. Once the optimal parameter values have been chosen, the researcher cus- 
tomarily tests the fit of the distribution to the data by means of a statistical test such as the 
chi-square test or the Kolmogorov-Smirnov test, Cooper and Weekes (1983) provide a good 
introduction to techniques of fitting and testing statistical models. They cover several of 
the most frequently used continuous and discrete theoreticai distributions. 

A common situation in bibliometrics is to have two or more competing distributions 
being considered as appropriate models for a set of data. The purpose of this article is to 
propose that wherever possible researchers should use direct comparisons in deciding be- 
tween competing models. A direct comparison in the sense used here employs a single test 
statistic that allows the researcher to estimate the probability that one of the models should 
be rejected in favor of the other modei. Direct comparisons appear to be employed rarely 
in bibliometric modelling, although there are situations where they could be used to 
advantage. 

The most straightforward situation in which one can make a direct comparison of 
models is where one of the models under consideration is a special case of the other model. 
This often arises when the more specific model can be derived from the more gene& model 
be fixing the vaIues of one or more of the parameters of the Iatter model. For example, the 
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geometric distribution can be derived from the negative binomial distribution by setting one 
of the parameters of the negative binomial distribution equal to one. In such a situation, 
the two models are said to be hierarchically related, with the more specific model nested 
within the more general model. 

This article is concerned specifically with comparisons of nested models. The meth- 
ods for comparing non-nested models are not as straightforward or well developed as the 
methods for nested models. We will have a few comments on comparisons of non-nested 
models at the end of the article. 

STATISTICAL INFERENCE AS MODEL COMPARISONS 

We first became aware of the idea of comparing nested statistical models in the con- 
text of the analysis of variance (ANOVA). In the linear models approach to ANOVA, tests 
of main effects and interactions are expressed as the comparison of two linear models (Judd 
and McClelland, 1989; Maxwell and Delaney, 1990). The more elaborate model for a given 
test is called the full or augmented model, and the less detailed model is called the restricted 
or compact model. 

For example, two-way ANOVA usually includes tests of the main effects of the two 
factors and a test of the interaction between them. In the test of the interaction, the full 
model is 

xjk=M+A;+Bj+ABij+eijk, 

and the restricted model is 

xjk = M + Ai + Bj + eijk, 

(1) 

where Yijk is an observed data value, M is a parameter for the grand mean of all the ob- 
servations, Ai is a parameter representing the main effect of factor A, Bj is a parameter 
representing the main effect of factor B, ABij is a parameter representing the interaction 
of A and B, and eijk represents the error of prediction of the model for that particular ob- 
servation. The restricted model posits that the interaction is absent, so the parameters rep- 
resenting it (the AB term) are dropped from equation (2). 

Because it has more free parameters, the full model always provides a better fit to the 
data than the restricted model. The philosophy behind model comparisons in ANOVA is 
that in choosing between the two models, one needs to look at how much better the fit of 
the full model is than the fit of the restricted model. Does the increase in the ability to pre- 
dict the data afforded by the full model warrant an increase in the complexity of the ex- 
planation, as is indicated by the addition of one or more free parameters? The ideal of 
parsimony dictates that one should adopt the simplest model one can. This means that the 
restricted model should only be rejected when the weight of evidence suggests it is 
untenable. 

The conventional F-test provides a measure of whether the fit of the full model is suf- 
ficiently better than the fit of the restricted model to cause one to reject the latter in favor 
of the former. The F-test essentially compares the increase in error encountered when one 
moves from the full model to the restricted model against the error associated with the full 
model, taking into account the number of additional parameters used by the full model 
(Judd and McClelland, 1989, pp. 83-87). When the increase in error is large enough, as de- 
termined by the table of the F distribution, then the restricted model is rejected in favor 
of the full model. That is, the interaction is said to be significant. 

A major advantage of the linear models approach to ANOVA is that it allows consid- 
erable flexibility in the specification of null and alternative hypotheses. One need only keep 
in mind that the effect being tested is always indicated by the term contained in the full 
model, but not in the restricted model. Any two linear models that only differ by a single 
term may serve as the full and restricted models for a test of that term. The implications 
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of choosing different models to compare when testing for a particular effect in ANOVA 
are discussed by Appelbaum and Cramer (1974) and Howell and McConaughy (1982). 

The view of ANOVA described here illustrates the logic of model comparisons that we 
propose to apply to bibliometrics. In each case we identify a full model and a restricted 
model, and we use a formal statistical test to address the question of whether the ad~tion~ 
complexity of the full model is necessary. However, as will be explained, we do not com- 
pare bibliometric models with F tests, but with chi-square tests. 

In detail, our approach is actually more like log-linear models than ANOVA. Log- 
linear models are an approach to the analysis of categorical data that arose partially as an 
emulation of the linear models approach to ANOVA (Bishop, Fienberg, and Holland, 1975; 
Marascuilo and Busk, 1987). In log-linear models, the logarithms of the expected frequen- 
cies of the cells of a multiway contingency table are modeled by the sums of parameters 
that represent the main effects and interactions of the variables that comprise the rows, col- 
umns, layers, etc. of the table. For example, the traditional chi-square test of association 
for a two-way table can be thought of as comparing a log-linear model of independence 
to a model that includes an interaction term. The log-linear model of independence (the re- 
stricted model) can be written as 

lOg(mij) = 24 + Ul(;, + U2[j,, 

where mij is the expected frequency of the ijth cell according to the model, and the u 
terms are the parameters of the model. The first parameter, u, is based on the total num- 
ber of observations (it is .analogous to the “grand mean” term in ANOVA), u 1 (it is a row- 
effect parameter, and ~2,;) is a column-effect parameter. 

The full model can be written as 

log(mij) = 24 + Ul(i) -t U2fj] + U12fij,, (4) 

where U, u 1 (if, and u2fjj are as defined above, and u 12cijj represents the interaction of the 
row variable and the column variable. With a two-way table, this model has as many pa- 
rameters as data points, leaving it with no degrees of freedom. It is thus called a “saturated” 
model, and will always yield expected frequencies that exactly match the observed frequency 
in each cell. Thus, comparing a restricted model to a saturated model is equivalent to com- 
paring that restricted model to the data. 

The full model in a comp~ison of log-linear models need not be the saturated model. 
For example, consider the model 

lOg(mij) f U + Ul(i). (5) 

This model states that we need to take the row margins into account in our estimate of the 
logs of the expected frequencies, but not the column margins. In other words, equation (5) 
says that the observations should occur in the different categories of the column variable 
with equal frequency. Comparing equation (5) as the restricted model to equation (3) as the 
full model constitutes a test of whether the different values of the column variable do in 
fact occur with equal frequency in the population. By analogy to ANOVA, this compari- 
son is sometimes called a test of the main effect of the column variable. 

This last illustration shows that a particular model can serve as the restricted model 
in one comparison and as the full model in another, as equation (3) does above. What equa- 
tions get used for the full and restricted models in a comparison depends on what question 
the researcher wants to ask. As with ANOVA, the effect being tested is the one represented 
by the term that is contained in the full model, but not in the restricted model. 

LIKELIHOOD RATIO CHI-SQUARE STATISTIC AND MAXIMUM LIKELIHOOD ESTIMATION 

Log-linear models often use an alternative to the traditional Pearson chi-square statistic 
customarily associated with contingency tables. This alternative is called the likelihood ratio 
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chi-square statistic, and is typically denoted as G2 (Bishop et al., 1975). G2 can be calcu- 
lated for any log-linear model. It is defined as 

G2 = 2 * CXij * log(xij/mij), 

where xii is the observed cell frequency and mij is the expected cell frequency under the 
model being considered. The logarithms are to the base e. Like Pearson’s chi-square, the 
likelihood ratio chi-square can be used to test a single log-linear model against a set of cross- 
classified data-degrees of freedom are calculated the same as for Pearson’s &i-square, and 
the value of G2 is compared to a table of chi-square to determine whether the model fits 
the data. In fact, G2 and Pearson’s chi-square usually yield very similar values for a given 
problem. G2 for a saturated model always equals zero. 

The main advantage of G2 is that in addition to being useful for testing a single 
model against a set of data, it can also be used to compare any two nested models. The use- 
fulness of G2 for model comparisons derives from the fact that, unlike Pearson’s chi- 
square, it exhibits the property of additivity (Bishop et al., 1975). Additivity can be 
explained as follows. Suppose model A is nested within model B (i.e., model A is the re- 
stricted model and model B is the full model). Additivity holds when the measure of fit ob- 
tained when testing model A against the data is equal to the sum of the measure of fit 
obtained in a comparison of model A to model B, plus the measure of fit obtained when 
testing model B against the data. If we let G2(A) stand for the value of G2 obtained in a 
test of model A, and we let G2( B) stand for the value obtained in a test of model B, and 
we let Gz( B)(A) stand for the improvement in fit afforded by model B over model A, 
then additivity says that 

G2(A) = G2(B)(A) + G2(B). 

Bishop et al. (1975) call Gz( B) (A) the conditional measure of fit. Additivity allows a re- 
searcher to obtain Gz(B)(A) quickly by subtraction once Gz(A) and G2(B) have been 
calculated. 

The conditional measure of fit tells the researcher whether the full model is a signifi- 
cantly better description of the data than the restricted model. If the full model is not much 
of an improvement over the restricted model, then Gz(B)(A) will have a nonsignificant 
value compared to a chi-square table with degrees of freedom equal to the number of pa- 
rameters in the full model minus the number of parameters in the restricted model. The 
conditional measure of fit is what would be used to test the main effect of the column vari- 
able in the illustration above. 

Equation (7) provides the basis for the approach to the direct comparison of models 
we are advocating. In the examples below, we describe three different situations in which 
one might want to compare bibliometric models. Each comparison involves restricted and 
full models. In each example we calculate G2 for each of the models under consideration. 
We then use equation (7) to obtain values for Gz( B) (A) by subtraction, and test the sig- 
nificance of the resulting value as a guide for selecting the most appropriate model. Riefer 
and Batchelder (1988) have used the same approach for comparisons of different models 
of cognitive processing. 

In addition to its usefulness for model comparisons, the likelihood ratio chi-square 
statistic has another important property that is significant in both the contexts of log-linear 
models and bibliometric models. One can find maximum likelihood estimates (MLEs) of 
the parameters of a model by identifying those values of the parameters that minimize G2 
(Bishop et al., 1975). That is, minimizing G2 is equivalent to maximizing the likelihood 
function. This property is useful to note in the present context, because maximum likeli- 
hood estimation is becoming increasingly important in bibliometrics (Nicholls, 1986). All 
the parameter estimates in the examples to follow are maximum likelihood estimates ob- 
tained by minimizing Gz. 

The rest of this paper consists of three examples of the use of G2 to make direct com- 
parisons of bibliometric models. All three examples involve the reanalysis of data already 
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presented. The first two examples use data collected by Nicholls (1986, 1987) on author pro- 
ductivity. The final example uses data from Brownsley and Burrell (1986) on library cir- 
culation. Both author productivity and library circulation provide fertile ground for model 
comparisons because in both areas several different bibliomet~~ models, or at least several 
different forms of a given bibliometric model, such as Lotka’s law, have been proposed. 

In the first example, we look at the question of how a researcher might treat the situ- 
ation in which he or she has several different data sets, all being modelled by the same ba- 
sic model. Should the researcher assume that it is just the form of the model that is the same 
across the different data sets, or should the actual parameter values be identical across the 
data sets? In the example, we use G* to compare these possibilities. In the second exam- 
ple, we compare two different forms of Lotka’s law, one of which contains an extra pa- 
rameter that the other one lacks. Again, we use G* to guide this comparison. Finally, in 
the third example we use G* to compare three different models of library circulation pro- 
posed by Brownsley and Burrell(l986). This example includes the idea of mixtures of dis- 
tributions, which is absent from the first two examples. 

EXAMPLE 1: INDIVIDUAL LOTKA PARAMETERS 

For our first example, we chose eight author productivity data sets from the hundred 
or so collected by Nicholls (1987). We selected four data sets for each of two subject areas: 
information science and biology. The data sets were chosen for their size and comparability. 

The Lotka hypothesis of author productivity states that there exists an inverse relation- 
ship between the number of authors and the number of papers each author produces (Pao, 
1985; Nicholls, 1986). Numerous studies have investigated this phenomenon. When one ex- 
amines the literature of a subject area, one typically finds that many authors only contribute 
one paper to the discipline, whereas very few are prolific contributors. Mathematically, the 
Lotka hypothesis is typically represented by: 

g(x) = k/Xb, (8) 

where x represents the number of papers a given author produces in a discipline, g(x) the 
proportion of authors contributing x papers, and k and b are parameters to be estimated. 
Note that k represents the expected proportion of authors contributing one paper, because 
g( 1) = k/lb = k. 

If one has several different data sets, it is possible to estimate the parameters of equa- 
tion (8) separately for each data set. However, it would obviously be more parsimonious 
to model all of the data sets with a single set of parameters. If, as in our example, some 
of the data sets are drawn from one discipline and some from another, then an interme- 
diate possibility arises. It could be that one set of parameters would suffice for one disci- 
pline, but that a different set of parameters would be required to model the other. 

These three possibilities form a set of hierarchically nested models. The fullest model 
is the one in which each data set has its own b and k parameters. We call this case the in- 
dividual parameters model. The intermediate model is the one in which there are two sets 
of b and k parameters, one set for each discipline. We call this case the discipline param- 
eters model. Finally, the most restricted model attempts to explain all eight data sets with 
a single value of b and a single value of k. We call this the global parameters model. 

Theoretical distributions tend to fit observed author productivity distributions poorly 
for the more productive authors; there are very few prolific authors, and gaps in this por- 
tion of the distribution are common. Low expected cell frequencies also tend to be a prob- 
lem with prolific author data. Therefore, it is a common practice to group together the 
higher productivity values. We followed this practice, collapsing all authors who had pub- 
lished eight or more papers into a single cell of the table for each data set. This approach 
enabled us to have the same number of cells for each data set, simplifying degree-of- 
freedom calculations. 

In applications of Lotka’s law, the theoretical m~imum number of papers that could 
be written by an author, x,,,, is sometimes considered to be a parameter of the distribu- 
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tion (Tague and Nicholls, 1987). In this example we assumed that x,, was infinite, and 
did not attempt to estimate it. We take a closer look at x,, in the next example. In prac- 
tical terms, treating x,, as infinite meant that, for each data set, we calculated the ex- 
pected proportion of authors in all the cells but the last one (i.e., the eighth one) from 
equation (8), and then we computed g(8) as 1 - [g( 1) + g(2) + . . . + g(7)]. The proper 
interpretation of g(8), then, is that it is the expected proportion of authors who wrote eight 
or more papers. 

As mentioned above, the k parameter represents the proportion of authors with only 
one paper in the data set. Pao (1985) has shown how the value of k can be calculated using 
an approximation procedure once the value of b is known. This approximation assumes 
that the theoretical xm, is infinite. When one uses Pao’s procedure, the value of k is en- 
tirely dependent on the value of 6. This means that k and b are not independent param- 
eters. This fact must be taken into account when calculating the number of degrees of 
freedom for the significance tests. 

Because the technique for finding maximum likelihood estimates outlined above in- 
volves minimizing chi-square values, the observed and theoretical distributions must be ex- 
pressed in terms of frequencies rather than proportions. This is accomplished for the 
theoretical distribution by multiplying the proportions given by equation (8) separately for 
each data set by the total number of authors in that data set. Since there are eight data sets, 
this procedure costs each model eight degrees of freedom on top of those lost in estimat- 
ing the parameters of that model. Thus, with 64 cells (eight data sets with eight cells each), 
the global parameters model has 55 degrees of freedom, the discipline parameters model 
has 54 degrees of freedom, and the individual parameters model has 48 degrees of freedom. 

We obtained maximum likelihood estimates of the b parameter by finding the value 
of b that minimized G*. We used a FORTRAN function-minimization routine called 
STEPIT (Chandler, 1965) to accomplish the minimization. We wrote the Pao approxima- 
tion for estimating k into the driver program for STEPIT. 

Three different STEPIT runs were conducted. In each run, we programmed STEPIT 
to find a single value of G* that was minimized over all eight data sets simultaneously. 
That is, G* was found in each case by summing x; * log(xi/mi) over all 64 cells at once. 
For the first run, we instructed STEPIT to estimate eight different b parameters in find- 
ing the minimum value of G*, in the second run we instructed it to estimate two b param- 
eters, and in the third run we instructed it to estimate a single b parameter. The three runs 
corresponded to the individual, discipline, and global parameter models, respectively. Com- 
paring the values of G* obtained in the three runs allowed us to test the relative merits of 
trying to explain author productivity in terms of a single curve for all data sets or in terms 
of a single curve for each discipline. 

The results of the three STEPIT runs are shown in Table 1. Looking first at the indi- 
vidual parameter results, it is apparent that three of the values of b within each discipline 
are close to each other, but that each discipline has one discrepant value. On the whole, 
the values of b for information science tend to be higher than the values of b for biology. 
This latter result is seen more clearly in the second part of Table 1, where the discipline pa- 
rameters are presented. Finally, not too surprisingly, STEPIT calculated a global value of 
b that is intermediate between the value for biology and the value for information science. 

The G* values for all three models are significant, which says that none of the three 
models adequately describes the data. This result is not too surprising, given that the power 
of chi-square tests increases with sample size and that the total number of observations 
across all eight data sets is over 10,000. Riefer and Batchelder (1988, p. 325) referred to this 
problem as the rejection of “good, but technically incorrect,” models. They argued that 
such models should not be summarily dismissed. Figure 1 gives an example of the expected 
author productivity frequencies under each of the three models for one of the data sets in 
biology. The observed frequencies are also shown on the figure. It is obvious from Fig. 1 
that the models fit the shape of the data reasonably well. 

Now let us consider comparisons of the models. The difference in G* between the 
global parameters model and the discipline parameters model is 297.5, which is quite sig- 
nificant with one degree of freedom. This result says that productivity in biology and in- 



Direct comparison of bibliometric models 

Table 1. Parameter values and chi-square for individual, discipline, and global 
versions of Lotka’s Law fitted to data sets in biology and information science 
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Data set 

Individual Parameters Model 
Bl 
B2 
B3 
B4 
IS1 
IS2 
IS3 
IS4 

G2 = 264.3, df = 48 

b k 

2.581 0.162 
1.781 0.526 
2.451 0.735 
2.472 0.739 
3.297 0.868 
2.512 0.148 
2.705 0.786 
2.640 0.774 

Discipline Parameters Model 
Biology 
Information science 

G2 = 668.0, df = 54 

2.295 0.697 
2.913 0.820 

Global Parameters Model 
G2 = 965.5, df = 55 

2.594 0.765 

formation science cannot both be described by a single equation. Furthermore, the 
difference in G2 between the discipline parameters model and the individual parameters 
model is 403.6. This time the test has six degrees of freedom, but the G2 difference is still 
quite significant. This result tells us that we can obtain a significantly better explanation 
of the data if we allow each data set to have its own parameters for Lotka’s law than if we 
try to explain all of the data sets within a discipline with a single set of parameters. 

It is not surprising that such a result appeared. As was mentioned above, one data set 
in each discipline differed noticeably from the others in the same discipline. This outcome 
makes it hard to say whether the difference between the disciplines is real or not. The data 
certainly suggest that biology has lower values of b and k than information science. Lower 
values of b and k occur when there is a higher proportion of prolific authors, so perhaps 
prolific authors are rarer in information science. However, with only four data sets for each 
discipline, it is hard to say for sure. It would be interesting to see if the pattern held up with, 
say, ten data sets in each discipline. 

4 6 8+ 

Number of papers 

- Data +-- Individual - Discipline -8- Global 

Fig. 1. Example of the fit of three models to one data set of author productivity. 
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EXAMPLE 2: LOTKA’S LAW WITH FINITE MAXIMUM 

In the second example, we applied the technique of comparing models with G2 to the 
situation in which one is trying to decide between two different forms of a bibliometric 
model, where one of the forms involves an additional parameter that the other lacks. Spe- 
cifically, we looked at the question of whether the theoretical maximum number of papers 
an author might write should be included in a model of author productivity. We again used 
Nicholls’ (1987) data for this example. 

When one counts the number of publications for each author in any actual bibliog- 
raphy or data set, there will, of course, be a finite maximum to the number of papers 
authored by any one person. Tague and Nicholls (1987) have argued that this fact should 
be acknowledged in modelling author productivities and other Zipf-distributed data. In- 
deed, it is possible to treat x,, as a parameter of the model to be estimated from the data. 
In that case, Lotka’s law becomes 

g(x) = k/xb, x = 1,2,. . . ,x,,. (13) 

Is it really necessary to include xmax in models of author productivity? Using the method- 
ology outlined above, we set out to compare a full model that estimates x,, from the data 
to a restricted model that assumes it to be infinite. We conducted the comparisons for ten 
data sets drawn from those compiled by Nicholls (1987). Only one of the ten was also used 
in Example 1 above. The data sets chosen for this illustration had between 5 and 12 cells 
(i.e., xk,, was between 5 and 12), and had no empty cells (i.e., no gaps in the productiv- 
ity distribution). 

Unlike the first example, each data set was analyzed separately. We collapsed each data 
set to five cells (rather than eight) by grouping all authors with five or more publications 
into the fifth cell. With these exceptions, we carried out the estimation of b and k for the 
restricted model using exactly the same procedures as in the first example. In particular, 
we used Pao’s approximation to calculate k for each data set. 

For the full model, we needed to estimate x max as well as b, and to calculate k in a 
different way. With ungrouped data, the maximum likelihood estimate of x,,,,, is simply 
x&, (Tague and Nicholls, 1987). However, because we had grouped together the higher 
author productivities, we took a different approach. On the assumption that the maximum 
likelihood estimate of xmax would be the one that gave the lowest value of G2, and because 
x,,, can only take on integer values, we conducted separate STEPIT runs for xmax = 
5,6,7, etc. Each STEPIT run produced the best-fitting value of b for that value of x,,,,, 
and a value of G2 for that particular combination of b and x,,,. We continued these runs 
until we found the globally minimum value of G2. What are reported in Table 2 are the 
values of b, k, and x,,,,, associated with the globally minimum G2 value for each data set. 

Pao’s approximation is not appropriate for calculating k when xmax is assumed to be 
finite, although k is still determined by the other parameters. It is calculated as 

I 
Xmax 

k = t c (l/xb), 
1 

where t is the total number of authors in the data set (Tague and Nicholls, 1987). 
Tables 2 and 3 show the results of these analyses for the full and restricted models, re- 

spectively. Table 2 shows that the full model fits these data sets quite well. Only two of the 
ten G2 values are significant at the .OS level. The estimated value of x,,, was between five 
and eight for all the data sets except set 4. This was an anomalous data set with a virtu- 
ally flat likelihood function, which made estimation of x,,, difficult. It also had an un- 
usually high estimated value of b. 

Table 3 shows the results for the restricted model and the results of the comparison 
of the full and restricted models. Several observations can be made about this table. First 
of all, the values of b and k are consistently slightly higher for the restricted model than 
for the full model. This is because one effect of making x max finite is to increase the pro- 
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Table 2. Fitting Lotka’s Law with finite maximum productivity (the full model) 
to ten author productivity data sets 
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ML estimates 
Data No. of 
set authors %I,, b k GZ df P 

1 210 8 3.68 903 4.91 2 n.s. 
2 1282 7 3.44 .885 3.26 2 n.s. 
3 2461 

3:a 
3.43 .886 1.44 2 < .05 

4 408 4.22 .936 .94 2 n.s. 
5 736 7 2.38 .743 6.15 2 <.os 
6 198 7 3.60 .897 4.60 2 Il.S. 

7 164 5 2.38 ‘755 3.85 2 ns. 
8 411 6 2.15 .702 2.98 2 n.s. 
9 386 8 2.26 ,714 1.80 2 n.s. 

10 170 5 2.40 .759 3.70 2 n.s. 

“The likelihood function is virtually flat for values of x,,, from x6=x to infinity for this data set. 

portion of authors who have contributed just one paper. The same effect can be accom- 
plished by increasing the value of b. Secondly, the restricted model provides an adequate 
fit to the data for only half of the ten data sets. This is in contrast to the full model, which 
fit eight of the ten. This contrast is borne out when the difference in G2 is computed. Five 
of the ten G2dift values are significant at the .05 level or higher. In other words, assuming 
xma, to be finite and estimating it from the data yields a signi~cantly better model in half 
of the cases. It appears that making xmax a finite parameter sometimes provides a better 
fit, but not always. 

EXAMPLE 3: LlBRARY CIRCULATION 

Our final example looks at the number of times different books circulate from a library 
collection over a given period of time. This example allows us to illustrate how G2 can be 
used when a researcher has “doubly nested” models-three models in a single hierarchy. 
It also allows us to remark on a specific problem that arises when testing a model with mix- 
tures of distributions. 

Circulation data are generally tallied in the form of how many books have circulated 
once, how many twice, etc., and how many not at all. Quentin Burrell(t980, 1982; Browns- 
ley and Burrell, 1986) has studied library circulation data extensively. Brownsley and Burrell 
(1986) directed their attention specifically to public library circulation, as most of the pre- 
vious research had dealt with circulation in academic libraries. Brownsley and Burrell were 
able to make use of machine-readable circulation data for public libraries in the United 
Kingdom, which became available as a result of a law that mandated payments to authors 
for the loan of their books from public libraries. Brownsley and Burrell were interested in 

Table 3. Lotka’s Law with infinite maximum aroductivitv (the restricted model) and model comparisons 

Data 
set 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

ML estimates 
G2 

b k G” df P diff. df P 

3.70 .904 4.95 3 n.s. .04 1 II.S. 

3.49 ,887 4.20 3 is. .94 1 ll.S. 

3.54 ,891 19.10 <.OOl 11.66 <.OOl 
4.22 .936 .94 : n.s. .OO : n.s. 
2.56 ,758 11.97 3 <.Ol 5.82 1 < .02 
3.64 .899 4.68 3 n.s. .OS 1 n.s. 
2.70 .784 12.59 3 <.Ol 8.74 1 <.ot 
2.44 .731 14.48 3 <.Of 11.50 1 <.OOl 
2.43 .730 4.64 3 n.s. 2.84 1 Il.S. 

2.71 .787 12.43 3 <.Ol 8.73 1 c.01 
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three different models of public library circulation data: the geometric distribution, a single 
negative binomial distribution, and a mixture of three negative binomial distributions. Each 
of the latter two distributions is a generalization of the preceding distribution in the list, 
so they form a good set of candidates for the approach to model comparisons being illus- 
trated here. 

Brownsley and Burrell reported the observed circulation frequency data for one of the 
public libraries (Library 05: Hillhead), as well as the expected frequencies under each of 
the models. They also reported Pearson chi-square for each model, but not G2. We 
decided to reanalyze the data for this same library using the approach we followed in the 
previous examples. 

One problem with modelling circulation data is how to deal with items that do not cir- 
culate in the time period under study. Burrell(l982) has argued that such items are of two 
kinds. Some of them are “dead” items of no interest or which never circulate for other rea- 
sons, such as being lost or in the reference collection, and others are active items that just 
did not happen to circulate during the study period. 

Analogous problems arise in other applications of statistical modelling, such as models 
of the number of visits made to a medical clinic. The number of people who did not visit 
the clinic includes those not sick, as well as those who should have visited the clinic but did 
not (Gross and Miller, 1981). 

Our approach to this problem is based on the work of Cohen (1966; see also Everitt 
and Hand, 1981). Cohen proposed that when both dead and active items (to use the lan- 
guage of the present example) are included in the total count, such situations should be 
modelled with distributions of the form 

{ 

(1 - 4) + 4 *f(O) for x = 0 
g(x) = 

4 *f(x) for x = 1,2,. . . 
(10) 

wheref(x) is any discrete distribution and q is the proportion of all the items that are ac- 
tive. Cohen’s general approach can be used even if one does not have an accurate count 
of the total number of items. In this case, q is not estimated, but the number of active 
items, both circulating and noncirculating, is estimated. It follows from Cohen’s approach 
that the total number of active items, NA, can be estimated as 

N4 = NC/(1 -f(O)), (11) 

where NC is the number of items that did circulate andf(0) is the estimate of the propor- 
tion of active items that did not circulate provided by the theoretical distribution under con- 
sideration (Burrell, 1982; Gross and Miller, 1981). Thus, for all three of the models to be 
considered we estimated NA , and multiplied the expected proportions by that value to ob- 
tain the expected frequencies, rather than multiplying them by the total number of items 
that did circulate, NC. 

The form of the geometric distribution used here was 

f(x) =p* (1 -PI", o<p< 1, (12) 

wherex=0,1,2,... is the number of times a book might circulate, f(x) is the proportion 
of books that circulated that number of times, and p is the parameter of the model. The 
geometric model produces a straight line whenf(x) is plotted on a logarithmic scale and 
x is plotted on a linear scale. 

For the negative binomial distribution, we used a recursive equation based on that 
given by Cooper and Weekes (1983). 
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and 

f(x)=f(x-l)*(l-p)*(x+k-1)/x, (13) 

where 0 < p < 1 and k > 0. The terms x and f(x) have the same definition as before, and 
p and k are the parameters of the distribution. This formulation of the negative binomial 
distribution allows noninteger values for k. When k = 1, the negative binomial distribu- 
tion reduces to the geometric distribution. 

Brownsley and Burrell (1986) considered a mixture of three negative binomial distri- 
butions as a third model because the public libraries they studied had three distinct com- 
ponents to their collection: adult fiction, adult nonfiction, and juvenile literature. Thus, 
their most elaborate model allowed separate p and k parameters for each collection plus 
two mixing parameters that represented the proportion of the total circulations that could 
be attributed to adult fiction and to adult nonfiction. General works on fitting and test- 
ing mixtures of distributions are provided by Everitt and Hand (1981), Titterington, Smith, 
and Makov (1985), and McLachlan and Basford (1988). Harris (1983) discusses mixtures 
of geometric and negative binomial distributions specifically. 

By expanding on eqn. 13, the mixture model can be written as follows: 

f(0); = 171; * p.P, for i = 1,2,3 

f(X)i = mi *f(X - 1)i * (1 -pi) * (X + ki - 1)/X 

and 

m3 = 1 - ml - rn2. (14) 

Thus, the mixed negative binomial model has eight parameters: three p’s, three k’s, and 
two independent mixing parameters, ml and m2. Equations 14 were written into the driver 
program for STEPIT, and it was allowed to find the values of the parameters that mini- 
mized G2. Several runs were made with different starting values because of problems with 
local minima. The results presented are for the run with the lowest G2 of all the runs. We 
are still not sure we have found the globally best parameter values but, as will be explained, 
there is some indication that the values we obtained are reasonable. 

Table 4 shows the results of fitting the three models. Note that the best-fitting values 
of p and k for the negative binomial distribution were fairly close to the values found for 
the geometric distribution. The value of p went from .150 in the geometric to .166 in the 
negative binomial, while k went from 1 (by definition) to 1.16. Even though the change in 

Table 4. Parameter values and goodness of fit for models of library circulation 

Geometric Distribution 
p = .150 G2 = 491.21, df = 24 

Negative Biomial Distribution 
p = .I66 k = 1.16 G2 = 382.92, df = 23 

Mixed Negative Binomial Distribution 
p, = .285 k, = 2.22 m, = .69 G2 = 66.36, df = 17 
p2 = .090 k2 = .89 m, = .25 
p, = ,807 k, = 3.11 nl3 = .06’ 

*This value is not a free parameter. It is obtained by subtraction. 



788 MARK T. KINNUCAN and DIETMAR WOLFRAM 

the parameter values was slight, it did afford a better fit. G2 decreased by 108.29 with the 
addition of a single parameter. 

An even more pronounced change occurred with the introduction of the mixed neg- 
ative binomial distribution. The three values of p obtained with this model are quite dif- 
ferent from each other, as are the three values of k, indicating that the three subcollections 
are behaving differently. Figure 2 shows that the mixed negative binomial distribution fits 
the data substantially better than the other two models. 

Ordinarily we would back up this claim by pointing out that the reduction in G2 of 
316.56 is significant with 6 degrees of freedom. Technically, however, the test is not appro- 
priate in this situation because certain regularity conditions (cf. Bishop et al., 1975, pp. 509- 
511) are not met when dealing with mixtures of distributions (Everitt and Hand, 1981; 
McLachlan and Basford, 1988). This means that, in this case, the change in G2 is not nec- 
essarily distributed as chi-square. However, Everitt and Hand argue that the test can still be 
used informally, and in any case the improvement in fit is so pronounced that it can hardly 
be dismissed. 

Furthermore, we obtained reasonable values of the parameters of the mixed negative 
binomial distribution. When we fitted this distribution, we did not constrain the solution 
in any way to associate a specific component distribution with a particular sub-collection. 
For instance, we didn’t know a priori whether ml would refer to proportion of circulating 
titles that were adult fiction, adult nonfiction, or juvenile literature. Nor did we constrain 
the mixing proportions themselves, except of course to be between 0 and 1 and to add to 
1. In fact, the only data we used were the aggregate data. Nonetheless, the mixing propor- 
tions obtained as part of our solution seem to match very closely the actual proportions of 
circulating titles in the three sub-collections. Brownsley and Burrell did not actually report 
the number of titles circulating in each of the three sub-collections, but they did report the 
number of “issues,” or circulation occurrences, for each sub-collection. According to their 
figures, adult fiction accounted for 64% of the issues, adult nonfiction for 27070, and ju- 
venile literature for 9%. These percentages match our mixing proportions (.69, .25, and 
.06) closely, suggesting that the mixed negative binomial distribution is indeed a good model 
for these data. 

This result also suggests that the first set of parameters refers to adult fiction, the sec- 
ond set to adult nonfiction, and the third set to juvenile literature. Further support for this 
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Fig. 2. Lack of fit for three models of library circulation. 



Direct comparison of bibliometric models 789 

interpretation comes from an ins~ction of the values obtained for k, which Brownsley and 
Burrell refer to as the index of the negative binomial distribution. According to them, the 
index should be greater than one for adult fiction and less than one for adult nonfiction. 
As can be seen from Table 4, labelling the first sub-collation as adult fiction and the sec- 
ond sub-collection as adult nonfiction is consistent with this rule. 

It is interesting to note that Brownsley and Burrell tended to prefer the geometric dis- 
tribution for this particular library, considering it to be generally adequate. The improved 
fit and ready interpretability of the mixed negative binomial distribution lead us to believe 
that it is a better model for these circulation data. 

CONCLUSION 

This paper has shown three different examples of how direct comparisons of biblio- 
metric models can be made, and of the kinds of interpretations that can be given to such 
comparisons. We find the idea of asking questions in terms of full models versus restricted 
models, thereby pitting parsimony against accuracy of prediction, to be an extremely useful 
framework within which to think about bibliometrics, and indeed statistics in general. In 
addition, we think that the likelihood ratio chi-square statistic, CP, has merit and we 
would like to see it gain greater acceptance in bibliometric modelling. 

One drawback of the approach we have outlined in this article is that it can only be 
used for models that are hierarchically related. Sometimes bibliometric researchers want 
to compare distinct models. For example, Gelman and Sichel (1987) fitted both a beta- 
binomial distribution and a negative binomial distribution to library circulation data. These 
distributions do not stand in a hierarchical relationship to one another. Comparisons of 
models that are distinct in this way tend to be made on a more ad hoc basis. Systematic ap- 
proaches to such model comparisons are sometimes available, however (Gilchrist, 1984, pp. 
157-162). One approach that appears especially promising involves comparing models in 
terms of the Akaike Information Criterion (AZC) (Akaike, 1974; &love, 1987). As its name 
implies, AZC is based on concepts from information theory (Bozdogan, 1987). 

AZC for an arbitrary model k can be defined as 

AZC = -2 * log[m~~(~)] + 2 * m(k) 

where max L(k) is the maximum of the likelihood function over the parameters of model 
k and m(k) is the number of parameters used by model k. The best model is usually 
thought to be the one that yields the lowest value of AZC. A particularly interesting fea- 
ture of AZC is the way it penalizes models for the number of parameters they contain. This 
emphasizes the importance of simpler models. 

AZC has found considerable application in the modelling of time series data and is 
gaining wider acceptance in factor analysis. Furthermore, Takane (1987) and Sakamoto, 
Ishiguru, and Kitigawa (1986) discuss the use of AZC to guide the selection of models of 
contingency table data. Since this work also involves categorical data, it is the closest ap- 
plication of AZC to bibliometrics that we are aware of. In fact, in his comparisons of mod- 
els of cross-classified data, Takane used a formula for AZC that is based on Gz: 

AZC=G=-2*ddf, (16) 

where df is the number of degrees of freedom associated with the model under consider- 
ation. If one has already calculated G* as part of estimating the parameters for a model, 
eqn. 16 makes the use of AZC for model comparisons completely straightforward. 
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