
Data & Knowledge Engineering 86 (2013) 1–18

Contents lists available at SciVerse ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak
Diamond dicing

Hazel Webb a,⁎, Daniel Lemire b, Owen Kaser a

a University of New Brunswick Saint John, Canada
b TELUQ, Université du Québec, Canada
a r t i c l e i n f o
⁎ Corresponding author. Tel.: +1 5067578570.
E-mail addresses: hazel.webb@unb.ca (H. Webb),
URL: http://hazel-webb.com (H. Webb).

0169-023X/$ – see front matter © 2013 Elsevier B.V. A
http://dx.doi.org/10.1016/j.datak.2013.01.001
a b s t r a c t
Article history:
Received 16 June 2010
Received in revised form 31 December 2012
Accepted 7 January 2013
Available online 18 January 2013
In OLAP, analysts often select an interesting sample of the data. For example, an analyst might
focus on products bringing revenues of at least $100,000, or on shops having sales greater than
$400,000. However, current systems do not allow the application of both of these thresholds
simultaneously, selecting products and shops satisfying both thresholds. For such purposes, we
introduce the diamond cube operator, filling a gap among existing data warehouse operations.
Because of the interaction between dimensions the computation of diamond cubes is challenging.
We compare and test various algorithms on large data sets of more than 100 million facts. We
find that while it is possible to implement diamonds in SQL, it is inefficient. Indeed, our custom
implementation can be a hundred times faster than popular database engines (including a row-
store and a column-store).

© 2013 Elsevier B.V. All rights reserved.
Keywords:
OLAP
Information retrieval
Multidimensional queries
1. Introduction

An analyst often wants to focus on an interesting part of her data set. Sometimes this means she wants to focus on only some
attribute values. For example, she might select only the data related to the cities of Montreal and Toronto between the months of
July and October. This operation is a dice (Section 3.1). Unfortunately, dicing requires that the analyst know exactly which
attribute values she needs. Instead of specifying the attribute values, the analyst might prefer to specify a threshold. For example,
she can make an iceberg query (Section 6.3): e.g., the cities responsible for at least $10 million in sales.

Unfortunately, it is difficult to apply thresholds over several dimensions. The analyst might have selected cities generating at
least a certain volume of sales ($10 million), and then select products responsible for a certain sales volume (say $5 million) in
these cities. Unfortunately, after selecting the popular products ($5 million), the constraint on cities ($10 million) may no longer
be satisfied. Moreover, the analyst could equally start from a product selection that generates a sales volume of at least $5 million,
and then ask which cities have sales of at least $10 million when considering only these products. This could produce a different
result.

Instead, we propose diamond dicing. It applies constraints simultaneously on several dimensions in a consistent manner.
For example, we may seek the cities with a sales volume of at least $10 million dollars, and products with a sales volume of at least
$5 million.We require both constraints to be simultaneously satisfied. Intuitively, diamonddicing is amultidimensional generalisation
of icebergs. It is also an instance of dicing, but one where the analyst need not manually specify the interesting attribute values:
instead, as with an iceberg query, the analyst might only specify interesting thresholds (on sales, quantities and so on).

Unlike regular dicing or iceberg queries, the computation of a diamond dice (henceforth called a diamond) is a challenge
because of the interaction between the dimensions. Indeed, consider Fig. 1. Applying a threshold of $10 million on sales for the
lemire@gmail.com (D. Lemire), owen@computer.org (O. Kaser).

ll rights reserved.

http://dx.doi.org/10.1016/j.datak.2013.01.001
mailto:hazel.webb@unb.ca
mailto:lemire@gmail.com
mailto:owen@computer.org
http://hazel-webb.com
http://dx.doi.org/10.1016/j.datak.2013.01.001
http://www.sciencedirect.com/science/journal/0169023X
http://crossmark.crossref.org/dialog/?doi=10.1016/j.datak.2013.01.001&domain=pdf

Chicago Montreal Miami Paris Berlin Totals

TV

Camcorder 0.1 1.4 3.1

Phone 0.2 6.4 2.1

Camera 0.4 2.7 5.3

GameConsole

DVDPlayer

Totals

3.4 0.9 0.1 0.9 2.0 7.3

2.3 2.1 9.0

3.5 0.1 12.3

4.6 3.5 16.5

3.2 0.3 0.3 2.1 1.5 7.4

0.2 0.5 0.5 2.2 2.3 5.7

7.5 12.2 11.4 15.6 11.5 58.2

Fig. 1. Sales (in million dollars): the shaded region is a diamond where stores in selected cities need to have sales above $10 million whereas products need sales
above $5 million.

2 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
cities would eliminate Chicago, whereas applying the $5-million threshold on products would not terminate any product.
However, once the shops in Chicago are closed, the products TV and Game Console fall below the threshold of $5-million.1 We
cannot stop now, after processing each dimension once: removal of these products causes the removal of the Berlin store and,
finally, the termination of the DVD Player product-line. Thus, simultaneously satisfying constraints on several dimensions may
require several iterations.

We must also provide guidance regarding the selection of the thresholds. In our example based on Fig. 1, we used two
thresholds ($10 million for stores and $5 million for products) — but what if the analyst does not have specific thresholds in
mind? As a sensible default, wemight put the same threshold k on both stores and products. If k is too high, the diamond is empty.
So we might seek κ, which is the largest value of k so that the diamond is not empty. This value κ could be an interesting default
threshold for the analyst. In our example, κ=7.4 and the corresponding diamond comprises the attribute values Phone, Camera,
Montreal, Miami, and Paris. Within this dice, all cities and products have at least $7.4 million in sales. We present and test efficient
algorithms for finding κ (starting in Section 3.3).

Our next section presents several motivating examples. Then we present formal definitions in Section 3. In particular, we show
that our definition of a diamond is sound by proving that there is a unique solution to the diamond query. In Section 4, we present
efficient algorithms to compute diamonds. We review experimentally the efficiency of our algorithms in Section 5. Finally, we
review related work.2

2. Motivating examples

We consider example applications to further motivate diamond dicing. We show how diamonds allowed us to find facts that
surprised us in different applications.

2.1. Bibliometrics example

Consider a bibliographic table with columns for author and venue. Perhaps we want to analyse the publication habits of
professors, but much work would be required to identify precisely which authors are professors. However, perhaps we can
assume that most authors without at least 5 publications, in venues where professors publish, are not professors. The diamond
with a threshold of 5 publications per author and a threshold of one publication (from these authors) per venue will exclude
them. This diamond is the largest author-venue subcube where authors have 5 publications each in selected venues, and where
selected venues each have at least one publication from selected authors.

For illustration, we processed conference publication data available from DBLP [2]; the data and details of its preparation are
given elsewhere [3]. See Table 1 for some characteristics of diamonds in this data. We find that the diamond corresponding to
“professors” prunes about 82% of all authors (115,341 out of 640,674). Maybe surprisingly, it only prunes 4 venues.3 A similar
result remains true if we compute the diamond corresponding to prolific “professors” having published at least 50 papers: out of
5065, only 249 venues are pruned. Yet this diamond contains only 4790 authors out of 640,674 possible authors, which is a
selective group (less than 1%). Setting high thresholds is particularly useful in obtaining smaller, more easily analysed, sets of
data. For these purposes, we built an interactive tool that finds the highest thresholds generating non-empty diamonds. For
example, we may query for the largest value of κ such that the following diamond is not empty: authors with at least κ
publications each in retained venues, and retained venues each with at least κ publications from retained authors. In this case, the
answer is κ=119. We found this occurrence surprising. This diamond contains 11 prolific authors in the area of digital hardware
and computer-aided design, who publish in 7 venues.

In a modified form of the bibliometrics cube, we associated each publication with a main keyword, obtaining a 3-dimensional
cube [4]. Putting a threshold on the keyword dimension can restrict analysis to popular or mainstream topics.

Consider constraining the authors to have at least 108 publications (on mainstream topics, in popular venues), the topics to
have at least 6 occurrences (by prolific authors, in popular venues), and the venues to have at least 20 publications (by prolific
1 The sum of TV sales is now 3.9, and the sum of Game Console sales is 4.2.
2 Our work extends a conference paper [1] where a single algorithm was tested over small data sets.
3 If we require that each author published in at least 5 different venues, then we prune about 86% of authors, and only 5 venues.

Table 1
Characteristics of selected diamonds from DBLP.

Threshold needed for each Retained % size

Author Venue Authors Venues Reduction Interpretation

1 1 640,673 5065 0 All
5 1 115,341 5061 42 Professors
50 1 4790 4816 90 Prolific professors
119 119 11 7 >99.9 Hardware cluster

3H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
authors, on mainstream topics). We find the publications of I. Pomeranz and S. M. Reddy in 8 hardware venues. Within these
publications the most frequent keyword is ‘synchronous’, which occurred 7 times more often than the least frequent, ‘sequential’.
Globally these keywords are almost equally frequent and are ranked 286th and 289th. These two authors are ranked 20th and
11th, globally.

2.2. Netflix example

In the Netflix movie-rating database (discussed later; see Fig. 3), users have provided ratings for various movies, and the dates
of ratings are also recorded. Someone studying patterns in collaborative work might be interested that there is a subset of the
Netflix data where each user entered at least 1004 ratings on movies rated at least 1004 times by these same users during days
where there were at least 1004 ratings by these same users on these same movies. We found the result surprising.

2.3. Star Schema Benchmark example

We might be interested in seeking the subset of customers and suppliers such that each customer accounts for a sizable
revenue with selected suppliers and the suppliers each account for a sizable revenue on those customers. We took the fact table
from the Star Schema Benchmark [5] and rolled it up to two columns, customer and supplier, with revenue as the measure
(cube SSB1 statistics are given later). We found that about 10% of the customers (2174) each generate revenue of at least
$1.5 billion4 from a group of 1 996 suppliers (99.8%) and, simultaneously, each of these 1 996 suppliers generates at least
$1.5 billion from the 2174 customers. These customers and suppliers together account for approximately 17% of the total
revenue and 16% of the data. Since the Star Schema Benchmark is synthetic data generated from uniform distributions [6,7], this
result is not surprising.

3. Properties of diamond cubes

In this section, we present a formal model of the diamond cube. We show that diamonds are nested, with a smaller diamond
existing within a larger diamond. We also prove a uniqueness property for diamonds and we establish upper and lower bounds
on the parameter κ for both COUNT and SUM-based diamond cubes.

3.1. Formal model

Researchers and developers have yet to agree on a single multidimensional model for OLAP [8,9] Our simplified formal model
incorporates several widely accepted definitions for the terms illustrated in Fig. 2, together with new terms associated specifically
with diamonds. For clarity, all terms are defined in the following paragraphs.

A dimension D is a set of attributes that defines one axis of a multidimensional data structure. For example, in Fig. 2 the
dimensions are location, time and product. Each dimension Di has a cardinality ni, the number of distinct attribute values in this
dimension. Without losing generality, we assume that n1≤n2≤…≤nd. A dimension can be formed from a single attribute of a
database relation, and the number of dimensions is denoted by d.

A cube is the 2-tuple (D; f) which is the set of dimensions {D1,D2,…,Dd} together with a total function (f) which maps tuples in
D1×D2×⋯×Dd to R∪ ⊥f g, where ⊥ represents undefined. Fig. 2a shows a cube with three dimensions.

A cell of cube C is a 2-tuple ((x1,x2,…,xd)∈D1×D2×⋯×Dd,v) where v= f(x1,x2,…,xd) is called ameasure. The measure may be a
value v∈R, in which case we say the cell is an allocated cell. Otherwise, the measure is ⊥ and we say the cell is empty — an
unallocated cell. For the purposes of this paper, a measure is a single value. In more general OLAP applications, a cube may map to
several measures. Also, measures may take values other than real-valued numbers — Booleans, for example.

A slice is the cubeC′ ¼ D′; f ′
� �

obtained when a single attribute value is fixed in one dimension of cubeC ¼ D; fð Þ. For example,

Fig. 2b is a slice of the cube presented in Fig. 2a.
4 κ=1,581,756,429.

a) 3-D cube b) Slice on product shoe

Montreal

Paris

Lyon

Ontario

New York

Detroit

10

20

M
ar

ch

M
ay

A
pr

il

M
ar

ch

M
ay

Ju
ne

Ju
ly

A
ug

A
pr

il

M
ar

ch

M
ay

Ju
ne

Ju
ly

A
ug

A
pr

il

Quebec

Shoe

Table
Dress

location

Montreal

Paris

Lyon

Ontario

New York

Detroit

Quebec

location

time

time

Montreal

Paris

Lyon

Ontario

New York

Detroit

Quebec

location

time

product

Chair

Shoe

Table
Dress

product

Chair

c) Dice on months March–May

Fig. 2. OLAP terms: cube, slice and dice.

4 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
A dice defines a cube S from an existing cube by removing attribute values and the corresponding cells. For example, Fig. 2c
illustrates a dice applied to the cube from Fig. 2a where all months except March, April andMay were removed. The resulting cube
still has the same number of dimensions. We call it a subcube because its dimensions are subsets of the dimensions of the original
cube, and, as a function, it is a restriction to the corresponding subset of cells.

An aggregator is a function, σ, that assigns a real number to a set of cells — such as a slice. For example, SUM is an aggregator:
SUM (slicei)=v1+v2+⋯+vm where m is the number of allocated cells in slicei and the vi's are the measures.

A slice S′ is a subset of slice S if every allocated cell in S′ is also an allocated cell in S. An aggregator σ is monotonically
non-decreasing if S′⊂S implies σ(S′)≤σ(S). Similarly, σ is monotonically non-increasing if S′⊂S implies σ(S′)≥σ(S). Monotonically
non-decreasing operators include COUNT, MAX and SUM over non-negative measures. Monotonically non-increasing operators include
MIN and SUM over non-positive measures. MEAN and MEDIAN are neither monotonically non-increasing, nor non-decreasing functions.

Our formal model maps to the relational model in the following ways (see Fig. 3):

• A cube corresponds to a fact table: a relation whose attributes comprise a primary key and a single measure.
• An allocated cell is a fact, i.e. it is a distinct record in a fact table.
• A dimension is one of the attributes that compose the primary key.

3.2. Diamond cubes are unique

Intuitively, a diamond cube is a subcube where all attribute values satisfy a threshold condition. For example, all selected
stores must have total sales over 1 million dollars. We call such threshold conditions carats.

Definition 3.1. Given a number k, a cube has k carats along a dimension if the aggregate of every slice along that dimension is at
least k. That is, for every slice x, we have σ(x)≥k.

Note that if a dimension has k carats, it necessarily has k′ carats for k′bk.
Given two subcubes A and B of the same starting cube, their union A∪B is defined by the union of the pairs of dimensions. For

example, if A is the result of a dice limiting the location to Montreal and B is the result of a dice limiting the location to Toronto, the
subcube A∪B will be the result of a dice limiting the location to both Montreal and Toronto. Similarly, the intersection (A∩B) is
Movie Reviewer Date Rating

1 1488844 2005-09-06 3

1 822109 2005-05-13 5

1 885013 2005-10-19 4

1 30878 2005-12-26 4

1 823519 2004-05-03 3

1 893988 2005-11-17 3

1 124105 2004-08-05 4

1 1248029 2004-04-22 3

Fig. 3. Part of the NF2 fact table (see Section 5.2.1). Attributes (dimensions) are Movie, Reviewer and Date. Each row is a fact (allocated cell). The measure is
Rating.

5H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
defined by the intersection of the pairs of dimensions. We say that subcube A is contained in subcube B if all of the dimensions of A
are contained in the corresponding dimensions of B.

For monotonically non-decreasing operators (e.g., COUNT, MAX or SUM over non-negative measures), union preserves the carat,
as the next proposition shows.

Proposition 3.1. If the aggregator σ is monotonically non-decreasing, then the union of any two cubes having ki (resp. k
′
i) carats along

dimension Di has min ki; k
′
i

� �
carats along dimension Di as well, for i={1,2,…,d}.

Proof. The proof follows from the monotonicity of the aggregator. □

If we limit ourselves to monotonically non-decreasing aggregators, then we can efficiently seek the largest possible subcube
satisfying a given set of carats. We call such a subcube the diamond.

Definition 3.2. The k1,k2,…,kd-carat diamond is the maximal subcube having k1,k2,…,kd carats along dimensions D1,D2…,Dd. That
is, any subcube having k1,k2,…,kd carats is contained in the diamond.

By Proposition 3.1, the diamond is unique when σ is monotonically non-decreasing: it is given by the union of all subcubes
having k1,k2,…,kd carats. For more general aggregators or when different aggregators are applied to different dimensions, the
computation of the diamond might be NP-hard or ill-defined. For instance, when SUM is used over cubes having both positive and
negative measures, there may no longer be a unique solution to the problem ‘find the k1,k2…kd-carat cube’. This is indeed the case
for the cube in Fig. 4.

Sometimes we require the same carat k along all dimensions. To simplify the notation, instead of writing “k,k,…,k-carat”, we
write “k-carat”.

3.3. A priori bounds on the carats

The computation of a diamond requires that the analyst specify the desired number of carats. However, this may not be
practical for all dimensions. For example, the analyst may want to select stores with sales above 1 million dollars, but she may not
know how to select the threshold for the product dimension. In such cases, it might be best to set the carats to the largest possible
value that generates a non-empty diamond. This maximal number of carats can be found efficiently by binary search if we can
determine a limited range of possible values.

Given a cube C and σ, then κ is the largest number of carats for which C has a non-empty diamond. Intuitively, a small cube
with many allocated cells should have a large κ, and the following proposition makes this precise.

Proposition 3.2. For COUNT-based carats, we have κ≥(|C|−1)/∑i=1
d (ni−1).

Proof. We begin by proving that, for COUNT-based carats, if a cube C does not contain a non-empty k-carat subcube, then
Cj j≤1þ k−1ð Þ
Xd
i¼1

ni−1ð Þ: ð1Þ
Suppose that a cube C of dimension at most n1×n2×⋯×nd contains no k-carat diamond. Then one slice must contain at most
k−1 allocated cells. Remove this slice. The amputated cube must not contain a k-carat diamond. Hence, it has one slice containing
at most k−1 allocated cells. Remove it. This iterative process can continue at most ∑ i(ni−1) times before there is at most one
allocated cell left: hence, there are at most (k−1)∑ i(ni−1)+1 allocated cells in total.
row col 1 col 2 col 3 col 4 col 5 col 6
1 -5 1 1 1 0 3
2 -3 -4 1 0 1 0
3 2 2 4 0 2 1
4 0 2 3 1 0 0

a) Cube with positive and negative measures.

row col 2 col 3
3 2 4
4 2 3

b) rows processed first.

row col 3 col 6
1 1 2
4 4 2

c) columns processed first.

Fig. 4. There is no unique 4.4-carat SUM-based diamond.

6 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
By definition of κ, we have that the cube does not contain a non-empty κ+1-carat subcube. By substitution (k→κ+1) in
Eq. (1), we have that |C|≤1+κ∑ i=1

d (ni−1). Solving for κ, we have κ≥(|C|−1)/∑i=1
d (ni−1). □

Based on this lower bound alone, we compute κ efficiently (see Section 5.4). For a related discussion on SUM-based diamonds,
see Appendix A.

4. Algorithms

Computing diamonds is challenging because of the interaction between dimensions; modifications to a measure associated
with an attribute value in one dimension have a cascading effect through the other dimensions. We use different approaches to
compute diamonds:

• We implemented a custom programme in Java that loops through the cube checking and updating the COUNT or SUM for all
attribute values in each dimension until it stabilises (see Section 4.1).

• We also implemented an algorithm using SQL (see Section 4.2).

We based both our custom and SQL implementations on the basic algorithm for computing diamonds given in Algorithm
BASIC. Its approach is to repeatedly identify an attribute value that cannot be in the diamond, and then remove the attribute value
and its slice. The identification of “bad” attribute values is done conservatively, in that they are known already to have a sum less
than required (σ is SUM), or insufficient allocated cells (σ is COUNT). When the algorithm terminates, only attribute values that
meet the condition in every slice remain: a diamond.

Algorithm BASIC. Algorithm to compute the diamond of any given cube by deleting slices eagerly.

Algorithms based on this approach always terminate, though they might sometimes return an empty cube. By specifying how
to compute and maintain counts (or sums) for each attribute value in every dimension we obtain different variations. The
correctness of any such variation is guaranteed by the following result.

Theorem 4.1. Algorithm BASIC is correct, that is, it always returns the k1,k2,…,kd-carat diamond.

Proof. Because the diamond is unique, we need only show that the result of the algorithm, the cube A, is a diamond. If the result is
not the empty cube, then dimension Di has at least aggregated value ki per slice, and hence the cube has ki carats. (Note that, in the
main loop, if only attribute values having zero aggregates are deleted in all but the first dimension, it is not necessary to do
another pass.) We only need to show that the result of Algorithm BASIC is maximal: there does not exist a larger k1,k2,…,kd-carat
cube.

Suppose A′ is such a larger k1,k2,…,kd-carat cube. Because Algorithm BASIC begins with the whole cube C, there must be a first
time when one of the attribute values of dimension dim of C belonging to A′ but not A is deleted.

At the time of deletion, the slice corresponding to this attribute value had aggregate measure less than kdim. Let C′ be the cube
at the instant before the attribute is deleted, with all attribute values deleted so far. We see that C′ is larger than or equal to A′, a
k1,k2,…,kd-carat cube and therefore, slices in C′ corresponding to attribute values of A′ along dimension dim must have aggregate
measures of at least kdim, corresponding to kdim carats Therefore, we have a contradiction andmust conclude that A′ does not exist
and that A is maximal. □

If the aggregator is COUNT, and ki=1 for i>1, then Algorithm BASIC computes the diamond in a single pass.

7H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
4.1. Custom software

The size of available memory affects the capacity of in-memory data structures to represent data cubes. In our experiments, we
used a typical laptop computer with 8 GiB of memory. When we restricted the amount of memory available,5 all execution times
slowed, but our custom Java software still out-performed the database management systems.

We are interested in processing large data. Therefore, we seek an efficient external memory implementation where the data
cube can be stored in an external file whilst the important COUNTs (or SUMs) are maintained in memory.

Algorithm BASIC checks the σ-value for each attribute on every iteration. Calculating this value directly, from a data cube too
large to store in main memory, would entail many expensive disc accesses. Even with the COUNTs maintained in main memory, it is
prudent to reduce the number of I/O operations as much as possible. One way this can be achieved is to store the data cube as
normalised binary integers using bit compaction [10] — mapping strings to small integers starting at zero.

Algorithm EMD (External-Memory-Diamond-builder) employs d arrays, a1 to ad, that map attributes to their aggregate
σ-values. As values are pruned from the diamond, we must repeatedly update these arrays so that they continue to maintain the
aggregate of each slice. This update can be executed in constant time for aggregators such as COUNT and SUM: in the notation of
Algorithm EMD, the update is computed as aj(xj)=aj(xj)−σ({r}).

Algorithm EMD. Diamond dicing for relationally stored cubes. With each iteration, less data is processed.

Each time the algorithm passes through the data, it updates the aggregates eagerly, and marks cells as deleted. Only when a
significant fraction of the cells have been marked as such, are the cells actually deleted: we found it efficient to rebuild the list of
cells when more than half have been marked as deleted (τ=0.5).

When memory is abundant, we can use Algorithm EMD while keeping the content of the files in memory. Indeed, such a
version was implemented and we refer to this algorithm as IMD (In-Memory-Diamond-builder) in Section 5.

4.2. An SQL-based implementation

Formulating a diamond cube query in SQL-92 is challenging. Using nested queries and joins, we could essentially simulate a
fixed number of iterations of the outer loop in Algorithm BASIC. Unfortunately, we do not know how to determine the number of
iterations without computing the diamond itself. Consider Fig. 5 and the corresponding 2-carat COUNT-based diamond. Using
5 We used an mlock system call to remove 6 GiB of memory from use on our 8 GiB computer.

8 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
Algorithm BASIC, n−2 iterations are required to find the diamond. That is, we see an example where the number of iterations I=
Ω(n) and stopping after o(n) iterations results in a poor approximation with Θ(n) allocated cells and attribute values — whereas
the true 2-carat diamond has 4 attribute values and 4 allocated cells.

Algorithm SQL. Variation where the inner two loops in Algorithm BASIC are computed in SQL. This process can be repeated until
R stabilises.

We express the essential calculation in SQL, as Algorithm SQL. It is implemented as a stored procedure in SQL:1999, which
allows the iterations to be controlled entirely within the DBMS. Algorithm SQL is executed against a copy of the fact table, which
becomes smaller as the algorithm progresses. The fastest variation of this algorithm does not delete slices immediately, but
instead updates Boolean values to indicate the slices not included in the solution. The data cube is rebuilt when 75% of the
remaining cells are marked for deletion. B-tree indexes are built on each dimension to facilitate faster execution of the many
GROUP BY clauses.
4.3. Complexity analysis

Algorithm BASIC visits each dimension in sequence until it stabilises. Ideally, the stabilisation should occur after as few
iterations as possible.

Let I be the number of iterations through the input file till convergence; i.e. no more deletions are done. Value I is data
dependent and (by Fig. 5) is Θ(∑ini) in the worst case. In practise, I is not expected to be nearly so large, and working with large
real data sets I did not exceed 56. Initial experiments suggested that the relationship of I to k would be non-decreasing to κ+1
and non-increasing thereafter. Unfortunately, there are some cubes for which this is not the case. Fig. 6 illustrates such a cube,
where κ=3. On the first iteration, processing columns first for the 2-carat diamond, a single cell is deleted. On subsequent
iterations at most two cells are deleted until convergence. However, the 3-carat and 4-carat diamonds converge after a single
iteration.
× ×
× ×

× ×
× ×

...
. . .
× ×

× ×

Fig. 5. An n×n cube with 2n allocated cells (each indicated by a ×) and a 2-carat diamond in the upper left: it is a difficult case for several algorithms.

× × ×
× × ×
× × ×

× ×
× ×

× ×

× ×
×

Fig. 6. The 2-carat diamond requires more iterations to converge than the 3-carat diamond. Allocated cells are indicated by a ×.

9H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
The value of k relative to κ does, however, influence I. Typically, when k is far from κ—either less or greater—fewer iterations
are required to converge. However, when k exceeds κ by a very small amount, say 1, then typically many more iterations are
required to converge to the empty cube.

Algorithm EMD runs in time O(Id|C|). Often, the number of attribute values remaining in the diamond decreases substantially
in the first few iterations and those cubes are processed faster than this bound suggests. The more carats we seek, the faster the
cube decreases initially.

5. Experiments

We show that diamonds can be computed efficiently, i.e. within a few minutes on a typical laptop computer, even for very
large data sets. Some of the properties of diamonds, including their size and the range of values the carats may take, were assessed
experimentally.

5.1. Hardware and software

All experiments were conducted on a Gateway NV59 notebook with dual Intel i5 M430 (2.27 GHz) processors with 8 GiB of
DDR3-1066 RAM running Ubuntu 12.04. The hard disc is a 596 GiB ATAWDC6400BEVT-22AORTO running at 5400 rpm. It has an
estimated reading speed of 86 MB/s.

The algorithms were implemented in Java, using SDK version 1.7.0 and the default value (1.66 GiB) for maximal heap size, and
the code was archived at a public website [3]. Algorithm SQL was implemented in both an RDBMS (MySQL) and a column-store
DBMS (MonetDB) [11]. RDBMS experiments were conducted on MySQL version 5.5 Community Server with MyISAM storage
engine. MySQL is used in data warehousing and OLAP, most notably through vendors such as Infobright [12], JasperSoft and
Pentaho [13]. The column-store experiments were conducted with MonetDB 11.11.5.

Both database implementations make use of stored procedures and a Java interface collected execution times. The drivers used
were MySQL Connector/J 5.1.21 and monetdb-jdbc 2.3.

These database systems handle index creation differently:

• Of the index structures available in this version of MySQL, only B-trees are appropriate to the diamond dice operation. Spatial
indexing is limited to two dimensions and hash indexing requires that the data reside in main memory. We built B-tree indexes
on all columns to speed-up the GROUP-BY computations.

• In MonetDB, index creation is automatically determined with no option for the user to override system decisions [14]. Different
data compression techniques, including dictionary encoding for all strings, reduce the memory footprint.

5.2. Data used in experiments

A varied selection of freely-available real-data sets together with some systematically generated synthetic data sets were used
in the experiments. Each data set had a particular characteristic: a few dimensions or many, dimensions with high or low
cardinality or a mix of the two, small or large number of cells. They were chosen to illustrate that diamond dicing is tractable
under varied conditions and on many different types of data.

5.2.1. Real data
Five of the real-data sets were downloaded from the following sources:

1. Census Income: http://archive.ics.uci.edu/ml [16]
2. DBLP: http://dblp.uni-trier.de/xml/

http://archive.ics.uci.edu/ml
http://dblp.uni-trier.de/xml/

10 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
3. Netflix: http://www.netflixprize.com [17]
4. TWEED: http://folk.uib.no/sspje/tweed.htm [18]
5. Weather: http://cdiac.ornl.gov/ftp/ndp026b/ [19]

Details of how the cubes were extracted are available at a public website [3]. For cube TW1 we chose four attributes: Year,
Country, Type of Action and Target of Action with cardinalities of 53, 16, 11 and 11, respectively. The attributes for cubes NF1, NF2
and NF3 are Movie (17,770), Reviewer (480,189) and Date (2182). Rating (5) is the measure for NF2. Their statistics are given in
Table 2. Each cube was stored relationally in a comma-separated file on disc. A brief description of how data cubes were extracted
from the King James Bible data follows.

The data set was generated from the King James version of the Bible available at Project Gutenberg [15]. KJ4 [20,21] is a data
set motivated by applications of data warehousing to literature. It is a large list (with duplicates) of 4-tuples of words obtained
from the verses in the King James Bible [15], after stemming with the Porter algorithm [22] and removal of stemmed words with
three or fewer letters. Occurrence of row w1,w2,w3,w4 indicates a verse contains words w1 through w4, in this order. This data is a
scaled-up version of word co-occurrence cubes used to study analogies in natural language [23,24]. These data were chosen to be
representative of large cubes that might occur in text-mining applications.

Cube B1 was extracted from KJ4. Duplicate records were removed and a count of each unique sequence was kept, which
became the measure for cube B5. Four subcubes of B1 were also processed: B2 has the first 24,000,000 rows; B3 has the first
32,000,000 rows; and B4 has the first 40,000,000 rows. KJV-10 has similar properties to KJ4, except that there are 10 words in
each row and the process of creating KJV-10 was terminated when 500 million records had been generated—at the end of Genesis
19:30. Cube B6 was extracted from KJV-10. The statistics for all six cubes are also given in Table 2.

5.2.2. Synthetic data
We took the fact table from the Star Schema Benchmark [5] and rolled-up on the supplier and customer dimensions to create

cube SSB1. The result has 2000 suppliers, 20,000 customers, and over 5 million rows. Uniform distributions are used to generate
the benchmark [6,7] and the data is lacking correlations between columns that real data would frequently possess.

To investigate the effect that data distribution might have on the size and shape of diamonds, nine cubes of varying
dimensionality and distribution were constructed. We chose 1,000,000 cells with replacement from each of three different
distributions:

• uniform—cubes U1, U2, and U3.
• power law with exponent 3.5 to model the 65-35 skewed distribution—cubes S1, S2, and S3.
• power law with exponent 2.0 to model the 80-20 skewed distribution—cubes SS1, SS2, and SS3.

Details of the cubes generated are given in Table 3.

5.3. Preprocessing step

Before applying Algorithm EMD, we need to convert the input (flat text files) to flat binary files. To determine if row ordering
would have an effect on our implementation of Algorithm EMD, we chose two cubes—C1 and B2—and shuffled the rows using the
GNU utility shuf. We compared preprocessing and processing times for each of six cubes, averaged over ten runs. Extracting cubes
Table 2
Statistics of data sets.

Source Cube d |C| ∑ i=1
d ni Measure

King James Bible [15] B1 4 54,601,077 31,634 COUNT

B2 4 24,000,000 27,042 COUNT

B3 4 32,000,000 29,078 COUNT

B4 4 40,000,000 30,417 COUNT

B5 4 54,601,077 31,634 SUM occurrences
B6 10 365,231,367 6335 COUNT

Census income [16] C1 27 135,753 504 COUNT

C2 27 135,753 504 SUM stocks
DBLP [2] D1 2 1,791,857 645,739 COUNT

D2 2 1,791,857 645,739 SUM publications
D3 3 2,516,364 689,589 COUNT

Netflix [17] NF1 3 100,478,158 484,141 COUNT

NF2 3 100,478,158 484,141 SUM rating
NF3 4 20,000,000 473,753 COUNT

Tweed [18] TW1 4 1957 91 COUNT

TW2 15 4963 674 COUNT

TW3 15 4963 674 SUM killed
Weather [19] W1 11 124,164,371 48,654 COUNT

W2 11 124,164,371 48,654 SUM cloud cover

http://www.netflixprize.com
http://folk.uib.no/sspje/tweed.htm
http://cdiac.ornl.gov/ftp/ndp026b/

Table 3
Statistics of the synthetic data cubes.

Cube d |C| ∑ ini Measure

SSB1 2 5,524,778 22,000 SUM revenue
U1 3 999,987 10,773 COUNT

U2 4 1,000,000 14,364 COUNT

U3 10 1,000,000 35,910 COUNT

S1 3 939,153 10,505 COUNT

S2 4 999,647 14,296 COUNT

S3 10 1,000,000 35,616 COUNT

SS1 3 997,737 74,276 COUNT

SS2 4 999,995 99,525 COUNT

SS3 10 1,000,000 248,703 COUNT

11H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
from the data sets included a sorting step so that duplicates could be easily removed.We found that preprocessing the cube sorted
on its dimension of largest cardinality was up to 25% faster than preprocessing the shuffled cube. However, execution times for
Algorithm EMD were within 3% for each cube. Therefore, we did not reorder the rows prior to processing. We also found no
significant difference in execution times when the cubes were sorted by different dimensions.

As stated in Section 4.1 we implemented a version (called IMD) of Algorithm EMD that reads the data cube entirely into main
memory whenever the cube is small enough (b1 GiB). Otherwise, the algorithm processes the cube in a similar fashion.

The algorithms used in our experiments require different preprocessing of the cubes. For both Algorithms EMD and IMD, an
in-memory data structure is used to maintain aggregates of the attribute values. Algorithm SQL references the cube stored in a
database management system. Consequently, the preprocessor writes different kinds of data to supplementary files depending on
which algorithm is to be used.

The preprocessing of the cubes was timed separately from diamond building. Preprocessed data could be used many times,
varying the value for k, without incurring additional preparation costs. Table 4 summarises the times needed to preprocess each
cube in preparation for the algorithms that were run against it. Using MonetDB was in most cases, the most efficient method. For
comparison, sorting the Netflix comma-separated data file—using the GNU sort utility—took 5.3×102 s.

5.4. Finding κ kappa for COUNT-based diamonds

Using Proposition 3.2, the κ-carat diamond was built for each of the data sets. The initial guess (k) for κ was the value
calculated using Proposition 3.2. Then k was repeatedly doubled until an empty cube was returned and a tighter range for κ had
been established. Next a simple binary search, which used the newly discovered lower and upper bounds as the end points of
the search space, was executed. Each time a non-empty diamond was returned, it was used as the input to the next iteration of
the search. When the guess overshot κ and an empty diamond was returned, the most recent non-empty cube was used as the
input.

Statistics are provided in Table 5a. The estimate of κ comes from Proposition 3.2 and the number of iterations recorded is the
number used by Algorithm EMD to compute the κ-carat diamond given κ. The estimates for κ vary between 4% and 50% of the
actual value and there is no clear pattern to indicate why this might be. Two very different cubes both have estimates that are 50%
of the actual value: TW1, a small cube of less than 2000 cells and low dimensionality, andW1, a large cube of 1.23×108 cells with
moderate dimensionality. We experimented with sampling to provide an improved estimate for κ. We chose 10 independent
samples for each of 1%, 5% and 10% using 3 of our largest cubes, which have different characteristics. We computed κ for each of
these cubes. In Table 6 we see that even with just 1% of the data, the estimate for κ is very close to 1% of the actual value, and,
Table 4
Wall-clock times (in seconds) for preprocessing real-world data sets. A ‘–’ indicates that this algorithm was not applied to the corresponding data cube.

SQL

Cube EMD MySQL MonetDB

B1 2.1×102 1.1×103 7.1×101

B2 5.7×101 5.0×102 3.1×101

B3 8.1×101 6.1×102 3.8×101

B4 1.6×102 7.9×102 5.3×101

B6 3.3×103 – 2.2×103

C1 2.6×10−1 9.0×100 3.0×100

D1 5.0×100 1.4×101 3.7×100

D3 7.3×100 3.1×101 5.3×100

NF1 4.2×102 1.5×103 3.8×102

NF3 5.8×101 3.6×102 3.5×101

W1 1.3×103 7.4×103 1.4×103

Table 5
Iterations to convergence for SUM and COUNT-based diamonds.

(a) The number of iterations and time (in seconds) it took to determine the κ-carat diamond for COUNT-based diamonds.

Algorithm Cube Iterations Value of κ Time

∑ni Actual Est. Actual (in seconds)

IMD TW1 91 6 19 38 1.0×10−2

NF3 473,753 17 39 272 6.0×100

D1 645,739 23 3 30 3.0×10−1

D3 689,519 26 4 43 8.0×10−1

B2 27,042 16 884 7094 5.0×100

B3 29,078 19 1098 8676 6.7×100

C1 5607 8 282 672 1.5×10−1

EMD NF1 484,141 19 197 1004 3.4×101

W1 48,654 26 2550 4554 6.2×102

B1 31,634 12 1723 14,383 1.6×101

B4 30,417 12 1347 10,513 1.2×101

B6 6335 5 57,668 112,232,566 1.0×103

(b) The number of iterations and time (in seconds) it took to determine the κ-carat diamond on SUM-based diamonds. The estimate for κ is the tight lower
bound from Proposition A.1.

Cube Iterations Value of κ Time

∑ni Actual Est. Actual (in seconds)

B5 31,634 4 729 25,632 5.6×101

C2 504 5 1853 3,600,675 6.0×10−1

D2 645,739 7 113 119 7.5×10−1

NF2 484,141 40 5 3483 1.6×102

SSB1 22,000 8 2,124,269 1,581,756,429 4.6×100

TW3 674 3 85 85 4.3×10−2

W2 48,654 19 32 20,103 1.9×103

12 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
therefore, provides a better estimate than that of the bound (used as an estimate) given by Proposition 3.2. Since it is an estimate,
rather than a bound, we can test whether the diamond is empty for this value. Depending on the outcome, our estimate can then
be used as an upper or a lower bound for the binary search.

5.5. Finding κ kappa (C) for SUM-based diamonds

From Proposition A.2, we have that mini(maxj(σ(slicej(Di)))) is an upper bound on κ for any SUM-based diamond and from
Proposition A.1 a lower bound is the maximum value stored in any cell. Indeed, for cube TW3 the lower bound is the κ value. For
this reason, the approach to finding κ for the SUM-based diamonds varies slightly in that the first guess for k should be the lower
bound+1. If this returns a non-empty diamond, then a binary search over the range from the lower bound+1 to the upper
bound is used to find κ. Statistics are given in Table 5b.

5.6. Comparison of Algorithm speeds

In Table 5, we report times for processing the κ-carat diamond for each of nineteen cubes. Our implementation processes
cubes of 20,000,000–40,000,000 records in less than a minute.

Table 7 compares the speeds of Algorithms EMD or IMD with Algorithm SQL. Times were averaged over five runs and then
normalised against EMD or IMD.We see that EMD and IMD effect greater speed-up as the cube size increases and the cube density
decreases. For example, IMD is 4 times faster on the small, dense cube, TW1, and EMD is 500 times faster on the more sparse
cube, NF3.
Table 6
We can use the value of κ from uniform samples of the data to estimate κ for the entire cube.

Cube Actual κ Estimate from Proposition 3.2 Sample Size (10 samples)

1% 1% 5% 5% 10% 10%

Min Max Min Max Min Max

NF1 1004 197 11 11 51 51 101 102
W1 4554 2550 44 45 223 224 450 451
B1 14,383 1723 144 147 717 728 1428 1440

Table 7
Relative slowdown of the SQL algorithm compared to EMD or IMD. Times were averaged over ten runs. MySQL processing for cube B6 was forcibly terminated
after 19 h (⊗).

SQL(s) Ratio

Cube IMD (s) EMD (s) MySQL MonetDB MySQL MonetDB

C1 4.0×10−1 – 1.1×101 1.0×101 2.7×101 2.5×101

D1 3.0×10−1 – 7.4×101 7.9×101 2.5×102 2.6×102

D3 8.0×10−1 – 1.2×102 9.3×101 1.5×102 1.2×102

B2 – 8.0×100 1.9×103 8.2×101 2.4×101 1.0×101

B3 – 1.2×101 2.7×103 1.1×102 2.3×102 9.0×100

B4 – 1.2×101 3.5×103 2.2×102 2.9×102 1.8×101

B6 – 1.0×103 ⊗ 1.3×104 – 1.3×101

NF3 6.0×100 – 1.3×103 3.3×102 2.0×102 5.5×101

NF1 – 3.4×101 1.9×104 5.0×103 5.6×102 1.5×102

13H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
Although the diamond dice operation is inherently a row-wise computation, we find MonetDB can be much faster than MySQL
(up to 23 times faster). MonetDB was able to complete even the most difficult computation in no more than 3.6 h whereas MySQL
needed more than 19 hours in this case. However, our Java code did it in 17 minutes. The amount of available memory affects the
running times of all our algorithms. We restricted the amount of memory to 2 GiB and processed cube NF1:

• EMD was 2.6 times slower (1.5 minutes).
• MonetDB was 10 times slower (9 hours).
• MySQL was forcibly terminated after 23 hours.

Neither the initial file size nor the number of cells pruned from each k-carat diamond alone explains the time necessary to
generate each diamond. In an earlier implementation of the diamond dicing algorithm, we had observed that the time expended
was proportional to the number of cells processed. This is not as evident in the current implementation, where a new file is
written when 50% of the cells are marked for deletion, instead of at every iteration. However, for all cubes more iterations and
time are required to process k-values that only slightly exceed κ. In one instance (see Fig. 7), we needmore than twice the number
of iterations and nearly twice the time to compute the (empty) k=673-carat diamond than to compute the κ=672-carat
diamond. In both examples presented in Fig. 7 (cubes C1 and W1), the number of iterations needed to compute the k-carat
diamond for a value of k either 20% above or below κ is at least half of the number of iterations observed for k=κ+1. Similarly,
30%more time is required to process κ+1 for cube W1. Intuitively, one should not be surprised that more iterations, and thus
time, are required when k≈κ: attribute values that are almost in the diamond are especially sensitive to other attribute values
that are also almost in the diamond.

5.7. Diamond size and dimensionality

The size (in cells) of the κ-carat diamond of the high-dimensional cubes is large, e.g. the κ-carat diamond for B6 captures 30%
of the data. How can we explain this? Is this property a function of the number of dimensions? To answer this question the κ-carat
COUNT-based diamond was generated for each of the synthetic cubes (except SSB1). Estimated κ, its real value and the size in cells
for each cube are given in Table 8. The κ-carat diamond captures 98% of the data in cubes U1, U2 and U3 — dimensionality has no
effect on diamond size for these uniformly distributed data sets. Likewise, dimensionality did not affect the size of the κ-carat
diamond for the skewed data cubes as it captured between 23% and 26% of the data in cubes S1, S2 and S3 and between 12% and
Fig. 7. Times and iterations needed to generate diamonds with different k-values. In each case more iterations are required for k-values that slightly exceed κ. The
increase from k=672 to k=673 is particularly evident.

Table 8
High dimensionality does not affect diamond size.

Cube Dimensions Iters Value of κ Size (cells) % captured

Est. Actual

U1 3 6 89 236 982,618 98
U2 4 6 66 234 975,163 98
U3 10 7 25 229 977,173 98
S1 3 9 90 1141 227,527 24
S2 4 14 67 803 231,737 23
S3 10 14 25 208 260,864 26
SS1 3 18 11 319 122,878 12
SS2 4 19 7 175 127,960 13
SS3 10 17 1 28 165,586 17

14 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
17% in the other cubes. These results indicate that the dimensionality of the cube does not affect howmuch of the data is captured
by the diamond dice.

5.8. Iterations to convergence

In Section 4.3, we observed that in the worst case it could take Θ(∑ini) iterations before the diamond cube stabilised. In
practise, this was not the case (see Table 5 and Fig. 7). All cubes converged to the κ-carat diamond in less than 1% of ∑ ini, with
the exception of the small cube TW1, which took less than 7% ∑ ini. Algorithm EMD required 19 iterations and 34 s6 to compute
the 1004-carat κ-carat diamond for NF1 and it took 50 iterations and an average of 72 seconds to determine that there is no
1005-carat diamond.

For several values of k, we measured the number of cells remaining in cube NF1 after each iteration of Algorithm EMD, in order
to see how quickly the diamond converges to an empty diamond when k exceeds κ. Fig. 8 shows the number of cells present
in the diamond after each iteration for 1004–1006 carats. The curve for 1 006 reaches zero first, followed by that for 1005. Since
κ=1 004, that curve stabilises at a nonzero value. It takes longer to reach a critical point when k only slightly exceeds κ.

The number of iterations required until convergence for all our synthetic cubes was also far smaller than the upper bound,
e.g. cube S3: 35 616 (upper bound) and 14 (actual). We had expected to see the uniformly distributed data taking longer to
converge than the skewed data. This was not the case: in fact the opposite behaviour was observed (see Table 8). For cubes U1, U2
and U3 the diamond captured 98% of the cube: less than 23,000 cells were removed, suggesting that they started with a structure
very like a diamond but for the skewed data cubes—S1, S2, S3, SS1, SS2 and SS3—the diamond was more “hidden”.

6. Related work

There are other multidimensional operations that can be useful to an analyst, such as Skyline (Section 6.2), Nearest
Neighbours and Outliers (Section 6.3). However, they differ from diamonds in several ways. Except for ITERATIVE PRUNING, none is a
form of dicing, that is they do not select interesting attribute values, and some assume that attribute values are ordered or that we
have a distance measure between records. In the rest of this section, we review these related queries in more detail.

6.1. Trawling the Web for cyber-communities

A specialisation of the diamond cube is found in Kumar et al.'s work searching for emerging social networks on the Web [25].
Our approach is a generalisation of their two-dimensional ITERATIVE PRUNING algorithm. Diamonds are inherently multidimensional.
Kumar et al. [25] model the Web as a directed graph and seek large dense bipartite sub-graphs. A bipartite graph is dense if most
of the vertices in the two disjoint sets, U and V, are connected. Kumar et al. hypothesise that the signature of an emerging Web
community contains at least one “core”, which is a complete bipartite sub-graph with at least i vertices from U and j vertices from
V. In their model, the vertices in U and V are Web pages and the edges are links from U to V. Seeking an (i,j) core is equivalent to
seeking a perfect two-dimensional diamond cube (all cells are allocated). Their ITERATIVE PRUNING algorithm is a specialisation of the
basic algorithm we use to seek diamonds: it is restricted to two dimensions and is used as a preprocessing step to prune data that
cannot be included in the (i,j) cores. A multidimensional extension of their algorithm proved to consume too much memory and
run too slowly (see Ref. [26]).

6.2. Skyline operator

The Skyline operator [27,28] seeks a set of points where each point is not “dominated” by some others: a point is included in the
skyline if it is as good or better in all dimensions and better in at least one dimension. Attributes, e.g. distance or cost,must be ordered.
6 Times were averaged over 10 runs.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 10 20 30 40 50

ce
lls

 le
ft

iteration

1004 carats
1005 carats
1006 carats

Fig. 8. Cells remaining after each iteration of Algorithm EMD for k=1004, 1005 and 1006 on cube NF1.

15H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
Skyline queries have been adapted to the OLAP context [29] as the Multi-Objective OLAP (MOOLAP) framework. Like
diamonds, the goal is to allow an analyst to focus on interesting data. For example, the analyst might be interested in stores that
have either high profitability or high volume of sales (ideally both). Like diamonds, MOOLAP assumes that user-provided
aggregators are monotone (e.g., like SUM). In contrast to diamonds, MOOLAP results do not form a dice.

6.3. Sub-sampling with database queries

Relational Database Management Systems (RDBMS) have optimisation routines that are especially tuned to address both basic
and more complex SELECT …FROM …WHERE … queries. However, there are some classes of queries that are difficult to express
in SQL, or that execute slowly, because suitable algorithms are not available to the underlying query engine. Besides skyline, they
include top-k and nearest-neighbour queries.

6.3.1. Top-k
Another query, closely related to the skyline query, is that of finding the “top-k” data points. For example, we may seek the ten

most popular products sold in a store. While this can help the work of the analyst, browsing only the top-k results can also
improve performance [30] by reducing the size of the result set.

6.3.2. Nearest neighbours
One of the most common multidimensional queries is the nearest neighbour query, which seeks elements that are “close” to a

provided target. For example, given a set of users, we might seek users who have a profile similar to the current user. A common
query asks to find the k nearest neighbours (kNN), that is, k neighbours that are as close as possible to the target.

Reverse nearest neighbours [31] starts with a given element and asks which possible targets would have this element in the
nearest neighbours. For example, imagine that customers only visit one of the 10 nearest stores. Given a customer, which store
locations would attract him? Nearest neighbour queries require a specific distance measure.

6.3.3. Outlier identification
Another frequent type of query in multidimensional data analysis is outlier identification. For example, we might seek

elements that are far from most other data points [32]. Sarawagi et al. [33] define outliers in the OLAP context as deviations from
anticipated values (computed from a model). Their approach requires learning a model from the data so that anticipated values
can be computed. It also serves to highlight possibly interesting data in a large data cube.

6.3.4. Iceberg queries
The iceberg query introduced by Fang et al. [34] eliminates aggregate values below some specified threshold. For example, if we

have sales data by month and by store, we might require sales to exceed a threshold: only pairs (month, store) above the threshold
are kept. Thesemight be considered interesting by the analyst. In contrast, diamond dicing applies several thresholds simultaneously.
In effect, we could consider diamond dicing as the simultaneous application of several interacting iceberg thresholds.

6.4. Formal concept analysis

In Formal Concept Analysis [35,36] a Galois (concept) lattice is built from a binary relation. It is used in machine learning to
identify conceptual structures among data sets. For example, a concept can be formed from a set of documents and the set of
search terms those documents match. We put a value of 1 in a cell if the corresponding document contains the corresponding
term, otherwise we leave the cell unallocated. A Galois concept in this case would be a list of documents and a list of terms such

SearchTerms

A B C D E

D
oc

um
en

ts
1 1 1

2 1 1

1 1

1 1

3 1 1 1 1

4

5

1 1

1 1 1

a) A 3 × 3 diamond is embedded in this bi-
nary relation.

b) Galois lattice. Each element
(concept) in the lattice is defined
by its extent and intent.

12345,

1234,AC 1235, BC

123, ABC

35,BCE

3,ABCE
12,ABCD

,ABCDE

Fig. 9. Documents and search terms in an information retrieval system and the corresponding Galois lattice.

16 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
that every document contains every term in the list, and every term is contained in every document. Just like a diamond, Galois
concepts must be maximal: there cannot be another Galois concept that contains all the documents and terms, and some more.
Given the data in Fig. 9a, the smallest concept including document 1 is the one with documents {1, 2} and search terms {A,B,C,D}.
Concepts can be partially ordered by inclusion and thus can be represented by a lattice as in Fig. 9b.

Galois lattices are related to diamond cubes: in effect, a Galois concept is a perfect COUNT-based diamond — one with all cells
allocated — in a two-dimensional setting. Though formal Concept Analysis is typically restricted to two dimensions, Cerf et al.
[37] generalise formal concepts by presenting an algorithm that is applied to more than two dimensions. Their definition of a closed
n-set — a formal concept in more than two dimensions — states that each element is related to all others in the set and no other
element can be added to this setwithout breaking the first condition. It is the equivalent of finding a perfect diamond in n dimensions.
An example is given in Fig. 10.

In real data sets, we are unlikely to find large perfect diamonds though we can find many small ones, especially if there are
many dimensions. Galois concepts are brittle: a single omitted cell is sufficient to make a concept disappear. Thus, for an analyst,
Galois concepts may be difficult to use.
7. Conclusion

We presented a formal analysis of the diamond cube. We have shown that, for the parameter k associated with each
dimension in every data cube, there is only one k1,k2,…,kd-carat diamond. By varying the ki's we get a collection of diamonds for a
cube. We established upper and lower bounds on the parameter κ for both COUNT and SUM-based diamond cubes.

We have designed, implemented and tested algorithms to compute diamonds on real and synthetic data sets. Experimentally,
the algorithms bear out our theoretical results. An unexpected experimental result is that the number of iterations required to
process the diamonds with k slightly greater than κ is often twice that required to process the κ-carat diamond. This also results in
an increase in running time.

We have shown that computing diamonds for large data sets is feasible. EMD fared better on large, sparse data cubes than
other approaches and our results confirm that this algorithm is scalable.
di
m

en
si

on
 2

dimension 3 dimension 3 dimension 3

A B C A B C A B C

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1

4 1 1 1 1 1 1

α β γ
dimension 1

Fig. 10. A 3-dimensional relation with closed 3-set {(α,γ)(1,2)(A,B)}.

17H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
7.1. Future research directions

Although it is faster to compute a diamond cube using our implementation than using the standard relational DBMS
operations, the speed does not conform to the OLAP goal of near constant time query execution. Different approaches could be
taken to improve execution speed: compress the data so that more of the cube can be retained in memory; use multiple
processors in parallel; or, if an approximate solution is sufficient, we might process only a sample of the data. These are some of
the ideas to be explored in future work.

Data cubes are often organised with hierarchies of relationships within dimensions. For example, a time dimension may
include aggregations for year, month and day. Our current work does not address the issue of hierarchies and how they might be
exploited in the computation of diamonds. This is also a potential avenue for future work.

Appendix A. Bounding the carats for SUM-based diamonds

For SUM-based diamonds, the goal is to capture a large fraction of the sum. The statistic, κ, of a SUM-based diamond is the largest
sum for which there exists a non-empty diamond: every slice in every dimension has sum at least κ (see Section 3.3).
Propositions A.1 and A.2 give tight lower and upper bounds respectively for κ.

Proposition A.1. Given a non-empty cube C and the aggregator SUM, a tight lower bound on κ is the value of the maximum cell (m).

Proof. The κ-carat diamond, by definition, is non-empty, so it follows that when the κ-carat diamond comprises a single cell, then
κ takes the value of the maximum cell in C. When the κ-carat diamond contains more than a single cell, m is still a lower bound:
either κ is greater than or equal tom. □

Given only the size of a SUM-based diamond cube (in cells), there is no upper bound on its number of carats. However, given its
sum, say S, then it cannot have more than S carats. We can determine a tight upper bound on κ as the following proposition
shows.

Proposition A.2. A tight upper bound for κ is
min
i

max
j

SUM slicej Dið Þ
� �� �� �

for i∈ 1;2;…; df g and j∈ 1;2;…;nif g:
Proof. Let X={slicej(Di) |SUM(slicej(Di))=maxk(SUM(slicek(Di))} then there is one slice x whose SUM (x) is smaller than or equal
to all other slices in X. Suppose κ is greater than SUM (x) then it follows that all slices in this κ-carat diamondmust have SUM greater
than SUM (x). However, x is taken from X, where each member is the slice for which its SUM is maximum in its respective
dimension, thereby creating a contradiction. Such a diamond cannot exist. Therefore, mini(maxj(SUM(slicej(Di)))) is an upper
bound for κ.

To show that mini(maxj(SUM(slicej(Di)))) is also a tight upper bound we only need to consider a perfect cube where all
measures are identical. □

References

[1] H. Webb, O. Kaser, D. Lemire, Pruning attribute values from data cubes with diamond dicing, in: International Database Engineering and Applications
Symposium (IDEAS'08), 2008, pp. 121–129.

[2] M. Ley, Digital bibliography and library project, http://dblp.uni-trier.de/xml/ 2012, (checked 2012-10-21).
[3] H. Webb, Code archive, http://www.hazel-webb.com/archive.htm 2009, (Last checked 2012-12-21).
[4] T. Kondo, H. Nanba, T. Takezawa, M. Okumura, Technical trend analysis by analyzing research papers' titles, in: Z. Vetulani (Ed.), Human Language

Technology. Challenges for Computer Science and Linguistics, Lecture Notes in Computer Science, vol. 6562, Springer, Berlin, Heidelberg, 2011, pp. 512–521.
[5] Transaction Processing Performance Council, DBGEN 2.4.0, http://www.tpc.org/tpch/ 2006, (Last checked 2012-10-21).
[6] Transaction Processing Performance Council, TPC Benchmark H (Decision Support)— standard specification revision 2.1.0. , online http://www.tpc.org/tpch/

spec/tpch2.1.0.pdf 2003, (checked 2012-10-15).
[7] P. O'Neil, E. O'Neil, X. Chen, Star Schema Benchmark — revision 3, online http://www.cs.umb.edu/poneil/StarSchemaB.PDF 2009, (checked 2012-10-15).
[8] S. Rizzi, A. Abelló, J. Lechtenbörger, J. Trujillo, Research in data warehouse modeling and design: dead or alive? Proceedings of the 9th ACM International

Workshop on Data Warehousing and OLAP (DOLAP'06), ACM, New York, NY, USA, 2006, pp. 3–10.
[9] J.-N. Mazón, J. Lechtenbörger, J. Trujillo, A survey on summarizability issues in multidimensional modeling, Data & Knowledge Engineering 68 (2009)

1452–1469.
[10] W. Ng, C. Ravishankar, Block-oriented compression techniques for large statistical databases, IEEE Transactions on Knowledge and Data Engineering 9

(1997) 314–328.
[11] P. Boncz, M. Zukowski, N. Nes, MonetDB/X100: Hyper-pipelining query execution, in: CIDR'05, 2005.
[12] D. Ślezak, V. Eastwood, Data warehouse technology by Infobright, Proceedings of the 2009 ACM SIGMOD International Conference on Management of data,

SIGMOD'09, ACM, New York, NY, USA, 2009, pp. 841–846.
[13] R. Bouman, J. van Dongen, Pentaho Solutions: Business Intelligence and Data Warehousing with Pentaho and MySQL, Wiley Publishing, 2009.
[14] MonetDB BV, Reader's guide, online http://www.monetdb.org/Documentation 2012, (checked 2012-10-21).
[15] Project Gutenberg Literary Archive Foundation, Project Gutenberg, http://www.gutenberg.org/ 2009, (checked 2012-10-21).
[16] A. Frank, A. Asuncion, UCI machine learning repository, http://archive.ics.uci.edu/ml 2010, (checked 2012-10-21).
[17] Netflix, Inc., Nexflix prize, http://www.netflixprize.com 2007, (checked 2012-10-21).
[18] J.O. Engene, Five decades of terrorism in Europe: the TWEED dataset, Journal of Peace Research 44 (2007) 109–121.

http://dblp.uni-trier.de/xml/
http://www.hazel-webb.com/archive.htm
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf
http://www.cs.umb.edu/poneil/StarSchemaB.PDF
http://www.monetdb.org/Documentation
http://www.gutenberg.org/
http://archive.ics.uci.edu/ml
http://www.netflixprize.com

18 H. Webb et al. / Data & Knowledge Engineering 86 (2013) 1–18
[19] C. Hahn, S. Warren, J. London, Edited synoptic cloud reports from ships and land stations over the globe, 1982–1991, http://cdiac.ornl.gov/ftp/ndp026b/
2004, (checked 2012-10-21).

[20] O. Kaser, D. Lemire, K. Aouiche, Histogram-aware sorting for enhanced word-aligned compression in bitmap indexes, in: Proceedings of the ACM 11th
International Workshop on Data Warehousing and OLAP (DOLAP'08), 2008, pp. 1–8.

[21] D. Lemire, O. Kaser, Reordering columns for smaller indexes, Information Sciences 181 (2011) 2550–2570.
[22] M.F. Porter, An algorithm for suffix stripping, Readings in Information Retrieval, Morgan Kaufmann, 1997, pp. 313–316.
[23] P.D. Turney, M.L. Littman, Corpus-based learning of analogies and semantic relations, Machine Learning 60 (2005) 251–278.
[24] O. Kaser, S. Keith, D. Lemire, The LitOLAP project: Data warehousing with literature, in: Proceedings, CaSTA'06: The 5th Annual Canadian Symposium on Text

Analysis, 2006, pp. 93–96.
[25] R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Trawling the Web for emerging cyber-communities, Proceedings of the 8th International Conference on

World Wide Web (WWW'99), Elsevier North-Holland, Inc., New York, NY, USA, 1999, pp. 1481–1493.
[26] H. Webb, Properties and Applications of Diamond Cubes, Ph.D. thesis, University of New Brunswick Saint John, 2010. Available from http://hazel-webb.com.
[27] S. Börzsönyi, D. Kossmann, K. Stocker, The Skyline Operator, Proceedings of the 17th International Conference on Data Engineering (ICDE'01), IEEE Computer

Society, 2001, pp. 421–430.
[28] L. Tang, H. Liu, Graph mining applications to social network analysis, in: C.C. Aggarwal, H. Wang (Eds.), Managing and Mining Graph Data, Advances in

Database Systems, vol. 40, Springer, US, 2010, pp. 487–513.
[29] S. Antony, P. Wu, D. Agrawal, A. El Abbadi, Aggregate skyline: Analysis for online users, in: SAINT'09: Proceedings of the 2009 Ninth Annual International

Symposium on Applications and the Internet, 2009, pp. 50–56.
[30] D. Donjerkovic, R. Ramakrishnan, Probabilistic optimization of top n queries, VLDB'99, Proceedings of the 25th International Conference on Very Large Data

Bases, Morgan Kaufmann, 1999, pp. 411–422.
[31] F. Korn, S. Muthukrishnan, Influence sets based on reverse nearest neighbor queries, Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, ACM, New York, NY, USA, 2000, pp. 201–212.
[32] E.M. Knorr, R.T. Ng, Algorithms for mining distance-based outliers in large datasets, VLDB'98, Proceedings of the 24th International Conference on Very Large

Data Bases, Morgan Kaufmann, San Francisco, CA, USA, 1998, pp. 392–403.
[33] S. Sarawagi, R. Agrawal, N. Megiddo, Discovery-driven exploration of OLAP data cubes, EDBT'98: Proceedings of the 6th International Conference on

Extending Database Technology: Advances in Database Technology, Springer-Verlag, London, UK, 1998, pp. 168–182.
[34] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J.D. Ullman, Computing iceberg queries efficiently, VLDB'98, Proceedings of the 24th International

Conference on Very Large Data Bases, Morgan Kaufmann, San Francisco, CA, USA, 1998, pp. 299–310.
[35] R. Wille, Knowledge acquisition by methods of formal concept analysis, Proceedings of the Conference on Data Analysis, Learning Symbolic and Numeric

Knowledge, Nova Science Publishers, Inc., Commack, NY, USA, 1989, pp. 365–380.
[36] R. Godin, R. Missaoui, H. Alaoui, Incremental concept formation algorithms based on Galois (concept) lattices, Computational Intelligence 11 (1995)

246–267.
[37] L. Cerf, J. Besson, C. Robardet, J.-F. Boulicaut, Closed patterns meet n-ary relations, ACM Transactions on Knowledge Discovery from Data 3 (2009) 1–36.

Hazel Webb is an Assistant Professor in the Department of Computer Science and Applied Statistics at the Saint John campus of the
University of New Brunswick. She received a BSc (Data Analysis) (2001) MCS (2005) and PhD (2010) from the University of New
Brunswick.
Daniel Lemire received a B.Sc. and a M.Sc. in Mathematics from the University of Toronto in 1994 and 1995. He received his Ph.D. in
Engineering Mathematics from the École Polytechnique and the Université du Québec à Montréal in 1998. He is now a professor at
the Université du Québec à Montréal (UQAM) where he teaches Computer Science. His research interests include data warehousing,
OLAP and time series.
Owen Kaser is Associate Professor in the Department of Computer Science and Applied Statistics, at the Saint John campus of The
University of New Brunswick. He received a Ph.D. in Computer Science in 1993 from SUNY Stony Brook.

http://cdiac.ornl.gov/ftp/ndp026b/
http://hazel-webb.com
Unlabelled image
Unlabelled image

	Diamond dicing
	1. Introduction
	2. Motivating examples
	2.1. Bibliometrics example
	2.2. Netflix example
	2.3. Star Schema Benchmark example

	3. Properties of diamond cubes
	3.1. Formal model
	3.2. Diamond cubes are unique
	3.3. A priori bounds on the carats

	4. Algorithms
	4.1. Custom software
	4.2. An SQL-based implementation
	4.3. Complexity analysis

	5. Experiments
	5.1. Hardware and software
	5.2. Data used in experiments
	5.2.1. Real data
	5.2.2. Synthetic data

	5.3. Preprocessing step
	5.4. Finding κ kappa for count-based diamonds
	5.5. Finding κ kappa (C) for sum-based diamonds
	5.6. Comparison of Algorithm speeds
	5.7. Diamond size and dimensionality
	5.8. Iterations to convergence

	6. Related work
	6.1. Trawling the Web for cyber-communities
	6.2. Skyline operator
	6.3. Sub-sampling with database queries
	6.3.1. Top-k
	6.3.2. Nearest neighbours
	6.3.3. Outlier identification
	6.3.4. Iceberg queries

	6.4. Formal concept analysis

	7. Conclusion
	7.1. Future research directions

	Bounding the carats for sum-based diamonds
	References

