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The patent map has long been considered as a useful tool for mining latent technological information.
Among others, the detection of patent vacuums, defined as unexplored areas of new technologies,
deserves intensive research. However, previous studies for identifying patent vacuums on the patent
map have been subjected to some limitations, stemming from the subjective and manual identification
of patent vacuums. To address these limitations, this paper proposes a generative topographic mapping
(GTM)-based patent map, which aims to automatically identify a patent vacuum. Since GTM is a proba-
bilistic approach of mapping multidimensional data space onto a low-dimensional latent space and vice
versa, it contributes to the automatic detection and interpretation of patent vacuums. The proposed
approach consists of three stages. Firstly, text mining is executed in order to transform patent documents
into keyword vectors as structured data. Secondly, the GTM is employed to develop the patent map, sub-
sequently leading to the discovery of patent vacuums, which are expressed as blank areas in the map.
Lastly, the meaning of each patent vacuum is interpreted by the inverse mapping of patent vacuums onto
the original keyword vector. The case study is conducted with lithography technology-related patents.
We believe the proposed approach not only saves time and effort for identifying patent vacuums, but also
increases objectivity and reliability.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A patent map has been widely used for identifying the possibil-
ities and opportunities for new technology (Grandstrand, 1999).
Since patents are useful sources of knowledge about technical pro-
gress and innovative activity (Basberg, 1987; Ernst, 2003; Grilli-
ches, 1990; Jaffe, Trajtenberg, & Forgarty, 2000; Li, Wang, &
Hong, 2009), the patent map is a guaranteed useful proxy measure
for technological power (Park, Yoon, & Lee, 2005), has been
employed as the representative tool used to grasp diverse features
of individual patents and identify complex relationships among
patents (Yoon, Yoon, & Park, 2002). Since patent maps are pre-
sented in visual forms such as charts, tables, or graphs, significant
amounts of technological information can be acquired in informa-
tive and easy ways. More importantly, patent maps have been
employed to identify patent vacuums, which are regarded as an
unexplored area of technology that deserves intensive investiga-
tion for new technology development. In previous studies, two rep-
resentative types of patent maps have been used for identifying
patent vacuums: a principle component analysis (PCA)-based pat-
ent map (Lee, Yoon, & Park, 2009) and a self-organizing map
(SOM)-based patent map (Yoon et al., 2002).
ll rights reserved.

+82 2 889 8560.
ue2000@snu.ac.kr (Y. Suh),
r (Y. Park).
However, two significant limitations exist in both types of pat-
ent maps. The first limitation originates from detecting patent vac-
uums from the patent map. In previous studies, patent vacuums in
the patent map have been detected by the subjective ways,
depending on the knowledge and experience of researchers. Since
there is no clear standard for detecting vacuums, they have been
characterized as the relatively sparse or empty areas in the patent
map. Thus, no alternative exists, and patents vacuums must be
identified in this work by the subjective judgment of researchers.
Consequently, patent vacuums might be detected differently
depending on each researcher’s knowledge and experience, even
in a single patent map.

The second limitation constricting previous patent maps corre-
sponds to the interpretation of identified vacuums. After detecting
patent vacuums, the vacuum should be interpreted as a real-
world technological opportunity, which is as a key part of patent
vacuum mapping. However, the interpretation has relied on
manual work by researchers, such as investigating the surround-
ing patents of target vacuums. Therefore, the interpretation of
patent vacuums possesses an inevitable weakness in regards to
efficiency and effectiveness. In terms of efficiency, an ample
amount of time and effort must be devoted to interpreting the
patent vacuum as real-world technology. In terms of effectiveness,
quite naturally, a significant subjectivity problem arises since the
interpretations vary depending on the knowledge and experience
of researchers.
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This paper proposes a generative topographic mapping (GTM)-
based patent map which aims to automatically detect and inter-
pret technology vacuums. Since GTM is a probabilistic approach
to mapping multidimensional data space onto a low-dimensional
latent space and vice versa (Bishop, Svensén, & Willams, 1998),
the contributions to the detection and interpretation of patent vac-
uums are twofold. Firstly, in regards to detection, the GTM-based
patent map provides a grid-based two-dimensional map in which
each patent is mapped into the relevant grid. Accordingly, the
blank grid is easily detected as a vacuum, requiring no special sub-
jective judgment. This means that GTM can overcome the problem
of subjective detection observed in traditional patent mapping,
providing objective methods for the detection of patent vacuums
in a patent map. Secondly, in regards to interpretation, the GTM-
based patent map promotes objective and automatic interpretation
by using the inverse mapping function. Since GTM is capable of in-
verse mapping i.e., mapping the low-dimensional-latent space into
the original data space, the identified patent vacuums are automat-
ically and objectively transformed to the original dataset. Thus,
GTM can cope with the manual and subjective interpretation of
patent vacuums, providing automatic and objective interpretation.
Therefore, using GTM as a means to identifying patent vacuums
overcomes two problems observed in traditional patent vacuum
maps: subjective detection of patent vacuums and subjective inter-
pretation of patent vacuums.

This paper is structured as follows. Section 2 addresses the
underlying methodology for the proposed approach: patent map
and GTM. Section 3 focuses on the overall research framework
and detailed processes for GTM-based patent map used to detect
and interpret patent vacuums. The case study with lithography
technology-related patents is provided in Section 4, finally
followed by the discussion and conclusion.
2. Literature review

2.1. Patent analysis

A variety of sectors have extensively employed patent analysis,
including entire nations, industries, firms, and technological fields.
Patents possess useful information and effectively act as a public
database, which is documented and organized in standardized for-
mats (Wartburg, Teichert, & Rost, 2005). Among others advantages,
patents present an ample source of technical and market informa-
tion such as technical features, ownership, and commercial worth
(Kuznets, 1962; Park et al., 2005; Soo, Lin, Yang, Lin, & Cheng,
2006). Reports indicate that patents demonstrate strong correla-
tions to a firms’ success, and include about 80% of the world’s tech-
nology knowledge (Ernst, 2001; Lerner, 1994). The purpose of
patent analysis is diverse in terms of technical and economic deci-
sion making: technology forecasting (Morris, DeYong, Wu, Salman,
& Yemenu, 2002; Yoon & Park, 2007), technology evolution analy-
sis (Choi & Park, 2009), or technology trend analysis (Basberg,
1987). In fact, a technology strategy in firms such as a technology
acquisition, a technology transfer, and even a merger and acquisi-
tion can be formulated with methodological patent analysis above
(Narin, Noma, & Perry, 1987).

In particular, patent analysis is comprised of both structured
data analysis and unstructured data analysis. The value of patent
analysis has rapidly grown due to the simultaneous management
of both structured and unstructured. The methods and techniques
for patent analysis are applied in correspondence to the character-
istics of structured and unstructured data. Firstly, structured data
is comprised of a consistent and standardized format such as a pat-
ent number, a filing date, an issued date, a cited patent, inventors,
or assignees (Lee, Yoon, Lee, & Park, 2009; Verbeek et al., 2002).
Typically, structured data has been analyzed by means of simple,
descriptive statistics such as a graph, a chart, a bar, and a table. A
bibliometric technique is used for investigating dynamic trends
in technology development, and statistical methods make struc-
tured data more informative and constructive (Yoon et al., 2002).
Citation network analysis is increasing in popularity as an ad-
vanced structured data analysis for monitoring technological
developments such as organic technology evolution (Choi & Park,
2009; Meyer, 2000) and interdisciplinary technology fusion (No
& Park, 2010). Secondly, unstructured data indicates texts or
descriptions of patent documents; and, descriptions found within
unstructured data contain the main ideas for technological devel-
opment or innovation. However, since it is difficult to systemati-
cally extract meaningful implications from natural languages,
such as texts or descriptions, unstructured data must inevitably
transform into structured data. A text mining technique is a widely
used technique that logically and automatically derives keywords
from collections of unstructured data (Kostoff, Toothman, Eberhart,
& Humenik, 2001). In relation to patent analysis, the text mining
technique encompasses a significant role in data-preprocessing
and information-extracting. The extracted keywords from patents
usually include core technology, product, component, and meth-
ods. Thus, this technique is extensively utilized for identifying pat-
ent keywords and exploring the combinations among keywords for
new technologies (Yoon & Park, 2005).

2.2. Patent map

The patent map embraces a multitude of visual concepts and
descriptions based on the relationships among patents, such as
charts, graphs, bars, and tables (Chen, 2009; Liu, 2003). The patent
map is an effective visualization technique for formulating strate-
gies because it provides practical and intuitive information (Kim,
Suh, & Park, 2008). Therefore, developing a patent map is impera-
tive for graphically providing invaluable information, as well as
exploring technological opportunities through patent documents.
Since text mining is applied to patent maps when evaluating
unstructured data, patent maps have effectively communicated
potentially beneficial knowledge and explicit information from
patents (Larkey, 1999; Tseng, Lin, & Lin, 2007; Tseng, Wang, Lin,
Lin, & Juang, 2007). Patent maps are categorized according to spe-
cific purposes: the technical patent map, the management patent
map, and the claim patent map (Yoon et al., 2002). The technical
map is used to understand core technology, as well as identify po-
tential technology. Management patent maps trace dynamic trends
of specific technology. Claim patent maps are useful for monitoring
patent conflicts. In particular, technical patent maps are especially
useful in discovering patent vacuums through unexplored patent
data on the map. Patent vacuums help practitioners formulate fu-
ture plans through identifying important potential technology.
Thus, the principle component analysis (PCA) and the self-organiz-
ing map (SOM) are representative techniques that locate patents in
a patent map.

PCA is a form of statistical analysis used for dimensionality
reduction, which is accomplished by converting multi-variables
into a few linear combinations (Johnson & Wichern, 1988). PCA
provides the opportunity to understand latent dimensions due to
the fact that significant principle components (PCs), which cause
‘‘variance’’ in data, can be extracted. Data can be represented by
significant dimensions. However, it is hard to interpret the mean-
ing of new dimensions since one PC contains too much dimen-
sional data.

The SOM is an artificial intelligence technique utilized for visu-
alizing multi-dimensional data as two-dimensional space neurons
(Kohonen, 1998). The SOM employs an algorithm in which interre-
lated vectors are heuristically grouped as a neighborhood and
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regarded in terms of artificial learning parameters. There are two
major advantages of the SOM. Firstly, SOM is able to identify sim-
ilar technologies since each patent is located on a single, discrete
node. Secondly, the ability of SOM to visualize data as set of neu-
rons is a powerful, presenting similarities and differences in data
by color contrasts in patent maps (Kohonen, 1995). Artificial learn-
ing processes, which update neighboring nodes and the weights,
create simplified images of the observable real world (Kohonen,
1982). In spite of the two strengths that SOM possesses, there is
a lack of theoretical proof as to why the patent is mapped on a spe-
cific node due to the unsupervised machine-learning process
(Bishop et al., 1998). Since the SOM training algorithm optimizes
an objective function by a heuristic approach, data over-fitting also
remains a problem (Svensén, 1998)

As for the patent map, two main methods were employed to
identify patent vacuums. Lee, Yoon, and Park (2009) and Yoon
et al. (2002) proposed the PCA-based patent map and the SOM-
based patent map, respectively. Each map has distinct characteris-
tics and applications with respect to the strengths of the PCA and
the SOM. More specifically, the patent map was developed in order
to investigate patent vacuums as technological opportunities. Vac-
uums in the patent map are represented as sparse areas; potential
new technology can be explored in each vacuum. However, during
this the PCA and the SOM processes, patent vacuums are detected
and interpreted only through subjective judgment in which pat-
ents surrounding the patent vacuums are the main interest for
investigation due to limited information about vacuums. Because
expert knowledge is an unavoidable resource for richer descrip-
tions of the technology in patent vacuums, a heavy dependence
on subjective decision-making results. Fundamental limitations
still exist in the aforementioned mapping techniques, as well as
other techniques, in regards to demonstrating characteristics of
vacuums without the help of experts. Therefore, it is vital to devel-
op the best system for identifying and exploring patent vacuums
automatically and objectively.

2.3. Generative topographic mapping

2.3.1. Basic concept of the GTM
The GTM is potentially one of the most useful techniques for

patent mapping, compensating for the shortcomings of the afore-
mentioned techniques. The GTM was first suggested by Bishop
et al. (1998), proving to be a creditable alternative to the SOM in
terms of using a probabilistic method based on Bayesian theory.
This method has been utilized across a range of practical applica-
tions such as classification, clustering, and visualization (Hogo,
2010). Andrade, Nasuto, Kyberd, and Sweeney-Reed (2005) applied
the GTM to the clustering and visualization of motor unit action
potentials. Yang and Zhang (2001) proposed the approach to cus-
tomer data mining and visualization for grouping customer needs
using the GTM.

The GTM overcomes most of the limitations found in both the
PCA and SOM. Because GTM can present data on each grid, a blank
grid is automatically detected as a vacuum. In contrast, the PCA has
difficulty in automatically detecting vacuums due to ineffective
Table 1
Comparisons of the GTM with the PCA and SOM in patent map.

PCA SOM

Mathematical backbone Linear algebra (eigenvalue, eigenvector) Artificial in
Advantage Meaningful dimensions Forms of d

Theoretical evidence
Disadvantage Ineffective visualization Absence of

Subjective identification of patent vacuums Ambiguou
Subjective
visualization. GTM effectively overcomes the limitations of the
SOM, including the lack of theoretical proof and over-fitting, by a
probabilistic method based on Bayesian theory. This technique also
allows a nonlinear relationship between the latent and observed
variables (Andrade et al., 2005). In short, the GTM provides a non-
linear mapping algorithm based on probabilistic theory. A major
characteristic of GTM is an ‘‘inverse mapping’’ algorithm based
on Bayes’ theorem, which transforms data in the latent space (as
a posterior event) into elements in the data space (as a prior event).
In regards to patent vacuums, inverse mapping enables the auto-
matic and objective interpretation of patent vacuums because
keywords of core technology in patent vacuums can be extracted.
The comparisons of the GTM in patent map with the PCA and the
SOM are summarized in Table 1.
2.3.2. The algorithm of the GTM
The underlying principle of the GTM is simple: latent variables

are transformed into the data space based on a probability distri-
bution which is estimated in terms of a mean (x), a weight matrix
(W), and a noise (b) as shown in Fig. 1. The x indicates a reduced
data vector in the latent space; RL and t represent an observed data
vector in the data space, RD.

A Gaussian mixture distribution is used as the probability distri-
bution in order to identify closeness in terms of distance between
transformed latent data y(x) and observed data t as described in Eq.
(1). If data t is close to y(x) in the data set, the probability of p(t|x)
becomes higher

pðtjx;W; bÞ ¼ Nðyðx;WÞ; bÞ

¼ b
2p

� ��D=2

exp � b
2

XD

d

ðtd � ydðx;WÞÞ
2

( )
ð1Þ

y: transformation function, x: latent variables, t: data variables, D:
dimension of t, y(x,W): transformed x into data set and b: noise.

The distribution of data in the t-space in Eq. (2) is expressed by
an integration over the x-distribution according to law of total
probability

pðtjW;bÞ ¼
Z

pðtjx;W;bÞpðxÞdx ð2Þ

However, it is difficult to deduce p(t) because it is continuous
distribution. To overcome this issue, the delta function is applied
to discrete p(t|x). Applying the delta function also adopts the
SOM concept in which the so-called the GTM grid is fabricated
and allows the opportunity to locate data on the discrete nodes
of predetermined regular GTM grids. Fig. 2 is an example of a 3
by 3 grid in the latent space and the data space. The final probabil-
ity distribution with the delta function is transformed by Eq. (3)

pðtjW;bÞ ¼ 1
K

XK

k

pðtjxK ;W;bÞ ð3Þ

K: the number of grid pointers and xK: a grid point in the latent
space.
GTM

telligence (learning process) Statistics (Bayes’ theorem)
iscrete nodes Automatic identification of patent vacuums

Forms of discrete grids
general proofs of convergence Ambiguous dimensions

s dimensions
identification of patent vacuums



Fig. 1. Basic concept of GTM.

Fig. 2. Mapping regular grids into the data space.
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The parameters, which are the weight matrix and noise, are
estimated by the Expectation-Maximization (EM) algorithm. After
fitting the GTM to a data set, the observed data points can be as-
signed to latent variables through estimating the probability of a
data point, which is generated by a latent point using Bayes’ theo-
rem in Eq. (4)
pðxkjtn;W ;bÞ ¼ pðtnjxk;W;bÞpðxkÞP
k0pðtnjxk0 ;W;bÞpðxk0 Þ

ð4Þ

Finally, the observed data can be moved to the latent space, and
vice versa as in Eq. (5)
yðx;WÞ ¼ UðxÞW ð5Þ
U(x) M fixed basis functions of latent variables and W: D �M
matrix.
Fig. 3. Overall resea
3. Identification of patent vacuums

3.1. Overall research framework

Fig. 3 depicts the overall research framework, which consists of
several stages. Firstly, patent documents related to technology un-
der consideration are collected from the US Patent and Trade Office
(USPTO) database. Secondly, text mining tools and experts extract
keywords from the documents. Since patents are composed in nat-
ural language forms, the documents must be transformed into
structured data; in other words, documents must be transformed
into arrays of keyword vectors in order to be interpreted, a process
regarded as data preprocessing. Thirdly, the patent map is devel-
oped by employing GTM. In this GTM-based map, patent vacuums
are identified as the blank areas in the map. Lastly, the identified
patent vacuums are again transformed to the original keyword
vectors using the inverse mapping function of GTM in order to
interpret the meaning of patent vacuums.
3.2. Detailed processes

3.2.1. Data preprocessing
The United States Patent and Trademark Office (USPTO) data-

base serves as the data source for collecting patent documents.
Thus, patents of interest are searched on the USPTO and collected
by Java software that was developed for collecting the patent doc-
uments. Keywords are extracted from the collected patent docu-
ments in order to construct the keyword vectors, which are used
for patent mapping. In this research, Text Analysis 2.32, which is
a text mining tool, is used for keyword extraction. If we use all ex-
tracted keywords from the text mining tool to construct the key-
word vectors, information loss can be reduced; however, the
explanatory power decreases due to the complexity of the keyword
vectors. Thus, only the most significant keywords should be se-
lected. During this process, the keywords that have no explanatory
power, such as device, user, and system, are excluded. The key-
word vector is then constructed using Java software, as shown in
Table 2. The column represents the keywords extracted from the
previous step, and the row represents each patent. The value of
matrix is either the frequency of keyword occurrence, or the binary
value representing the existence of a keyword for each of the
patents.

However, since the objective of this paper is to identify the
patent vacuums and not to investigate patent trends, binary key-
word vectors were employed instead of the frequency of keyword
rch framework.



Table 2
The format of keyword vector.

Keyword 1 Keyword 2 . . . Keyword n � 1 Keyword n

Patent 1 1 0 . . . 0 1
Patent 2 1 1 . . . 1 1
Patent 3 0 1 . . . 0 0
... 1 0 . . . 0 0
Patent m 0 1 . . . 0 0
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(a) The posterior-mean projection of the data 
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(a) The posterior-mode projection of the data 

Fig. 4. An example of the GTM-based patent map.
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occurrence vector. For instance, if patent 1 has keyword 1 and key-
word n, two fields are filled with ‘‘1’’, respectively.

3.2.2. Development of GTM-based patent map
Subsequently, the GTM-based patent map is developed from the

constructed keyword vectors. If fifty keywords are extracted, each
keyword vector has 50 dimensions. This presents difficulties in
both visualizations and interpretations. Therefore, it is necessary
to visualize the vectors in two-dimensional space in order to
indentify the patent vacuums using GTM algorithm.

Model parameters must be defined prior to the employment of
GTM. The parameters consist of, but are not limited to, the number
of latent points and basis functions, the width parameter of the ba-
sis functions, the weight regularization factor, and the number of
iterations. Svensén (1998) explained that parameters must be cho-
sen individually for each problem. The basis function parameters,
which control the smoothness of the mapping, are typically chosen
to be radially symmetric Gaussians in which the centers are dis-
tributed on a uniform grid in latent space. The width parameter
of the basis functions determines the distance between the basis
functions. In addition, it is also necessary to select latent space
sample points. Note that if there are few sample points in relation
to the number of basis functions, the Gaussian mixture centers in
the data become relatively independent, and the desired smooth-
ness properties may be lost. Having a large number of sample
points, however, increases computational cost. And there is one
parameter to set for training: the weight regularization factor. This
parameter governs the degree of weight decay applied during
training. In practice, because a finite number of latent and data
points are used, a small degree of weight regularization is generally
advisable as this prevents the weights from growing very large.
Otherwise, smoothness imposed by the basis function parameter
could result. Accordingly, the GTM-based patent map is con-
structed, as illustrated in Fig. 4. Fig. 4(a) shows the posterior-mean
projection of the data in the latent space and Fig. 4(b) shows the
posterior-mode projection of the data. In particular, the poster-
ior-mean projection does not precisely identify patent vacuums,
but it indicates the original location of the patent and the distance
between patents. On the other hand, since all data points are
mapped at each latent grid in the posterior-mode projection, the
patent vacuums are discovered more clearly than the posterior-
mean projection. Each ‘s’ in Fig. 4(b) represents a keyword vector
mapped at one of the latent points in the posterior-mode projec-
tion, and the blank latent points clearly indicate the patent vacu-
ums. Therefore, the posterior-mode projection is more suitable
for identifying patent vacuums.

3.2.3. Detection of patent vacuums
In the GTM-based patent map, patent vacuums are identified as

the blank areas in the map. As shown in Fig. 5, the blank grid,
which is represented by an X in red,1 are identified as patent vac-
uums. Since the GTM-based patent map mainly consists of grids
and each patent is located at each grid, the blank grid is intuitively
Fig. 5. An example of patent vacuums.

1 For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.



Fig. 6. An example of inverse mapping.
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identified as a vacuum. Thus, manual work conducted by research-
ers is unnecessary for identifying patent vacuums in the
GTM-based patent map.

3.2.4. Interpretation of patent vacuums
Patent vacuums are then transformed to the original keyword

vector through inverse mapping following identification in order
to provide the original meaning of the patent vacuum. The charac-
teristics of inverse mapping, which differentiate GTM from other
latent variable models, enable projection from the latent space into
the data space (Bishop et al., 1998). Thus, manual and subjective
interpretation of identified patent vacuums limiting previous at-
tempts is eliminated by the automatic and objective interpretation
of identified patent vacuums through the inverse mapping func-
tion of GTM. Consequently, keyword vectors are identified by
inversely mapping (Eq. (5)) patent vacuums in latent space into
new vectors in data space as illustrated in Fig. 6. The keyword vec-
tor fields of patent vacuums are transformed as binary values by
threshold value, so the value ‘1’ implies that the value is over
threshold value determined by analyst as illustrated in Fig. 6. Since
there is no definitive method in determining the threshold value, it
is determined depending on the purpose of research. That is, if
threshold value is low, identified patent vacuums comprise of
many keywords.

4. Case study: lithography technology

In this section, a case study of lithography technology demon-
strates the applicability of the proposed approach. Lithography
technology is regarded as one of the most critical aspects in the
semiconductor manufacturing processes (Harriott, 2001; Stulen &
Sweeney, 1999). Lithography technology-related patents were se-
lected for two main reasons. Firstly, a large amount of new lithog-
raphy technology has been examined in order to survive in the
highly competitive semiconductor manufacturing environment.
Consequently, the demand for new lithography technology has
been increasing continuously (Fay, 2002). While lithography pro-
cess control is becoming increasingly complex, and lithography
technology progresses toward smaller feature sizes, specifications
are tightening, demanding better lithography process control
(Janakiram & Goernitz, 2005). Secondly, the number of collected
patents related to lithography technology is suitable to mine
underlying information and develop patent maps. Therefore,
lithography technology is considered an appropriate subject mat-
ter for illustrating the proposed approach. For more details about
lithography and all the technologies that support this field, the
reader is referred to two textbooks (Levinson, 2001; Smith, 1998).

4.1. Data collection

As mentioned above, lithography technology patents are the
underlying source for data presented in this paper. The United
States Patent and Trademark Office (USPTO) database serves as
the data source for collecting patent documents. Patents contain
diverse information, such as patent number, title, abstract, regis-
tered year, inventor, assignee, citation, claim, and description. To
collect the lithography-related patents, patents which have the
word ‘lithography’ in each title, abstract, and claim parts were se-
lected. As a result, 754 lithography-related patents with a refer-
ence period between 1976 and 2009 were collected.



Table 3
Extracted keywords.

No. Keywords No. Keywords No. Keywords No. Keywords

1 Immersion 11 Wavelength 21 Grid 31 Modulation
2 Apparatus 12 Photomask 22 Deflection 32 Refraction
3 Exposure 13 Temperature 23 Maskless lithography 33 Defocus
4 Radiation 14 Modulator 24 Pupil 34 Polarization
5 Reticle 15 Interferometer 25 Detector 35 Contamination
6 Euv 16 Deflector 26 Dose 36 Sigma
7 Immersion liquid 17 Calibration 27 Lens 37 Curvature
8 Laser 18 Immersion medium 28 Fresnel 38 Alignment
9 Axis 19 Pellicle 29 Aberration 39 Bandwidth
10 Path 20 Numerical aperture 30 Frequency 40 Pulse

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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4.2. Data preprocessing

Since most text-mining algorithms use keywords for express-
ing the context of the document (Yoon & Park, 2004), this paper
regards keywords as the data source that represent the character-
istics of patents. The abstract of each patent provided the venue
from which keywords were extracted because the abstract is vital
literature explaining important information that the patent author
wishes to convey. With the aid of Text Analysis 2.32, keywords
were extracted automatically. Afterwards, keywords that have
no explanatory power were eliminated according to the expert
judgment of officials in the semiconductor field. As a result, a total
of 40 keywords were extracted. These keywords are described in
Table 3.

Subsequently, data mined from each patent was transformed
into a keyword vector consisting of binary values. If a specific key-
word was included in each patent, the corresponding vector field
was assigned a value 1; otherwise, a value 0 was assigned. A Java
program was used for constructing the keyword vector. As a result,
keyword vector was constructed, as illustrated in Fig. 7.
Fig. 8. GTM-based patent map (the posterior-mode projection).

4.3. Development of GTM-based patent map

After data preprocessing, GTM was employed to develop the
GTM-based patent map for identifying patent vacuums. Prior to
developing the GTM-based patent map, parameters must first be
defined. The main model parameters were defined by sensitive
analysis as follows.

A GTM model comprised of a 14-by-14 square grid of latent
points in two-dimensional space. The model utilized 81 Gaussian
basis functions in which the center of each function was located
on a 9-by-9 square grid in the latent space. Both grids were cen-
tered about the origin in the latent space. The basis functions
had a common width of 1.5 times the shortest distance between
two neighboring basis functions. The model was initialized using
PCA, and trained for 10 iterations of the training algorithm. The
weight regularization factor governs the degree of weight decay
applied during training was 0.001. With above parameters, GTM-
based patent map is developed using MATLAB R2008a with GTM
toolbox developed by Svensén (1998) as shown in Fig. 8.
Fig. 7. Keyword vect
4.4. Detection of patent vacuums

Detecting patent vacuums was conducted through posterior-
mode projection since posterior-mode projection provides a
clearer representation of patent vacuums. The blank grid is identi-
fied as the patent vacuum. Fig. 9 shows the patent vacuum identi-
fied from the GTM-based patent map. A total of 13 patent vacuums
of 169 latent points were discovered through posterior-mode
projection.
4.5. Interpretation of patent vacuums

Inverse mapping was conducted in order to interpret the mean-
ing of the identified patent vacuums. Each vacuum in Fig. 9 was
transformed into the keyword vector as a means to represent the
or construction.



Fig. 9. Patent vacuums identified from GTM-based patent map.

2496 C. Son et al. / Expert Systems with Applications 39 (2012) 2489–2500
characteristics of each vacuum. The results of the inverse mapping
are represented in Fig. 10.

Since the original keyword vector is composed of binary values,
the result of inverse mapping should also be composed of binary
values. Therefore, each field of keyword vector obtained from the
inverse mapping was filled with a 0 or 1 value according to the
threshold, as shown in Table 4. The threshold value was set as
0.4 considering the level of variance of the keyword vector.
Fig. 10. The result of

Table 4
Keyword vector of patent vacuums.

Vacuum no. Keywords

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
4 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
5 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
6 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
7 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1
8 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1
9 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0
10 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0
11 0 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0
12 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0
13 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0
In the case of the first identified patent vacuum, three keywords
existed, ‘‘apparatus’’, ‘‘exposure’’, and ‘‘lens’’ since three 1 values
are located in the 2nd, 3rd, and 27th of keyword vector field. This
means that each patent vacuum identified from GTM-based patent
map can be interpreted in the level of keywords, which is the form
of the original dataset.

Table 5 shows the final result of the vacuum interpretation,
illustrating the result of inverse mapping of each patent vacuum.
This result was validated whether or not a patent with these spe-
cific keywords existed in the USPTO. The interpreted patent vacu-
ums provide valuable evidence for locating unexplored areas of
technology that deserve intensive investigation for new technology
development. However, despite the contribution, it should be
clearly understood that this result only shows the patent vacuum
identified from a technical perspective, not from the ‘‘real-world’’
patent vacuum. Since this result is obtained by inverse mapping
of GTM only, an in-depth level of feasibility test is required in a
practical setting.
5. Discussion

The GTM-based patent map needs to be validated for practical
use in the field, and to show that this outperforms PCA-based pat-
ent map and SOM-based patent map. For this, the same patent data
set (754 lithography-related patents) was used for PCA-based
patent map and SOM-based patent map. Fig. 11 shows PCA-based
patent map, SOM-based patent map, and GTM-based patent map,
respectively.
inverse mapping.

Sum

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 9
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 9
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 12
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 12
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 14
0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 16
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 17
0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 18



Table 5
The final result of vacuum interpretation.

Patent vacuum
no.

Keywords

1 Apparatus, exposure, lens
2 Apparatus, exposure, alignment
3 Apparatus, exposure, radiation, reticle, wavelength, alignment
4 Apparatus, exposure, radiation, reticle, laser, axis, calibration,
5 Apparatus, exposure, reticle, axis, wavelength, lens
6 Apparatus, exposure, reticle, laser, axis, path, wavelength, lens, alignment
7 Exposure, radiation, laser, axis, path, wavelength, grid, lens, frequency
8 Apparatus, exposure, reticle, axis, path, temperature, calibration, numerical aperture, grid, dose, sigma, alignment
9 Apparatus, exposure, reticle, axis, path, temperature, interferometer, calibration, dose, lens, sigma, alignment
10 Immersion, apparatus, exposure, radiation, reticle, laser, axis, wavelength, temperature, interferometer, lens, aberration, refraction, curvature
11 Apparatus, exposure, reticle, laser, axis, path, wavelength, temperature, modulator, calibration, numerical aperture, maskless lithography, dose,

sigma, alignment, pulse
12 Apparatus, exposure, reticle, laser, axis, path, wavelength, modulator, deflection, maskless lithography, dose, lens, frequency, modulation,

polarization, alignment, pulse
13 Apparatus, exposure, radiation, reticle, euv, laser, axis, path, wavelength, temperature, interferometer, calibration, detector, lens, frequency,

refraction, polarization, alignment

(a) PCA-based patent map 

 
(b) SOM-based patent map 

(c) GTM-based patent map 

Fig. 11. Three distinctive patent maps.

C. Son et al. / Expert Systems with Applications 39 (2012) 2489–2500 2497



Fig. 12. Patent vacuums depending on researchers in PCA-based patent map.

Fig. 13. Patent vacuums depending on researchers in SOM-based patent map.

Table 6
List of surrounding patents of target patent vacuum.

PCA-based patent map SOM-based patent map

Surrounding patents of target patent vacuum
4692579 5742065 6674086 3701391 6427703 7067222
4924257 5756234 6724001 4606803 6716563 7081948
4985634 5786601 6817602 4677042 6800428 7091502
4987311 6090528 6968253 4881257 6849856 7129024
5068884 6127272 7096127 4969169 6879380 7189981
5111491 6255038 7295288 4969169 6887630 7283205
5187726 6369398 7579606 5313068 6897076 7304775
5204886 6387572 7631289 5326979 6953644 7332734
5424549 6465796 5426686 6958804 7414701
5719698 6522433 6373071 7026098 7435978

7438997
7521689
7625513

Total number 28 33
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As mentioned above, PCA-based patent map and SOM-based
patent map have two main limitations in terms of detection and
interpretation of patent vacuums. Firstly, in terms of detection,
patent vacuums might be detected differently depending on each
researcher’s knowledge and experience in both patent maps, even
in a single patent map as shown in Figs. 12 and 13. Sparse areas in
the PCA-base patent map in Fig. 11(a) are considered as patent vac-
uums. However, patent vacuums represented ellipses might be
changed according to researchers’ judgments as shown in Fig. 12
since the definition of sparseness varies depending on the
researchers. In Fig. 11(b), each node is colored depending on the
median distance to its neighbors based on a reference vector. Those
nodes which belong to a ‘dense’ region of the map will have a
bright color. Thus, the darker the color is, the longer the distance
to the neighbors is. Therefore, researchers must judge which area
is a vacuum by the color scale and the location of patents in
SOM-based patent map. So, it also causes the same limitation with
PCA-based patent map in respect to detection of patent vacuums as
shown in Fig. 13. However, patent vacuums in the GTM-based pat-
ent map are automatically detected using grid-based visualization
since a blank grid is considered as a patent vacuum as shown in
Fig. 11(c).

Secondly, in terms of interpretation, both patent maps should
investigate all the surrounding patents of target patent vacuums
for interpretation of patent vacuums since there is no function
for interpretation of the meaning of the patent vacuum. Therefore,
lots of time and efforts are devoted for interpretation of patent vac-
uums and interpretations vary depending on the knowledge and
experience of researchers. For instance, the surrounding patents
of target patent vacuum expressed arrow in Figs. 12(a) and 13(a)
are shown in Table 6. It means that 28 and 33 surrounding patents
in PCA-based patent map and SOM-based patent map should be
manually investigated by researchers for interpretation of a patent
vacuum, respectively.
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On the contrary, GTM-based patent map overcomes this limita-
tion through the function of inverse mapping so that keyword vec-
tors as means of each patent vacuum are automatically identified
as shown in Table 5. Although identified keyword vectors may
not fully explain the technology, those provide enough clues to
systematically explore technological vacuums. Consequently, the
GTM-based patent map is more appropriate for identifying patent
vacuums among lots of patents since it can automatically and
objectively detect and interpret patent vacuums.

6. Conclusions

Although identifying patent vacuums has been considered an
important issue in regards to exploring new technology, relatively
little research has been devoted to the visual exploration and iden-
tification of patent vacuums. More importantly, existing patent
maps used for identifying patent vacuums bear the two significant
limitations: the subjective detection and subjective interpretation
of patent vacuums. In response to these limitations, this paper pro-
posed a GTM-based patent map to automatically identify patent
vacuums, ultimately compensating for the aforementioned
limitations.

The contributions of the suggested GTM-based patent map are
clear: Firstly, the automatic and objective detection of patent vac-
uums compared to the previous techniques is a result of the GTM-
based patent map, achieved by the grid-based visualization algo-
rithm of the GTM. The second contribution comes from the auto-
matic and objective interpretation of patent vacuums due to the
inverse mapping function of GTM, which enables the transforma-
tion of the latent variable into the original data space.

Specifically, we demonstrated how to develop the GTM-based
patent map with lithography technology-related patents as well
as how to automatically identify patent vacuums from the GTM-
based patent map. Thus, researchers, engineers and managers
interested in new technology development save time and energy
when uncovering new technology opportunities as well as acquire
objective results.

Despite the comprehensive and objective aspects of the GTM
approach, this technique still possesses its limitations. Firstly, a
necessity in elaborating the keyword extraction process is vital,
since keyword extraction plays a critical role in determining the
value of patent vacuums. Although the text mining tool and expert
judgment were employed to extract the keywords, covering both
quantitative qualitative perspectives of keyword extraction, other
systematic methodologies should supplement these techniques
in order to validate the extracted keywords. Secondly, GTM is very
sensitive to parameter settings potentially resulting in inappropri-
ate patent vacuums if the parameters are set incorrectly. In this pa-
per, sensitive analysis was used to determine the parameters. Even
the sensitive analysis can be an alternative to overcome the sensi-
tivity. A systematic guideline for defining parameters is potentially
another subject matter requiring further study that would comple-
ment the progress made with GTM-based patent map.
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