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In this  paper,  we discussed  the  feasibility  of early  recognition  of  highly  cited  papers  with
citation prediction  tools.  Because  there  are  some  noises  in  papers’  citation  behaviors,  the
soft fuzzy  rough  set  (SFRS),  which  is  well  robust  to noises,  is  introduced  in constructing  the
case-based  classifier  (CBC)  for highly  cited  papers.  After  careful  design  that  included:  (a)
feature  reduction  by  SFRS;  (b)  case  selection  by  the  combination  use  of SFRS  and  the concept
of  case  coverage;  (c) reasoning  by  two classification  techniques  of  case  coverage  based
prediction  and  case  score  based  prediction,  this  study  demonstrates  that  the  highly  cited
papers could  be predicted  by objectively  assessed  factors.  It shows  that  features  included
the research  capabilities  of the first  author,  the  papers’  quality  and  the  reputation  of journal
are  the  most  relevant  predictors  for highly  cited  papers.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of why some papers become highly cited while the vast majority of papers remain infrequently cited
or uncited is a persistent question in the field of scientometrics. During the last decades, works have been done to explore
the reason for this phenomenon: (i) The citation motivations of quoters were widely discussed (Bornmann & Daniel, 2008;
Case & Higgins, 2000; Hewings, Lillis, & Vladimirou, 2010; Kim, 2004; Laband & Piette, 1994; Rong & Martin, 2008). But the
quoters’ citation motivations are subjective to a large extent, which makes it difficult to properly monitor the citation trend of
papers. (ii) Some mathematical-statistical models were established to predict papers’ future citation behaviors. Glänzel and
Schubert (1995) presented a non-homogeneous birth-process model, and further discussed the statistical reliability of the
model (Glänzel, 1997). Burrell presented a series of stochastic models in the presence of obsolescence to predict the future
citation pattern of individual papers (Burrell, 2001, 2002a, 2002b, 2003). (iii) The bibliometric factors that have influences on
papers’ citation activities were widely investigated. Features associated with the authors (age, gender, social status, etc.), the
papers (collaboration, document type, subject matter, etc.), and the journals (impact factor, etc.) were discussed (Bornmann
& Leydesdorff, 2012; Danell, 2011; Fu & Aliferis, 2010; Levitt & Thelwall, 2008; Moed, 2010; Penas & Willett, 2006; Sagi
& Yechiam, 2008; Xia, Myers, & Wihoite, 2011). However, these features are mainly the external bibliometric features of

papers. The factors on papers’ quality,  which could be the kernel features dominate papers’ citation activity, are left alone
because of lacking an appropriate way to quantify it. Van Dalen and Henkens (2005) stated that the quality of paper could
be approximated by the impact and speed with which knowledge is disseminated in the scientific community. The impact of
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ne paper boils down to the number of citations registered by the Web  of Science (of ISI). The speed with which one paper
s disseminated in the scientific community is measured by the timing of the first citation.

Recently, we discussed the role of papers’ quality on citation counts prediction based on papers published in the field of
stronomy and astrophysics in 1980 (Wang, Yu, & Yu, 2011). The quality of papers is also measured by its impact and speed
imensions. The impact of one paper is expressed by its knowledge diffusion properties in our work. And the speed of one
aper is measured by its first-cited properties, including its first-cited age and the citations obtained in its first cited year.
y using the technique of multi-classifier system, we found that the papers’ quality plays an important role on predicting
apers’ future citation activity.

The present experiments performed two additional analyses to extend our preliminary work. First, a new independent
ata was used. The papers used for our experiments were extracted from four journals in four different fields. It could be
ore generality than our previous investigation that confine the experiments to a single subject. Second, another modeling

echnique of case-based classifier (CBC) was introduced. It is well-known that there exist some noises in papers’ citation
ctivities. A robust mechanism is needed to make better performance for citation prediction. Recently, we found that the
oft fuzzy rough set (SFRS) works well to deal with noisy samples (Hu, An, & Yu, 2010). Thus, the model of CBC in our
xperiments was constructed based on the hybrid use of case-based reasoning (CBR) and SFRS. And SFRS is used in the three
ernel processes of CBR: feature reduction, case selection, and reasoning. If the predictors for highly cited papers are similar
ith our preliminary experiment when using different data set and modeling techniques, this result would indicate that the
redictors are credible and they depend more on the choice of features rather than the choice of data and classifiers.

The remainder of this paper is organized as follows. Firstly, the related techniques about CBR and SFRS are given. Secondly,
he CBC model integrating of CBR with SFRS is introduced. Finally, the experimental results are shown, and the typical features
ere extracted out for highly cited papers.

. Methods

.1. Case-based reasoning (CBR)

CBR is an instance-based learning methodology for problem solving (Jorgenson, 2004). The basic assumption of CBR is
hat similar experiences can guide future reasoning, problem solving, and learning (Symth & Keane, 1998). It is the same
ay as human being’s dealing with problems in daily life. There are three kernel steps in CBR:

(i) Feature reduction: The performance of a CBR classifier system can be significantly diminished by using too many input
features. And the need to reduce the number of features for CBR is well discussed (Kupinski & Giger, 1999). It means
that optimal features can help it produce better performance. So far, a number of algorithms have been developed for
feature reduction (Hu, Yu, & Xie, 2006; Hu, Xie, & Yu, 2007; Jensen & Shen, 2009; Kwak & Choi, 1994). But it is well
known that the data in real-world application are usually corrupted by noise, which brought great negative influences
on the performance of CBR. In this regard, a robust reduction technique or algorithm is desirable in practice.

(ii) Case selection: When given a new case to be classified, CBR searches from case base for similar cases and composes
predictive result on the basis of class labels of similar cases to the new case. Thus, the performance of CBR is also sensitive
to the choice of case base. Variety methods for case selection have been developed, such as k-NN (Hart, 1968) and its
improved algorithms (Gates, 1972; Tomek, 1976), case coverage and reachability (Cloete & Zyl, 2006; Li, Shiu, & Pal,
2006b), and so on (Jin, Liu, & Hou, 2010; Mitra, Murthy, & Pal, 2002). But a robust technique to identify and remove the
redundant and noisy cases in real-world application is still needed.

iii) Reasoning: Reasoning is to select a method to classify unseen cases with selected cases. The concept of case coverage is a
widely used reasoning way for unseen cases (Li, Shiu, & Pal, 2006a; Li et al., 2006b). But it can only classify those unseen
cases located in the range that the selected cases cover. An effective technique should be incorporated to evaluate the
unseen cases out of the coverage in reasoning process.

Recently, we found that the soft fuzzy rough set works well to deal with noisy samples (Hu et al., 2010). The soft fuzzy
ough set relies on the soft distance, which is distinguished with the statistical minimum distance in other rough set models.
t makes SFRS to be well robust to outliers. In this paper, SFRS is introduced into CBR classification process to help better
ecognizing of suitable features and cases, and better classifying of unseen cases.

.2. Soft fuzzy rough set (SFRS)

Here, some definitions for rough sets and fuzzy rough sets were given in order to better understand the mechanism of
oft fuzzy rough set. More detailed discussion could be found in articles (Dubois & Prade, 1990; Pawlak, 1982), where the

ough set and fuzzy rough set were first introduced.

Given a finite set of objects U = {x1, x2, . . .,  xn} described with a set of attributes A = {a1, a2, . . .,  am}, each object xi ∈ U can
e formulated as a vector xi = 〈xi1, xi2, . . .,  xim〉, where xij is the j′th feature value of sample xi. The set of IS = 〈U, A〉 is called an

nformation system.
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Pawlak’s rough set model takes into consideration the indiscernibility between objects. The indiscernibility is typically
characterized by an equivalence relation.

Definition 1. ∀B ⊆ A, an equivalence relation can be generated over the universe:

IND(B) = {{x, y} ∈ U2|∀a ∈ B, a(x) = a(y)} (1)

IND(B) is called the B-indiscerniblility relation. If {x, y} ∈ IND(B), then objects x and y are B-indiscernible. With IND(B), U
is partitioned into a family of equivalence classes of U/IND(B) (or U/B). And the equivalence class of sample xi induced by
B-indiscerniblility relation is denoted by [xi]B : [xi]B = {y ∈ U|{xi, y} ∈ IND(B)}, which is a subset of samples having the same
feature values as xi.

Given a classification task, the class labels of the objects are known in advance. Let X be a subset of objects belonging to
the same class. The lower and upper approximations of X with respect to B can be defined as:{

BX = {xi ∈U|[xi]B ⊆ X}
BX = {xi ∈U|[xi]B ∩ X /= �}

(2)

The lower approximation of X consists of the samples whose equivalence classes consistently belong to X, while its upper
approximation is the subset of samples whose equivalence classes have objects in X. If B-X /= B̄X , the approximating boundary
of X is computed as BNDB(X) = B̄X − B-X . It contains those objects that we cannot decisively classify into X on the equivalence
classes of B.

Pawlak’s rough set model could only deal with the features with discrete values. In practice, most of classification tasks
are described with numerical features or fuzzy information. In this case, fuzzy similarity relations are used.

Definition 2. Given a nonempty universe U, R is a fuzzy binary relation on U if R satisfies:

(1) Reflexivity: R(x, x) = 1,
(2) Symmetry: R(x, y) = R(y, x),
(3) Sup-min transitivity: R(x, z) ≥ T{R(x, y), R(y, z)}.

We say R is a fuzzy similarity relation. Here, T is the abbreviation of triangular norm, which is a binary operation on
interval [0, 1] satisfying the following conditions: (i) Commutativity: T(x, y) = T(y, x); (ii) Associativity: T(x, T(y, z)) = T(T(x,
y), z); (iii) Monotonicity: y ≤ z ⇒ T(x, y) ≤ T(x, z); (iv) The number 1 acts as the identity element: T(x, 1) = x. Fuzzy similarity
relations are used to measure the similarity of the objects characterized with continuous features. The fuzzy equivalence
class [x]R associated with x and R is a fuzzy set on U, where [x]R(y) = R(x, y) for all y ∈ U. Based on fuzzy equivalence relations,
the fuzzy lower and upper approximations were defined.

Definition 3. Let U be a nonempty universe, R be a fuzzy similarity relation on U and F(U) be the fuzzy power set of U. Given
a fuzzy set A ∈ F(U), the lower and upper approximations are defined as:⎧⎨

⎩
R-A(x) = inf

y ∈ U
max{1 − R(x, y), A(y)}

R̄A(x) = sup
y ∈U

min{R(x, y), A(y)} (3)

In our experiments, A stands for the set representing the papers’ three levels {HCPs, MCPs, LCPs}, which is a crisp set:

A(y) =
{

1, y ∈ A

0, y /∈ A

Accordingly, the fuzzy lower and upper approximations in Eq. (3) becomes:⎧⎨
⎩

R-A(x) = inf
y ∈ U−A

{1 − R(x, y)}
R̄A(x) = sup

y ∈ A
R(x, y)

(4)

For each sample x ∈ U, its fuzzy lower approximation to A is the dissimilarity between x and the nearest sample y /∈ A.
And the fuzzy upper approximation to A is the similarity between x and the nearest sample y ∈ A. If the Gaussian function is

introduced to compute the similarity R(x, y):

R(x, y) = exp

(
−‖x − y‖2

ı

)
(5)
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Fig. 1. The influence of noise on the membership of x to the fuzzy lower approximation of the class.

Then 1 − R(x, y) could be taken as a general distance function d(x, y) between x and y. And the lower and upper approxi-
ation of fuzzy rough set becomes:⎧⎨

⎩
R-A(x) = inf

y ∈ U−A
{d(x, y)}

R̄A(x) = sup
y ∈ A
{1 − d(x, y)} = 1 − inf

y ∈A
{d(x, y)} (6)

The lower approximation of fuzzy rough set R-A(x) is the distance between x and the nearest sample y /∈ A. And the upper
pproximation of fuzzy rough set R̄A(x) is the similarity between x and the nearest sample y ∈ A.

However, the lower approximation of fuzzy rough set is not robust to outliers. Taking Fig. 1 as an example, the membership
f object x to the fuzzy lower approximation of class2 is the distance between x and y1, that is d(x, y1). But Fig. 1 shows that y1
s a noisy sample. Assuming that y1 does not exist, the fuzzy lower approximation of x to class2 will be the distance between x
nd y2. Obviously, the distance of d(x, y2) can better and correctly represent the membership of fuzzy lower approximation.
hus, the existence of noisy samples alters the lower approximation of a class, and then deteriorates the classification results.

It is well-known that there exist some noises in papers’ citation activities. For instance, some works suggested that the
ighly cited papers tend to be published in high impact journals (Van Dalen & Henkens, 2001, 2005), but there are also
apers present in poorly impact journals. The noisy samples would disturb the citation trend analysis. The SFRS could help
o eliminate the noises. It relies on the soft distance, which is distinguished with the statistical minimum distance in fuzzy
ough set.

efinition 4. Given an object x and a set of objects Y, the soft distance between x and Y is defined as:

SD(x, Y) = arg
d(x,y)

sup
y ∈ Y
{d(x, y) − ˇmY } (7)

The main idea of soft distance is to enlarge the distance by neglecting noisy samples. Taking Fig. 1 as an example, the
istance between object x to class2 should be d(x, y1) in fuzzy rough set as discussed above. Though y1 is an outlier, the fuzzy
ough set cannot neglect it. But for soft distance, y1 can be ignored and the soft distance would be d(x, y2).

It is a problem that how many samples should be taken as noises and neglected? In the definition of soft distance, the
enalty factor  ̌ is used to control the number of overlooked samples. If we overlook one sample, d(x, y) will minus ˇ.
arameter mY = |{yi|d(x, yi) < d(x, y)}| shows the number of overlooked samples. If d(x, y′) − ˇmY(y′ ∈ Y) is the largest of {d(x,
) − ˇmY(∀y ∈ Y)}, the distance d(x, y′) would be taken as the soft distance between x and Y. We  also discussed the value
omain of ˇ, and found that  ̌ = 0.1 is a good choice (Hu et al., 2010). It means that if the soft distance increases 0.1, there’s
ne sample at most is taken as outlier and neglected. In the present experiments,  ̌ is also assigned as 0.1.

Based on the soft distance, the soft fuzzy rough set is defined as follows.

efinition 5. Let U be a nonempty universe, R be a fuzzy similarity relation on U and F(U) be the fuzzy power set of U. The
oft fuzzy lower and upper approximations of A ∈ F(U) are defined as:⎧⎪⎪⎨

⎪⎪⎩
RS(A)(x) = 1 − R

(
x, arg

y
sup

A(y)≤A(yL)
{1 − R(x, y) − ˇmYL

}
)

RS(A)(x) = R

(
x, arg

y
inf

A(y)≥A(yU )
{R(x, y) + ˇnYU

}
) (8)

here
⎧⎨
⎩

YL = {y|A(y) ≤ A(yL), y ∈ U}, yL = arg
y

inf
y ∈U

max{1 − R(x, y), A(y)}
YU = {y|A(y) ≥ A(yU), y ∈ U}, yU = arg

y
sup
y ∈ U

min{R(x, y), A(y)}
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mYL
is the number of the samples overlooked in computing the soft fuzzy lower approximation R-

SA(x), nYU
is the number of

the samples overlooked in computing the soft fuzzy upper approximation RSA(x).

If A is a crisp set, the membership of x to R-
SA(x) is:

R-
SA(x) = 1 − R(x, yAL) (9)

where

yAL = arg
y

sup
A(y)=0

{1 − R(x, y) − ˇmYL
} = arg

y
sup

A(y)=0
{d(x, y) − ˇmYL

} = arg
y

SD(x, U − A)

Obviously, R-
SA(x) equals to the soft distance from x to U − A.

Similarly, the membership of x to RSA(x) is:

RSA(x) = R(x, yAU) (10)

where

yAU = arg
y

inf
A(y)=1

{R(x, y) + ˇnYU
} = arg

y
sup

A(y)=1
{1 − R(x, y) − ˇnYU

} = arg
y

sup
A(y)=1

{d(x, y) − ˇnYU
} = arg

y
SD(x, A)

RSA(x) equals to the soft distance between x and the sample that is used to compute the soft distance from x to A.
As discussed in Fig. 1, the soft distance is more robust than the statistical minimum distance. It makes the soft fuzzy

rough sets be more robust to noises than the fuzzy one.
In classification learning, it is natural to desire that the membership of each sample belonging to its decision is as large

as possible.

Definition 6. Given a decision table DS = 〈U, C ∪ D〉, U is a nonempty universe, C is the set of attributes and D is the decision
attribute. For ∀B ⊆ C, the membership of an object x ∈ U belonging to the soft positive region of D on B is defined as:

POSS
B(D)(x) = sup

x ∈ U/D
BS(X)(x) (11)

The soft fuzzy dependency of decision D on feature subset B is defined as:

�S
B(D) =

∑
x ∈ UPOSS

B(D)(x)

|U| (12)

Dependency is the ratio of the samples in the lower approximation over the universe, which is widely used to measure
the classification performance of attributes. A larger dependency of feature subset means that it has better capability to
distinguish different classes.
Based on CBR and SFRS, we designed a case-based classifier (CBC) model for prediction highly cited papers. In the model,
the technique of SFRS would be utilized in the three kernel steps of CBR to lessen the negative influences of noises.

2.3. A case-based classifier (CBC) based on CBR and SFRS

The proposed CBC model is also composed of three stages of feature reduction, case selection and reasoning.

2.3.1. Feature reduction
Here, a SFRS-based feature reduction algorithm was established. The algorithm employs the soft fuzzy dependency as

the feature evaluation function and the sequential forward selection as the search strategy. The output of the algorithm is
a feature ranking set F ′ = {f ′1, f ′2, . . . , f ′|F ′′ |}. Given the set F ′

k−1 with k − 1 features selected, the k′th feature is determined by
max

f ∈ F−F ′
K−1

{SFD{F ′
K−1
∪{f }}(D)}. Thus, the feature with the maximum soft fuzzy dependency is extracted out in every circulation.

Finally, a sequential of feature subsets of F ′1 = {f ′1}, F ′2 = {f ′1, f ′2}, . . . , F ′F ′ = {f ′1, f ′2, . . . , f ′|F ′′ |} is generated.
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Fig. 2. Sketch for SFRSC.

lgorithm 1 (Feature reduction algorithm).
nput: X—the sample set;

F—the original feature set.
utput: F′—the reduction set of F.

tep 1 Initialize F′ = �;
tep 2 Compute the reduction set

While (F is not empty)
1. For each feature f ∈ F

Compute the soft fuzzy dependency SFD{F ′∪{f }}(D} of f;
2. Add the feature f′ with the maximum soft fuzzy dependency to F′:

F′ = F′ ∪ {f′};
F = F − {f′};

3. Return F′ and stop.

.3.2. Case selection
Here, a case selection method based on SFRS was proposed. The concept of case coverage is used. It describes the com-

leteness of a CBR system, which is the range of problems that the system can solve (Li et al., 2006a, 2006b). It helps to
dentify which cases should be removed and which preserved, with the main goal being to reduce the number of cases while

aintaining the classification accuracy.

efinition 7. Given a decision table DS = 〈U, C ∪ D〉, U is a nonempty universe, C is the set of attributes and D is the decision
ttribute. For any case ∀x ∈ U, the SFRS-based coverage (SFRSC) of x on B ⊆ C is defined as:

CoverR
B (x) =

{
x′|S(N(R(x, x′))) ≤ sup

x ∈ U/D
RS(X)(x)

}
(13)

Fig. 2 shows the sketch for SFRSC. For case x ∈ class1, assuming that its soft fuzzy lower approximation is:

sup
x ∈ U/D

RS(X)(x)

}
= RSclass1(x)

Then the SFRSC of x should cover all the samples located in the sphere centered at x with a radius of RSclass1(x).
Thus, the coverage of a case is the range of problems (cases) which can be solved using this case. And the case with larger

overage should make a larger contribution to the completeness of CBR. Those case(s) whose coverage set is the largest
hould be selected out first, and this process of case selection continuous until all the cases in the case base are solved using
he selected cases.

lgorithm 2 (Case selection algorithm).
nput: X—the original case base.
utput: X′—the selected case base.

tep 1 Initialize X′ = �;
tep 2 Compute the SFRSC

While (X is not empty)
1. For each case x ∈ X

Compute the SFRSC of x;

2. Add the case x′ with the maximum SFRSC to X′:

X′ = X′ ∪ {x′};
X = X − {x′};

3. Return X′ and stop.
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(
(

Fig. 3. Sketch for case coverage based prediction.

The feature reduction and case selection process generates a case base with fewer features and cases. Using the constructed
case base and the reasoning technique of CBR, the highly cited papers could be predicted.

2.3.3. Reasoning
Here, a combined reasoning method based on the concepts of case coverage and case score is proposed. The main goal of

this method is to classify both cases located in and out of the SFRSC.

2.3.3.1. Case coverage based prediction. For the cases located in the SFRSC of selected cases, the class labels to them could be
directly determined. And:

a) If unseen case q is only located in the SFRSC of case p, then q would be appointed to the same class label as p.
b) If unseen case q is located in several SFRSC from different selected cases, then q would be appointed to the maximum

class that most cases belong.
(c) If unseen case q is not located in SFRSC of any selected cases, or q is located in the SFRSC of equal cases from different

classes, then the case coverage based prediction could not work.

Fig. 3 shows the sketch for case coverage based prediction. q is an unseen case. x1, x2 and x3 are cases coming from class1.
y1, y2 and y3 are cases coming from class2. If q is located at the range labeled as “1”, that is, q only belong to the SFRSC of x2,
then q would be classified as class1. If q is located at the range labeled as “2”, that is, q belong to the SFRSC of y1 and y2, it
would be classified as class2. If q is located at the range labeled as “3”, that is, q belong to the SFRSC of x1, x3 and y1, it would
be classified as class1. But if q is located at the range labeled as “4” or “5”, it could not be classified if only considering the
cases’ coverage. In this situation, the case score based prediction would work better.
2.3.3.2. Case score based prediction. For the cases located outside the SFRSC of any selected cases, or those located in the
SFRSC of equal cases from different classes, their classification labels could be determined by case score based prediction
algorithm. Every unseen case would be given a score by each of selected cases. The score is the product of two factors:

(a) Similarity (s): It shows the distance between the unseen case and the selected case. Here, Euclidean measure, which is
a widely used distance measure, is used to determine the similarity between cases.

(b) Classification certainty (m): It shows the classification capability of the selected cases. Here, it is determined by the
membership of the selected case to the soft fuzzy lower approximation of its own class.

Finally, the unseen case would be classified into the class giving highest score.
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lgorithm 3 (Case score based prediction algorithm).
nput: CS—the selected case set;

x—the unseen case.
utput: score—the score gained from each class;

label—the class label of x.

tep 1 Computer the number, C, of different classes in CS.
tep 2 Compute the score from each class

Initialize score = 0;
1.  For c: 1 to C

scoreclassc =
∑Nc

i=1
si×mi∑Nc

i=1
mi

end;
2. label(x) ← arg

c

max{scoreclassc};

3. Return label(x).

Fig. 4 shows the sketch for case score based prediction. q is an unseen case. x1(s1, m1), x2(s2, m2), x3(s3, m3), and x4(s4, m4)
re cases coming from class1. Where si (i = 1, 2, 3, 4) is the similarity between xi and q, and mi (i = 1, 2, 3, 4) is the classification
ertainty of xi to class1. y1(s11, m11), y2(s22, m22), y3(s33, m33) and y4(s44, m44) are cases coming from class2. Where sii (i = 1,
, 3, 4) is the similarity between yi and q, and mii (i = 1, 2, 3, 4) is the classification certainty of yi to class2. For the unseen case
, every selected case will generate a score for q, that is si× mi (or sii× mii). And, the total score given by class1 should be:

scoreclass1
= s1 × m1 + s2 × m2 + s3 × m3 + s4 × m4

The total score given by class2 should be:

scoreclass2
= s11 × m11 + s22 × m22 + s33 × m33 + s44 × m44

Finally, the class label to unseen case q is determined by:

label(q) = arg
j

max{scoreclass1
, scoreclass2

}

here j ∈ {1, 2}. Sometimes, the number of cases from different class may be not equivalent. Then the weighted score would
e used:

scoreclassj
=

∑Nj

i=1si × mi

Nj

here Nj is the number of cases from classj.
Thus, for multi-class problems, the label to the unseen cases q should be determined by:

label(q) = arg
j

max{scoreclass1
, scoreclass2

, . . . , scoreclassC
}

here C is the number of classes.
In the following section, the proposed CBC model is used to predict the future highly cited papers.

. Data
Four representative journals were chosen from four different fields. All the papers published in these four journals in year
985 were collected basing on the web version of the Science Citation Index (SCI) produced by ISI. Our goal is to develop a
hree labels’ prediction model rather than a continuous one because error metrics for continuous loss functions are difficult
o interpret. The model predicts whether a paper would grow up into highly cited papers (HCPs), medium-cited papers
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(MCPs) or low-cited papers (LCPs) within 15 years of publication. A paper set with different kinds of citation impact should
be established firstly.

3.1. Selection criteria

Aksnes suggested that there are two different approaches for defining HCPs, involving absolute and relative thresholds
(Aksnes, 2003). For the absolute one, a fixed threshold is used as a definition. For example, articles cited more than 500
times are defined as HCPs. The limitation of using a fixed threshold is that the highly cited fields generate a predominance
of HCPs. Therefore, the relative standard is often adopted to identify the most highly cited papers within each field. A paper
was considered as highly cited if it has received more than a certain multiple of the citations of the average paper within the
scientific subfield. Such a method of selection has similarities to the method applied by Glänzel, Rinia, and Brocken (1995) in
a study of HCPs in physics. In addition, the sample identified should be manageable from a practical point of view, meaning
that the number of papers should not be too large (or too small) for carrying out the different surveys.

In this paper, we used a relative standard of 10, which means that a publication has been considered as highly cited if the
number of citations received during the time period is at least 10 times the mean citation rate in the particular subfield. The
particular threshold of selection is somewhat arbitrary. Another definition or set of criteria would give a different sample.
Still, the identified HCPs represent the very top papers in their fields.

For MCPs and LCPs, a relative standard is also used. A publication is been considered as low-cited if the number of citations
received is less than the mean citation rate of the particular subfield. And the rest publications in this particular subfield are
considered as medium-cited.

3.2. Identifying the sample data

It is a time-consuming work to gather information from all the papers for establishing papers’ feature space. We  estab-
lished a sample set for our experiments. Using the score value of 10 as a selection criterion, about 0.5% of papers in each
journal were identified as HCPs (The Journal of Mathematical Physics is an exception, where the ratio of HCPs is about 0.1%).
All the HCPs identified in each journal were contained in the sample set. But, there are large amount of papers were identified
as MCPs and LCPs using the selection criteria. Here, only 10% of MCPs and LCPs were randomly selected out as the sample
data for each journal. The distributions of papers in the three levels for the four journals are shown in Table 1.

3.3. Establishing the feature space

Both the external and the quality information about these papers were considered in constructing the feature space. The
external features mainly come from three aspects: the authors, the journals, and the external features of the paper itself.
Sixteen external features were extracted out. The quality features come from papers’ knowledge diffusion and first citation
properties in the scientific community. Nine features, including papers’ citing diffusion properties in the period of five years
after their publication, and the information associated with papers’ first citation were picked up. Table 2 shows the feature
space for these papers.

Here, a five-year interval was used to extract papers’ quality features. The reason is that it is often used in bibliometric
analyses and is intermediate with respect to a short and a long-term citation window. Since the variability of citedness is
expected to increase with the size of the citation window, a five-year interval is sufficient long term for a distinct polarization
pattern to occur (Aksnes, 2003).

There are larger differences in each feature among journals. Each feature in the feature space is normalized first in each
journal according to Max–Min normalization method. And every one was  transformed into the feature with value located
in [0, 1]. Then, the normalized data in the four journals are combined into the final sample data for our experiment.

4. Experimental analyses

In this section, we present and analyze the experimental results of the proposed CBC model. The feature reduction process
is based on the feature reduction algorithm (Algorithm 1). The case selection process is based on the case selection algorithm
(Algorithm 2). And the reasoning results are based on two algorithms: case coverage prediction algorithm and case score
prediction algorithm (Algorithm 3). The main criterion for evaluating the performance of the proposed CBC model and

Table 1
Distributions of papers in each journal.

Journals Abv. HCPs MCPs LCPs Total Initial accuracy

IEEE Transactions on Automatic Control ITAC 1 8 17 26 0.677
Journal of Applied Physics JAP 10 48 133 191 0.680
Journal of Experimental Medicine JEM 1 9 20 30 0.702
Journal of Mathematical Physics JMP 5 13 33 51 0.633
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Table 2
Feature space.

Features Definitions Sources

x1 Number of authors External
x2 Whether there is international cooperation External
x3 Whether any author is American External
x4 The h index of the first author before publication of this paper External
x5 The number of papers published by the first author before this paper External
x6 The total citations to the papers published by the first author before this paper External
x7 The average citations to the paper published by the first author before this paper External
x8 The maximum number of papers published by the authors before this paper External
x9 The maximum total citations to the papers published by the authors before this paper External
x10 The maximum h index of the authors before publication of this paper External
x11 The impact factor of the journal publishing this paper External
x12 The number of papers published in the journal in year 1985 External
x13 The length of this paper External
x14 The document type of this paper External
x15 The language of this paper External
x16 The number of references listed in this paper External
x17 The first-cited age of this paper Quality
x18 The first-citations of this paper Quality
x19 The total citations to this paper in its first five years after publication Quality
x20 The number of countries citing this paper in its first five years after publication Quality
x21 The number of document types of papers citing this paper in its first five years after publication Quality
x22 The number of institutions citing this paper in its first five years after publication Quality

t
s
c

m
w
a
s
w
r
a

n
a

4

a
w

c
a
f

x23 The number of languages citing this paper in its first five years after publication Quality
x24 The number of journals citing this paper in its first five years after publication Quality
x25 The number of subjects citing this paper in its first five years after publication Quality

he achieved feature subsets is their classification accuracies. And the classification accuracy Ai depends on the number of
amples correctly classified and is evaluated by the formula Ai = (t/n) · 100, where t is the number of sample cases correctly
lassified, and n is the total number of sample cases.

In order to enhance the reliability of reasoning, a three-fold cross validation is used. It divides the whole data set into
ultiple pair of training and test sets (i.e. Fold-1, Fold-2 and Fold-3). Each training set uses 2/3 of the entire data records;
ith the rest 1/3 data records use for testing set. The cases in training set serve as the selected cases, the class labels of whom

re known. And the cases in test set serve as the unseen cases. The class labels of these unseen cases are determined by the
elected cases using the case coverage prediction algorithm and case score prediction algorithm. The class labels determined
ould be compared with the original class labels of these unseen cases. Then the classification accuracy is calculated. We

epeated the procedure three times so that every case has been used exactly once for testing. And the average classification
ccuracy (i.e. the mean of Fold-1, Fold-2 and Fold-3) is taken as the final classification accuracy.

For convenience, some notations were introduced which would be used throughout the experiment:

Reduced feature = |Reduced feature set|
|Original feature set|

Reduced case = |Reduced case set|
|Original case set|

�Accuracy = classification accuracy after reduction − initial classification accuracy

The initial classification accuracy is defined as the classification accuracy when using the original datasets, which have
ot been reduced either for the number of their features or cases. The last column of Tab.1 has shown the initial classification
ccuracy for the four journals.

Here, the classification performances in three different mechanisms are considered:

.1. Classification performance only after feature reduction

Basing on the feature reduction algorithm (Algorithm 1), only the features are reduced for each of the four journals. Since
 sequential of feature subsets of F ′1 = {f ′1}, F ′2 = {f ′1, f ′2}, . . . , F ′F ′ = {f ′1, f ′2, . . . , f ′|F ′′ |}, is generated with Algorithm 1, the subset
hich could achieve the highest classification accuracy is selected out as the final reduced feature subset in this section.
Table 3 shows the results only after feature reduction for each journal. Here, �Accuracy is the difference between the
lassification accuracy after feature reduction and the initial classification accuracy. It shows that higher accuracy have been
chieved, though the number of features is reduced dramatically (about 69% features were reduced). Using the reduced
eature space, the average problem-solving accuracy is 0.851, and the average enhancement is 0.178.
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Table 3
Accuracies after feature reduction.

Journals Reduced feature subset Reduced feature Accuracy �Accuracy

ITAC {x4, x24, x25, x17, x20, x19, x22, x18} 0.68 0.822 0.145
JAP  {x4, x17, x25, x24, x20, x19, x22, x14} 0.68 0.892 0.212
JEM  {x25, x4, x24, x17, x20, x19, x22 } 0.72 0.86 0.158
JMP {x4, x24, x17, x20, x25, x19, x22, x10} 0.68 0.83 0.197
Average – 0.69 0.851 0.178

Table 4
Accuracies after case reduction.

Journals Reduced case Accuracy �Accuracy

ITAC 0.12 0.733 0.056
JAP 0.16 0.812 0.132

JEM  0.11 0.788 0.086
JMP  0.19 0.765 0.132
Average 0.145 0.775 0.101

4.2. Classification performance only after case selection

Basing on the case selection algorithm (Algorithm 2), only the cases are reduced for each of the four journals. Table 4
shows the results for the accuracy of the case selection for each journal. Here, �Accuracy is the difference between the
classification accuracy after case selection and the initial classification accuracy. It shows that about 14.5% cases were
reduced. But the classification performance for each of the four journals is enhanced. Using the reduced case space, the
average problem-solving accuracy is 0.775. The average enhancement is about 0.101 compared with the initial accuracy.

4.3. Classification performance after feature and case reduction

Here, both the features and cases are reduced using the feature reduction and case selection algorithm. Also, the feature
subset achieving the highest classification accuracy is chosen out as the final feature subset. Table 5 shows the results for the
classification accuracies for each of the four journals. Here, �Accuracy is the difference between the classification accuracy
after feature and case reduction, and the initial classification accuracy.

Obviously, the average number of features is reduced from 25 to about 7.8, i.e., 69% features are removed. Based on the
concept of case coverage and soft fuzzy rough set, 7.0% cases are reduced from the original dataset. But the classification
performance for each of the four journals is enhanced dramatically for feature and case reduction. Using the reduced dataset
and feature space, the average problem-solving accuracy reaches 0.921. The average enhancement is about 0.248 compared
with the initial accuracy. Analyzing the classification results in (a)–(c) and the initial one, two  aspects should be mentioned:

(i) Classification performance: All of the three mechanisms of feature reduction (a), case selection (b), and both the feature
and case reduction (c) gain better performance than the original one. And the accuracies in (c) are the highest. It shows
that the CBC model proposed in this paper does work. There are noises in the citation activities of papers. Both the
features and cases are reduced to lessen the negative influences brought by noises.

(ii) Typical features: Compared the reduced feature subsets in (a) and (c), the feature subset achieved for each of the four
journals is the same. And the typical features for different journals are little difference from each other. Features of
{x4, x17, x19, x20, x22, x24, x25} are extracted out for all of the journals. Features of {x10, x14, x18} are also existed as
the informative features, but each of them is just emerged once. Table 6 shows the typical ten forecasting features,
along with their occurrence frequencies in the four journals. Since the goal of this research is to find the fair and reliable
predictors for highly cited papers, which should be general enough to be applicable to a wide range of fields. The features

occurs frequently in the four journals should be detected out to approach our goal. Thus, among the original twenty-five
features, only seven features of {x4, x17, x19, x20, x22, x24, x25} could be better to predict a paper’s citing trend in future,
including one external feature and six quality features.

Table 5
Accuracies after feature and case reduction.

Journals Reduced feature subset Reduced feature Reduced case Accuracy �Accuracy

ITAC {x4, x24, x25, x17, x20, x19, x22, x18} 0.68 0.06 0.898 0.221
JAP  {x4, x17, x25, x24, x20, x19, x22, x14} 0.68 0.08 0.95 0.27
JEM  {x25, x4, x24, x17, x20, x19, x22 } 0.72 0.04 0.938 0.236
JMP {x4, x24, x17, x20, x25, x19, x22, x10} 0.68 0.1 0.898 0.265
Aver. – 0.69 0.07 0.921 0.248
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Table 6
Typical features for HCPs.

Feature Definition Frequencies Source

x4 The h index of the first author before this paper 4 External features
x17 The first-cited age of this paper 4 Quality features
x19 The total citations to this paper in the first five years after publication 4 Quality features
x20 The number of countries citing this paper in the first five years after publication 4 Quality features
x22 The number of institutions citing this paper in the first five years after publication 4 Quality features
x24 The number of journals citing this paper in the first five years after publication 4 Quality features
x25 The number of subjects citing this paper in the first five years after publication 4 Quality features
x10 The maximum h index of the authors before this paper 1 External features
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x14 The kind of this paper 1 External features
x18 The first-citations of this paper 1 Quality features

Here, the question is whether the predictors chosen can well correspond with our preliminary results, or whether they
re the factors researches like to probe. In order to answer this question, a feature-specific analysis was performed.

(i) The h index of the first author {x4}: The h-index is an index proposed by Hirsch (2005) to evaluate the quality of scientific
research from a micro viewpoint. A larger h-index indicates that an author has gained considerable research capabilities
or reputations in science. Van Dalen and Henkens (2001, 2005) suggested that authors with high reputations could
receive disproportionately more citations than authors with low reputations. Our preliminary work also examined the
significance of the first author’s h index (Wang et al., 2011).

(ii) The citation properties in the first five years after a paper’s publication {x19, x20, x22, x24, x25}: These five features
represent papers’ knowledge distribution properties in the scientific community, which were also extracted out to be
the typical features associated with papers’ citation counts in our preliminary work (Wang et al., 2011). The wider
citation distributions in various journals, subjects, countries and institutions increase a paper’s visibility to a larger
extent, and so to their citation counts.

iii) The first-cited age {x17} of one paper: The first-cited age shows the rate of a paper to be accepted after publication. It
indicates that the easier a paper is cited, the larger the probability of it being cited frequently. Van Dalen and Henkens
(2005) showed that the status of uncitedness of a paper becomes a stigma and the longer a paper is uncited, the lower its
quality and the less inclined researchers will be to cite it. Glänzel, Shilemmer, and Thijs (2003) stated that the probability
of a paper’s uncitedness increases dramatically with belated first citations, and the probability of being frequently cited
later on decreases to the same extent. In fact, the negative influences brought about by a paper’s uncitedness reflect the
importance of the position of a paper’s first citation on its later citation life. Our preliminary experiment also showed
the important influences brought by papers’ first-cited properties (Wang et al., 2011). But compared with the feature
of papers’ first-citations {x18}, papers’ first-cited age plays a more important role in citation count prediction.

Therefore, our results show that it is feasible to predict future highly cited papers with high predictivity. Compared
ith the prior endeavors to seek the possible factors influencing on papers’ citation activities, we  not only consider the

xternal information about the journal and paper and authors, but also the information about papers’ quality. More-
ver, the predictive features extracted out are almost accordance with those obtained in our preliminary work, though
ifferent data set and learning methods were performed. It indicates that these features could provide reliable predic-
ion information even in distinct areas of science. The only difference between our two works lies in the feature of
x11}, the impact factor of the journal. Because only one journal in one field is considered to be the data source, this
eature was not identified as the core indicator. But it did not conceal the significance role of the journal on papers’ cita-
ion impact. In our preliminary work (Wang et al., 2011), we found that the reputation of journals plays an overriding
ole in gaining attention in science. The similar conclusions have also been suggested by Van Dalen and Henkens (2001,
005).

. Conclusions

In this paper, we show a quantitative support of prediction future highly cited papers by accessible bibliometric indicators.
Compared with our first attempt on prediction highly cited papers, the experiments in the present manuscript performed

wo important and additional analyses. First, an independent data set was  performed. Models in this paper were trained on
apers from four different journals in different fields, which could provide a more powerful prediction. Second, a different

earning method was used. A novel framework of case-based classifier (CBC) was proposed based on the case-based reasoning
CBR) and the soft fuzzy rough set (SFRS). The application of SFRS in CBC model can better eliminate the negative influences

rought by noises in the actual citation process. The CBC model operates by first reducing the number of features using the
oncept of soft fuzzy dependency in SFRS. Then, it selects cases with a case selection approach basing on the hybrid use
f SFRS and the concept of case coverage in CBR. Finally, it classifies the unseen cases with two classification techniques
f case coverage based prediction and case score based prediction. The features extracted out by the new data set and the
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CBC model are highly consistent with those in our preliminary work. It shows that the predictors depends more on the
choice of features rather than the choice of data sets and classifiers. And those following factors were proved to be the most
relevant predictors: (a) The research capabilities of the first author, represented by his/her h index. (b) The papers’ quality,
represented by papers’ earlier knowledge diffusion properties and the first-cited properties in the scientific community. (c)
The reputation of journal, represented by its impact factor.

Since several distinct areas were considered, the results have provided reliable and widely applicative prediction infor-
mation. Our future research will investigate whether contextual information of papers could be used to find additional
factors that allow differentiating between successful and lower-valued papers.
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