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Abstract

Software maintenance is expensive and difficult because software is complex and maintenance requires the understanding of

code written by someone else. A prerequisite to maintainability is program understanding, specifically, understanding the

control flows between software components. This is especially problematic for emerging software technologies, such as the

World Wide Web, because of the lack of formal development practices and because web applications comprise a mix of static

and dynamic content. Adequate representations are therefore necessary to facilitate program understanding. This research

proposes an approach called Readable (Readable, Executable, Augmentable Database-Linked Environment) that generates

executable, tabular representations that can be used to both understand and manipulate software applications. A controlled

laboratory experiment carried out to test the efficacy of the approach demonstrates that the representations significantly enhance

program understanding. The results suggest that the approach and the corresponding environment may be useful to alleviate

problems associated with the software maintainability of new web applications.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Software maintenance remains the most expensive

component of information system development, con-

suming 50% to 80% of resources [7,38,42–44,67,86].

A major contributor to this cost is inadequate program
0167-9236/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.dss.2005.04.002

B A preliminary version of this paper was published in the Pro-

ceedings of AMCIS 2003.

* Corresponding author.

E-mail addresses: cchua@cis.gsu.edu (C.E.H. Chua),

spurao@ist.psu.edu (S. Purao), vstorey@gsu.edu (V.C. Storey).
understanding [10,42–44,56,94]. When programs are

difficult to understand, maintainers, who are often not

the same as developers, spend more time reading

code, and make incorrect modifications to it. Most

approaches to improving program understanding (e.g.,

CASE Tools, sophisticated Integrated Development

Environments (IDE)) add presentation mechanisms

to existing programming languages [11,15,45,52,72]

instead of attempting to fundamentally change the

way code is written. The understanding of code is

thus linked to continued use of the CASE tool or IDE.

This can be problematic because these tools are often
42 (2006) 469–491
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used during the initial development of an application

but are difficult to employ during maintenance. Main-

tenance typically involves looking at someone else’s

code, often without access to the design or rationale

captured using a CASE tool or an IDE.

The problem is more acute in applications devel-

oped for the World Wide Web, where documentation

practices can be especially difficult to follow because

of rapid development cycles [2,5]. The challenge is

exacerbated by the structure of these applications,

which includes a hybrid of static content and program-

ming code [6,13,29]. The hybrid nature of such appli-

cations makes understanding the program, and

consequently maintenance, an onerous task.

The objective of this research is to: propose a new

approach to authoring applications (especially web

applications) to improve their understanding during

the maintenance phase. We conceptualize the solution

as an approach that helps the programmer communi-

cate to the maintainer information about a key pro-

gram understanding construct, i.e., control flows [56].

To facilitate this communication, the information

must be easy for a programmer to capture, and a

maintainer to understand. The contribution of this

research is an approach for capturing such manipula-

ble representations of control flow information, and a

corresponding environment that generates executable

code based on these representations. Our work builds

on prior research on control flow representations such

as state-transitions [34,35], Turing Machines [78],

and tables [53,58] to propose a layered approach,

called Readable (Readable, Executable, Augment-

ed Database-Linked Environment), that represents the

program components, their control flows, and data

relationships as tables. To demonstrate the feasibility

of the approach, we extend the Java programming

language to incorporate Readable constructs and

test its efficacy with a laboratory experiment. The

results indicate that Readable improves maintai-

ners’ program understanding, thereby improving soft-

ware maintainability.

The remainder of this paper proceeds as follows.

Section 2 presents related research. This is followed

by a discussion of the foundations of the Readable

approach. A prototype of Readable is described in

Section 3, along with an illustration that highlights the

concepts implemented. In Section 4, we develop hy-

potheses to evaluate the efficacy of the approach, and
describe a laboratory experiment conducted for this

evaluation. A discussion of the results with implica-

tions for practice and research is found in Section 5.

Section 6 concludes the paper and identifies avenues

for future research.
2. Prior research

2.1. Program understanding

Program understanding deals with how maintai-

ners understand code written by someone else for the

purpose of ongoing application maintenance. Often,

maintainers must read the code, without access to

complete specifications, and without recourse to the

rationale. As a result, as much as 50% of a main-

tainer’s time is spent reviewing existing code [92].

Research on program understanding, therefore,

relates human psychology and cognition to software

maintenance. Constructs such as schemas [8,63],

short-term memory [48], and chunking [84] are

employed to explain and predict maintainer beha-

viors [23,89], and thereby recommend methods for

training them [48,57]. This research suggests that the

appropriate mindset for program understanding

involves searching [31] and problem solving [1],

not reading a standard text document. When main-

tainers read programming code, they jump around

instead of reading the code from top to bottom

[82,83].

One promising approach to improving program

understanding is to represent code as tables. Parnas

et al. demonstrate that software specified as a set of

tables can be both simultaneously easy to understand,

and useful for rapid prototyping [53,58]. Kimbrough

and Yang [39] suggests that tables provide a natural

method for communicating design specifications.

Tables provide a method to easily organize disparate

sources of information, thereby encouraging rapid

comprehension [20,46,87]. Although some find alter-

nate representations (e.g., graphs) superior for partic-

ular tasks [69,80], all agree that tables often convey

structured information in a clearer way than text

[55,85]. Tables have also been employed as represen-

tations for numerous technical tasks including the

representation of mathematical models [28], and spe-

cific decision support systems [75].
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Tabular representations can also be adopted to

alleviate what Pizka [59] argues is the greatest prob-

lem in software maintenance: the separation between

the model, code and execution system. For example,

the written code must be compiled before it can be

used. As a result, changes to the code are not neces-

sarily reflected in changes to the system. Attempts to

preserve this relationship have been attempted, for

example, in tools or frameworks like Eclipse [12].

However, such tools and frameworks do not establish

a 1 :1 relationship between code and the system.

Instead, code changes not reflected in the model are

marked as bprotectedQ so that when the model is

revised, the modeling tool does not overwrite it with

new code.

To further unravel what maintainers must under-

stand, Pennington [56] proposes four constructs: (1)

function, (2) control flow, (3) data flow, and (4)

program states. The function of the program refers

to its intended goal and can be subdivided into sub-

functions. The control flow of a program identifies

how different components of the program interact.

The data flow identifies how data variables are trans-

ferred across components. Finally, the program states

identify constraints imposed by data values on the

execution of components.

These four constructs provide software maintainers

with different approaches to understanding programs

[89], depending upon their knowledge of the applica-

tion domain [62]. Those unfamiliar with the domain

first attempt to understand its control flow [56], which

is then used as a framework for understanding the

program. For example, a maintainer unfamiliar with

number guessing games may trace through source

code beginning with the main module to understand

the relationships between the user’s guessed number,

and the random number generated by the computer.

Those familiar with the domain search for code or

variables that represent required features [71]. The

code or variables are then used as beacons [10,61],

i.e., recognizable landmarks in code that allow navi-

gating to other, unfamiliar, parts of the source code

[10]. For example, maintainers familiar with guessing

game applications may search for components with

names such as dguessnumber()T or variables such as

dmynumberT. In both cases, the control flow construct

represents the most important piece of information

[73,90]. In the first case, developers trace it from the
initial state; in the second, they trace it from the

beacons.

Various modeling tools have been developed to

simplify program understanding. For example Paakki

et al. [52] describe a tool to navigate C code using

Hypertext. Others describe tools such as source repos-

itories that allow storage and retrieval of code from a

structured database [15,45,52,72]. Such tools are use-

ful to maintainers because they simplify managing the

storage and access to code files. They do not, however,

help the maintainers understand the code nor do they

help developers in creating code that may be easier to

understand. Other tools, such as code generation tools

(often embedded in programming environments or

CASE tools) are useful to developers for generating

code. This set of tools work by hiding the complexities

inherent in the source code. While they are useful for

developers, they can make maintenance more difficult

when the hidden code contains a bug or flaw. Yet

another class of tools may be identified as modeling

and programming environments such as Eclipse (from

IBM) and Whitehorse (from Microsoft). These contain

yet another set of capabilities that allow model-driven

development similar to that embedded in CASE tools

such as Rational Rose. Each of these classes of tools

provides supporting capabilities for the core task of

programming. None, however, addresses the core task

of creating the code itself with a view to making the

code more easily understandable for maintainers.

2.2. Software documentation

While research on program understanding is useful

for improving software documentation, such research

assumes a bbest-caseQ scenario where documentation is

readily available. However, more often, developers fail

to provide useful, and current documentation [27,88].

Research on improving software documentation prac-

tices attempts to resolve such issues and can be grouped

into three categories: (1) literate programming, (2)

reverse engineering, and (3) application generators.

2.2.1. Literate Programming

In literate programming, the developer creates code

that other human beings (as opposed to a computer)

can understand. This code is then typeset for human

consumption and compiled for computer consumption

by automated tools. The classic example of literate
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programming is WEB1 [40], although there are other

works in this field such as Elucidative Scheme [50].

The main limitation of literate programming is its

focus on documenting individual software compo-

nents. Little attention is paid to documenting relation-

ships between components (e.g., control flow), which

is often more important for program understanding

[90,93].

2.2.2. Reverse Engineering

Automated tools have been devised to create doc-

umentation from existing source code. Examples in-

clude JavaDoc [74] and its extensions [32,64], which

generate documentation from Java source or byte

code, KES (Knowledge Extraction System), which

reverse-engineers an ER diagram from a relational

database [16], and systems that reengineer documen-

tation from legacy code [77,81]. Reverse engineering

tools, however, tend to produce too much documen-

tation [3,91] because all constructs of a prescribed

form are extracted, including many that are not rele-

vant to the maintainer.

2.2.3. Application Generators

Application generators are CASE tools that gener-

ate complete programs, or program stubs from docu-

mentation. Examples include Rational Rose [60],

MetaEdit [70] and YACC [37]. CASE tools facilitate

documentation, but are not themselves documents.

Often, the adequacy of CASE tool documents depends

on the expertise and willingness of the original CASE

tool user (i.e., the developer) to use the tool. Further-

more, although application generators and CASE

tools are useful, they are frequently employed only

at the beginning of an implementation [41]. Devel-

opers often discover problems with code developed

from documentation, and change it, without changing

the documentation [27].

The above sub-streams address distinct aspects of

software documentation. The first aims at creating

code that simultaneously serves as documentation

appropriate for human consumption, the second

extracts documentation from existing code, and the

third uses documentation as the starting point for
1 The name bWEBQ refers to the complex relationships between

elements in software code, and does not represent an acronym.
generating code. None, however, provides an ongoing

solution to generate documentation, nor adequately

deals with the control flow construct. The problems

are even more acute for emerging applications such as

ones developed for the web.

2.3. Software documentation in emerging applications

Web applications, especially decision support sys-

tems (DSS) [68] pose a special challenge for program

understanding for two reasons. First, the process for

creating web applications has evolved as new uses for

the web were identified. These processes were not

considered when the web was first conceived [6].

Thus web applications integrate a number of distinct

technologies that follow separate development para-

digms [13]. The original technologies of the web

(HTTP and HTML) are based on a document markup

paradigm [6]. These are coupled to (for example) Java

Servlets that follow the Turing machine paradigm of

computation, and scripts that adopt a hybrid paradigm.

In contrast, traditional applications are based wholly on

the Turing machine paradigm of computation [78,79].

Various connectivity standards such as GET/POST, the

Simple Object Access Protocol (SOAP), Remote Pro-

cedure Calls (RPCs), and simple hyperlinks are em-

ployed to connect diverse technologies on the web.

Web developers must therefore understand how a be-

wildering array of distinct technologies interoperate as

part of a web application. In some cases, separate

technologies employed for disparate purposes are com-

bined within the same object. For example, an HTML

page may contain Javascript control code thereby com-

bining presentation and program logic. As many of

these technologies are fundamental to the existing

web infrastructure, it is likely that this conflict between

paradigms will continue into the foreseeable future.

Thus, program understanding of web applications is

an especially difficult task, because the pieces of infor-

mation needed to understand the program are all dis-

persed in many locations (e.g. code components, static

content pages, scripts in a page, access to a database

among others). A maintainer must understand how

pieces of an application from different locations work

in concert often in the absence of any documentation

from the developers about how these pieces fit together.

Various attempts have been made to solve the

multiple paradigm problem. Languages and frame-

works such as MAWL [4],bbigwigN[9], and Struts
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confounds the round-trip engineering processes [24]. As a result,

round-trip engineering is known to produce unsatisfactory docu-

mentation and code [36,51].
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[14] have been proposed that provide a single web

development framework. These languages and frame-

works bring web application development under a

single banner but do not provide mechanisms for

aligning system documentation with source code.

This causes a host of maintenance errors. For exam-

ple, a maintainer could correct, or compile an incor-

rect version of the source code, or waste time tracing a

problem that has been fixed in the source, but has not

been updated to the executable [59].

Second, the incentive to document code is greatly

reduced for application development under these web

platforms. Perceptions of time are shortened on the

Internet because software is delivered in successive

versions with a frequency higher than in traditional

domains [25]. As a result, software is often devel-

oped in an unsystematic manner, and left undocu-

mented [2,5] making it difficult for eventual

maintainers to understand applications. Web devel-

opment documentation tools and methodologies such

as Araneus [49], Rational Rose [60], Strudel [26],

and OOHDM [65,66] have been proposed for doc-

umenting or reverse-engineering web applications.

These also suffer from the same limitations as the

traditional software documentation technologies de-

scribed above. Some methodologies such as eXtreme

Programming have been developed to address such

high speed development. In eXtreme programming,

the exchange of tacit knowledge between program-

mers substitutes for the development of formal doc-

umentation [54]. However, such approaches do not

consider situations where a web application main-

tainer is not the original developer.

This review of prior work suggests several impor-

tant directions for addressing our research objective.

First, web application development approaches such

as MAWL [4] suggest that it is possible to improve

maintainability by proposing an alternative technolog-

ical platform for web application development. Sec-

ond, the most important construct for program

understanding is control flow [56,73]. Thus, useful

approaches for facilitating program understanding

must focus on this construct. Third, tables are an

appropriate format for documenting software

[39,53,58]. Finally, Pizka’s argument that code and

execution should be the same [59] suggests that a web

programming language should simultaneously make

program understanding easier, be executable, and
serve as documentation. These directly contribute to

the approach and corresponding environment we de-

velop in response to our research objective.

Our approach, therefore, shares some of the char-

acteristics of iterative development, round-trip engi-

neering, and research related to automated software

development with CASE tools. Our intention, howev-

er, is different from the ones espoused in the above

streams. We focus on the communication between the

developer, who creates the application, and the main-

tainer, who maintains the application often without

recourse to the developer or the developer’s work

products. Existing CASE tools and IDEs, are well

suited for iterative development, and communication

within the team of developers during the development

process. However, they do not support the extension

of software development and documentation practices

to ongoing maintenance notwithstanding the promise

of round-trip engineering.2 This is particularly true for

web applications, with their multi-paradigm nature.

Our research, thus, falls in this middle-ground

neglected by research on both software development

and software maintenance.
3. Developing READABLE software

We propose an approach and execution environ-

ment for constructing, maintaining and executing

Readable software (Readable, Executable, Aug-

mentable DAtaBase-Linked Environment). The ap-

proach facilitates the writing of software in a

manner that separates and explicitly documents the

control flow among program components [56]. This

becomes part of the communication between the de-

veloper and the maintainer, thereby contributing to

improved program understanding. The control flow

is represented in a separate layer called the application

structure. This layer uses the state transition formalism

[34] as the underlying documentation mechanism.

The control flow remains an integral part of the

software, and is converted into executable code by

the accompanying execution environment.
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The execution environment presents a specific in-

stantiation of how the Readable approach can be

implemented. It presents a concrete example of the

Readable approach that can be used to develop

testable applications. It uses a tabular representation

of the application structure to support generation,

manipulation and execution of software. Together,

the approach and environment allow the developer

to create software that facilitates program understand-

ing for the maintainer. Use of the Readable ap-

proach does not require significant adjustments to

work practices, and is compatible with existing tools

and practices such as CASE tools and round-trip

engineering with the additional convenience of over-

lapping code and documentation. We describe the

approach and environment in more detail below.

Both, the approach and environment are generic,

and can be used for developing a wide variety of

applications. They are especially useful for developing

web applications, because they facilitate integration of

diverse technologies in a self-documenting way.

3.1. The READABLE approach

The Readable approach requires explicit repre-

sentation of the four programming constructs sug-

gested by Pennington [56]. The application structure

layer, thus, contains four constructs: (1) control flow,

(2) components, (3) variables, and (4) program states

(see Fig. 1).

The control flow documents potential transitions

between program components. Each transition is spec-

ified as a pair of components and a condition that
Component

Name
Mode
Location

Variab

Name
Type

Control Flow

Condition

1

1

0..n0..n

Uses

Previous
Component

Next
Component

Meta-Level Information

Fig. 1. Application structu
dictates the circumstances under which one compo-

nent transitions to the other. These potential transi-

tions capture dependencies among components,

which, strung together, result in different program-

ming constructs such as sequence, selection, or itera-

tion, depending upon the conditions specified.

Sequence is represented by labeling the first compo-

nent as the previous component, the second as the

next component, and not specifying any condition.

Selection is represented by specifying the condition

as variables and values, which allow the sequence to

occur. Iteration is represented by specifying a next

component as the initial component of a previously

executed sequence. The following notation captures

the control flow.

ControlFlowmij Control flowm between components

i and j

ControlFlowmij .Variablek . value Transition condi-

tion specified as the value of variable k

The component construct documents various

types of software components including static con-

tent, server pages, pages with client scripts, servlets

or others. The following information is maintained

about each component, Componenti, Componentj a
Components.

Componenti . name Name of component i

Componenti .mode Mode of component i {0=wait-

ing for user, 1=otherwise}

Componenti . location Location of component i

specified as URI
le

0..n

0..n

Variable
Value

Program States

Process ID
Number of Steps
Component Name
Variable Name
Variable Value

Instance-Level Information

re layer meta-model.
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number between 1 and 10. For every guess, the computer informs

the player whether the guess was dhighT, dlowT, or dcorrectT until the
game ends with a correct guess. This game is used as an example fo

many other prototypes (e.g., MAWL [4]).
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The variables construct captures the existence,

and use of the variables, Variablek a Variables, by

different components. A variable in Readable

captures anything that can assume multiple values.

This includes traditional variables like integers or

strings, and more complex data types like states.

The notation to capture this construct includes the

following.

Variablek . name Name of variable k

Variablek . type Data type of variable k

Useik Component i uses variable k

The final construct, program state, unlike the first

three, represents instance-level information, capturing

the current state and transitions across states for a

given instance of a software. In effect, it traces the

activity of the software from the time it begins exe-

cution to the time it terminates. The program states

construct, therefore, contains instantiations from the

other constructs for each unique instance, and may be

understood as a 5-tuple consisting of:

Process Id A unique identifier for the process

NumSteps Number of state transitions that have

occurred so far

Componenti .Name Name of the component cur-

rently being executed

Variablek .Name Name of the variable being logged

Value Value of the variable before execution

A team of developers can build software compo-

nents (e.g. static content, server-side programs such as

servlets, client-side programs such as JSP/ASP pages,

web services using WSDL) using traditional software

libraries (e.g., Java class libraries). The components

and dependencies among them are then identified and

represented in the application structure layer. The

Readable approach, thus, separates the task of

building components from the task of connecting

them together. For example, in traditional HTML

forms, the URL of the next class or form to be

accessed must be specified in the HTML code.

Thus, the name of the class file must be known a

priori. In Readable, the HTML code is built with-

out specifying links across components. These are

captured and represented separately in the application

structure layer, which can be used by the execution
environment to run the software and the maintainers

to maintain the software.

3.2. An illustration

To illustrate the Readable approach, we present

an example for the well-known number guessing

game3 that has been implemented in the Readable

execution environment at http://readable.eci.gsu.edu:

8080/examples/servlet/demo. The example uses the

table representation of the execution environment.

Other representations (e.g., in XML) are possible.

However, the table representation is used because it

is easier to understand.

The example implementation contains the follow-

ing components: Genrand (to generate a random num-

ber), DisplayGuess (to display a screen prompting for

a number from the user), IncNoGuess (to increment

the number of guesses attempted), GoodGuess (to tell

the user the guess was correct), LowGuess (to tell the

user that the guess was low), and HighGuess (to tell

the user that the guess was high). Tables 1–4 represent

the constructs shown in the meta-model (Fig. 1). Table

1 demonstrates the control flow, Table 2 the compo-

nents, Table 3 the variables, and Table 4 the program

states.

In Table 1, the branching from IncNoGuess to

three possible components (rows 4–6) demonstrates

selection. If the guessed number matches the answer,

the application should tell the user that the guess was

correct (GoodGuess). If the guess was lower or

higher, the application should so inform the user

(LowGuess and HighGuess, respectively). The func-

tions Var(guess) and Var(answer) in the condition

field identifies to the application that guess and an-

swer are variables, not commands. The transition from

LowGuess to DisplayGuess (rows 7, 3, 5) demon-

strates iteration. When the user guesses low, the ap-

plication increments count and asks the user to guess

again. Note how conditionals and looping are speci-

fied explicitly outside the web components, making

them easier to identify, manage and change than in
r

http://readable.eci.gsu.edu:8080/examples/servlet/demo


Table 3

Variables

Component name Variable name Data type

DisplayGuess Limit Integer

DisplayGuess NoGuess Integer

DisplayGuess Guess Integer

DisplayGuess GuessStatus String

IncNoGuess NoGuess Integer

Table 4

Program state

Table 1

Control flow

Record Previous

component

Next

component

Condition

1 Begin Genrand True

2 Genrand DisplayGuess True

3 DisplayGuess IncNoGuess True

4 IncNoGuess GoodGuess Var(guess)=Var(Answer)

5 IncNoGuess LowGuess Var(guess)bVar(Answer)

6 IncNoGuess HighGuess Var(guess)NVar(Answer)

7 LowGuess DisplayGuess True

8 HighGuess DisplayGuess True

9 GoodGuess Genrand Var(Submit)=Yes

10 GoodGuess End Var(Submit)=No
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traditional web applications where components can be

(for example) identified in bForm ActionNcommands,

in URLs in an HTML form, in a Java servlet, or in an

dincludeT/ dimportT statement. It is not necessary for

the URL to be static following the Readable ap-

proach as long as the placeholder for the URL con-

tains a mechanism to locate the actual URL, e.g.,

pointer to a controller, which calls the relevant web

page, servlet, or other module.

Table 2 shows how the components construct can

be populated for the sample number guessing game.

Explicitly specifying the components and their URIs

in this way greatly enhances a maintainer’s under-

standing of the web application. Web applications

have numerous components with URIs that may be

dispersed across multiple servers. The component

table documents their disparate locations. Note

that the bserverQ specified in Table 2 refers to a

logical server. For example, a server pointing to

www.ibm.com, could be rerouted to any physical

server depending on the physical servers’ individual

loads.

Table 3 demonstrates variables for the components

DisplayGuess and IncNoGuess. These include four
Table 2

Components

Name Mode Location

DisplayGuess Yes bserverN/bdirectoryN/Demo_displayguess

Genrand No bserverN/bdirectoryN/Demo_genrand

GoodGuess Yes bserverN/bdirectoryN/Demo_Goodguess

HighGuess No bserverN/bdirectoryN/Demo_guesshigh

IncNoGuess No bserverN/bdirectoryN/Demo_incnoguess

LowGuess No bserverN/bdirectoryN/Demo_guesslow
that the first component uses: (1) Limit, a variable

that identifies the maximum number to guess, (2)

NoGuess, the number of times the user has attempted

to guess the answer, (3) Guess, the last guess the user

made, and (4) GuessStatus, a string identifying wheth-

er the last guess was low or high.

Tables 1–3 describe the application program at rest

and are executable code. Changing the values in these

tables alters the way the application runs. The fourth

table, Program States, captures the manner in which

distinct users may navigate through the program. It,

thus, captures the dynamic aspect of the application in

the form of a log. An excerpt of such a log is shown in

Table 4 (a record number is included to facilitate

description). This excerpt begins with the fourth exe-

cuted component, LowGuess (records 1–5), and

shows its input memory contents. For instance, the

log shows that a user had previously guessed 3, as

opposed to the correct answer 4. LowGuess has mod-

ified one variable, dGuessStatusT, changing it from a

blank to dLowT. The result of LowGuess is presented

as the input to the fifth executed component, Display-

Guess (records 6–10). In the event of an abnormal

termination, this enables a software engineer to trace

the cause of the termination.
Process ID Sequence Component name Variable name Value

1 4 LowGuess Guess 3

1 4 LowGuess Answer 4

1 4 LowGuess GuessStatus dT
1 4 LowGuess Limit 10

1 4 LowGuess NoGuess 1

1 5 DisplayGuess Guess 4

1 5 DisplayGuess Answer 4

1 5 DisplayGuess GuessStatus Low

1 5 DisplayGuess Limit 10

1 5 DisplayGuess NoGuess 1

http:www.ibm.com
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3.3. The READABLE execution environment

The Readable execution environment is concep-

tualized as a controller that operates on the application

structure layer that in turn invokes the web compo-

nents. The application structure layer comprises the

four tables presented in Section 3.2. The controller

reads these four tables in the same way a program

interpreter or virtual machine reads source/byte code

(i.e., as a universal Turing machine [47,78,79]). The

Readable controller identifies the location of the

relevant component, and instructs the interpreter to

execute the component as needed. If a component

requires human intervention (e.g., it is a web form),

the controller halts and alerts the user. Once a com-

ponent is executed, the controller identifies the next

component to execute based on the control flow rela-

tionships stored in the application structure layer. Fig.

2(b) presents the Readable execution environment.

During a typical execution sequence, the controller

begins by searching for the first component to be

executed (e.g. marked with a reserved name such as

dBeginT). The controller marks it as the dcurrentT
component, and invokes it, passing to the current com-

ponent any required variables. After the current compo-

nent is executed, the controller again takes over. The

controller compares the updated state information with

the transition conditions that initiate with the current

component. If a transition condition matches its current

state, the controller follows that dependency to identify

the next component to be executed. This component is

considered as the new current component, and the cycle
A

C
User

(a) A Traditional Ap

Controller

Layer
User

(b) A READABLE Ap

Fig. 2. Contrasting a traditional web
repeats until the last component (e.g. marked with a

reserved name such as dEndT) is reached. Thus, as Fig. 2
demonstrates, software with the Readable approach

maintains a clear separation between components and

structure in contrast to the traditional web approach.

Unlike controllers in the Model-View-Controller

(MVC) architecture [30], or Jakarta Struts [14], a

Readable controller consists entirely of generic

code that implements a universal Turing Machine.

The Readable controller employed for any applica-

tion is, thus, identical. The application itself is specified

by entries in the application structure layer, which

include the components called, the conditions under

which they are invoked and the current values. Changes

to the application are accomplished by modifying the

application structure layer—not the controller.

3.4. Establishing feasibility

To demonstrate its feasibility, the Readable en-

vironment was implemented as an extension to the

Java language. The implementation of Readable

Java employs the Java Class loader (i.e., the Class

dclass,T and the function dclass.newInstanceT) to load

the modules, pass-by-name referencing and hidden

form fields to pass variables to HTML forms. The

application structure layer was implemented in a re-

lational database management system and the control-

ler was integrated with the Java runtime environment.

An example code snippet that demonstrates how

programs can be written with Readable Java and

extensions to HTML to realize the Readable con-
pplication

omponents

plication 

Application

Components

Application

Structure

plication 

application with Readable.
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structs is shown in Fig. 3. The code snippet extracts a

value bxQ from a form called bform_1Q. If bxQb some

value, then bclass1Q is called, else, bclass2Q is called.
bHomeURLQ refers to the URL of the application’s

home page, which in the case of Readable is the

URL of the controller. $dump is a command that ex-

tends an HTML web page with Readable control

commands. Fig. 3(a) contrasts the HTML code nec-

essary to present the form under the two approaches.

Fig. 3(b) contrasts the Java code against the equiva-

lent Readable control flow table. Syntactic require-

ments of Java that do not enhance the example are

either presented in [square brackets], or are commen-

ted by ellipses (. . .).
The following are some of the key distinctions

between the two examples. In traditional web devel-

opment (e.g., the MVC architecture and Struts), the

developer explicitly identifies the URL of the compo-

nent in the HTML form (Fig. 3(a)). However, in

Readable, the developer specifies the URL of the

controller layer. Thus, in the example provided in

Section 3.2, all HTML forms refer to http://readable.

eci.gsu.edu:8080/examples/servlet/demo, regardless

of the component being accessed.

Similarly, in traditional web development, the de-

veloper would write code to specifically handle a con-

ditional branch (Fig. 3(b)). In the Readable

approach, conditional branching is identified in the
(a) HT

(b) Java Code vs. App

Traditional

<Form Action=″thismodule″> 
<Input Type=″Text″ Name=″X″> 
<Input Type=″Submit″ 
Name=″Submit″ Value=″Submit″> 
</Form>

Traditional

import class1; 
import class2; 

class thismodule{ 
  [extract x from HTTPServletRequest]
  if (x<[some value]) 
   [instantiate and execute class1];
  else 
   [instantiate and execute class2];

}

......

......

Fig. 3. An example of R
control flow table. Thus, with the Readable ap-

proach, the module bthismoduleQ (and all others like

it) are not needed.

The complete implementation of the Readable

execution environment along with further documen-

tation is available at http://readable.eci.gsu.edu:8080/

examples/readable.zip. In addition to the illustration

above (chosen because of its customary usage in

similar research), the Readable approach has been

used to develop several applications, which have been

deployed with the Readable environment on

Microsoft Internet Information Server and Apache

Tomcat. Two of these are described below.

! The IS Bibliographic Repository [17]: This applica-
tion stores bibliographic information about academ-

ic journals in information systems. Users can search

and export citations to formats such as Endnote or

BibTeX, and can perform bibliometric analyses

such as comparing frequency of publication. The

IS Bibliographic Repository is available at http://

readable.eci.gsu.edu:8080/examples/servlets/isbib.

! TheAutomated Software Development Environment

for Information Retrieval [18]: This application

provides a framework for synthesizing new search

engines that incorporate features from existing

ones. It can be found at http://readable.eci.gsu.

edu:8080/examples/servlet/sf.
ML Code 

lication Structure

Readable

<Form Action=″homeURL″> 
$dump{}
<Input Type=″Text″ Name=″X″> 
<Input Type=″Submit″ 
Name=″Submit″ Value=″Submit″> 
</Form>

Readable

Control Flow Table Fragment:
Previous

Component
Next

Component
Condition

Form_1 x<(some 
value)

Form_2 x>=(some 
value)

class1

class2

eadable code.

http://readable.eci.gsu.edu:8080/examples/servlet/demo
http://readable.eci.gsu.edu:8080/examples/readable.zip
http://readable.eci.gsu.edu:8080/examples/servlets/isbib
http://readable.eci.gsu.edu:8080/examples/servlet/sf


Table 5

Hypotheses posited

Hypotheses Test of

H1 Subjects would find it easier to understand

control flow with Readable than with a

traditional programming language.

Significance

H2 Subjects would find it easier to understand

program states with Readable than with

a traditional programming language.

Significance

H3 Subjects would not find it any more difficult

to understand data flow with Readable

than with a traditional programming language.

Power

H4 Subjects’ understanding of modules with

Readable and modules written in the

traditional language would not be

significantly different.

Power
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4. Empirical analysis

To investigate whether the proposed approach with

its instantiation as tabular representations [53,58] of

Pennington’s constructs [56] would contribute to pro-

gram understanding, a testable empirical model was

developed. The model focused on investigating

whether programs created with the Readable ap-

proach and executed with the Readable environ-

ment would be more understandable as compared to

traditional programs. To reflect the critical nature of

the control flow construct in program understanding

[56], the model specifically focused on testing

improvements in the understanding of this construct

without compromising understanding of the other

constructs, that is, components, variables, and pro-

gram states [56]. Fig. 4 presents the research model.

A laboratory experiment was designed to test the

claims embedded in the testable empirical model, spe-

cifically, the claim that the Readable approach

would enhance program understanding compared to

traditional applications, and thus, simplify mainte-

nance. The programming constructs were operationali-

zed in the software following either A1: the READABLE

approach, or A2: the Traditional approach. Four hy-

potheses were formulated that mapped directly to each

of Pennington’s four constructs (see Table 5). A factual

20-item true/false questionnaire (presented as Appen-

dix A.3) was employed to test the four hypotheses.

Of these four hypotheses, only H1 was of specific

interest as it tested for hypothesized benefits of

Readable. The remaining three hypotheses were

included as forms of statistical control. Specifically,

H1 tested if the understanding of Readable’s control

flow would be superior to that of a traditional program-

ming language. As program states combine an under-
Programming Approach 

A1:  READABLE

A2:  Traditional
Under

Con

Pro

Dat

Com
Demographics

Age and Gender 

Experience

Education

Independent Variable

Control Variable 

Depende

�

�

�

�

�

�

�

Fig. 4. Testable emp
standing of control and data flow, it was also

hypothesized that subjects would more easily under-

stand Readable program states (H2). Even if

Readable improved subjects’ understanding of con-

trol flow, Readable would not improve program

understanding if it reduced understanding of a pro-

gram’s data flow. Given sufficient statistical power, a

failure to reject H3 would suggest that the Readable

approach did not produce unnecessary effects on data

flow. Finally, as both Readable and traditional

programming modules are fundamentally the same,

we would expect that our treatment and control groups

would understand the modules equally well. If a dif-

ference was discovered in H4, this would suggest that

some extraneous factor was influencing our experi-

ment. Thus, our expectation was that H1 and H2

would be statistically significant in favor of

Readable, and that H3 and H4 would not be statis-

tically significant towards the non-Readable treat-

ment. Furthermore, H3 and H4 would have sufficient

statistical power that they could be accepted.
standing of 

trol Flow 

gram State 

a Flow 

ponents

nt Variable 

Maintainability
of Software 

 Postulated

irical model.
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4.1. Experimental procedure

The study followed a laboratory experiment format

patterned after Pennington [56]. Subjects were pre-

sented with the scenario that they were hired to main-

tain code while the chief programmer was on

vacation. This required them to understand the source

code of the program fully without recourse to an

expert. The program they needed to understand was

a Java program that solved the N-Queens problem.4 A

traditional programming problem was given in lieu of

a web-based one, for two reasons. First, we could not

identify a bclassicQ web-based problem to administer

to subjects. Second, to control for experimenter/sub-

ject relationships, subjects were students that were not

taking a course taught by the experimenters. The

experimenters, therefore, had to impose on the class

time of colleagues. As web-based problems are harder

to understand, the experimenters would have had to

allocate more time to the experiment, thereby impos-

ing additional burdens on colleagues and students.

The task assigned to the control group was to

understand the program written in Java without the

Readable extensions. The task assigned to the treat-

ment group was to understand the same program

written in Java with the Readable extensions. The

treatment group had never previously encountered

code written in the Readable style. Therefore,

they received a 1-page description of the Readable

approach prior to performing the task (shown in Ap-

pendix A.1). To reduce experimenter bias, the subjects

were not given any specific training about the

Readable approach. Further details of the experi-

ment are available at http://readable.eci.gsu.edu:8080/

examples/readableappendix.doc.

The subjects’ understanding of the programs was

tested using a 20-item questionnaire, administered

under examination conditions, which prevented sub-

jects from discovering the number and type of alter-

nate treatments, and thereby controlled for diffusion

of treatments, compensatory rivalry, compensatory

equalization, and resentful demoralization [21]. A
4 N-Queens is a classic mathematical problem where one places N

chess queens on an N�N board so that no two queens can take each

other. The problem was selected, because of its clean control flow

characteristics. For a good illustration of how N-queens is solved,

see http://www.math.utah.edu/~alfeld/queens/queens.html.
demographic questionnaire (presented as Appendix

A.2) was also administered to test both for equality

between groups on extraneous factors, and to test for

non-respondent bias. To minimize the effect of gues-

sing, each item on the questionnaire was awarded 1, 0

or �1 points for every correct, blank, or incorrect

answer, respectively. Thus, the expected value of

guessing on all items was equal to the expected

value of a blank questionnaire. The instructions in-

formed subjects that they had 15 min to understand

the code. However, the subjects were free to examine

the code while answering the questions, i.e., there was

no enforced time constraint.

Five true/false items were formulated to test each

hypothesis. Examples of these 20 items and the con-

structs they mapped to are:

H1. Control Flow—All control-flow questions re-

quired that subjects identify possible order sequences

between two modules. To answer control flow items

correctly, a subject would have to trace through the

linkages between modules. For example, dadd_solu-
tion() can be called after solution()T. Items 1, 5, 9, 13,

and 17 were control flow items (see Appendix 3).

H2. Program States—The program-state questions

required that subjects identify possible or actual

values of variables that result from execution of the

program. Each question in this set links the value of

one or more variables to a module. To answer pro-

gram state items correctly, a subject would have to

work through the control flow to evaluate values of

variables that reflect program states. For example, dthe
minimum possible BoardSize is 0.T Items 3, 7, 11, 15,

and 19 were program state items (see Appendix 3).

H3. Data Flow—The data flow questions tested

knowledge of relationships between data elements of

separate modules. For each question, a variable in one

module would be linked to a variable in another. To

answer data flow items correctly, a subject would have

to work through the module invocations to understand

what data is passed across modules. For example, dthe
array returned by solve_queens() becomes cur_sol.T
Items 2, 6, 10, 14,and 18 were data flow items (see

Appendix 3).

H4. Modules—The module questions tested knowl-

edge about the processes within the modules. To

answer a module question correctly, the subject

http://www.math.utah.edu/~alfeld/queens/queens.html
http://readable.eci.gsu.edu:8080/examples/readableappendix.doc
http://www.math.utah.edu/~alfeld/queens/queens.html
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would have to refer only to the module in question.

For example, dwhen the solve_queens() function exits,

curline is always equal to boardsize.T Items 4, 8, 12,

16, and 20 were module items (see Appendix 3).

A learning bias towards a web-oriented program-

ming language could not be controlled for because the

study could only be administered on subjects having

some programming knowledge. All subjects had been

instructed in the programming language (i.e., Java),

but without any Readable constructs. As the exper-

iment was designed to test whether Readable sim-

plified program understanding, this lack of prior

knowledge about Readable meant that a positive

result could be treated as an even stronger demonstra-

tion of Readable’s effectiveness.

The subject pool included 81 students taking

different programming courses at a US public uni-

versity. To elicit participation, subjects were in-

formed that the experiment would help them

evaluate their own ability to understand program

code written by an external party. No external reward

was provided to subjects for participation/non-partic-

ipation. Of the 81 subjects, 42 elected to participate

for a response rate of 52%. To minimize extraneous

effects on the experiment, subjects were randomized

to the treatment and control groups. Out of a total of

40 subjects assigned to the treatment group, 20

respondents elected to participate. Of 41 subjects

assigned to the control group, 22 elected to partici-

pate. Thus, the experiment satisfied the recom-

mended minimum sample size constraint of 20

observations per group [33].
Table 6

Differences between demographic groups

(a) T-test

Demographic Treatment mean (S.D.) Co

Age 26.882 (5.159) 26.

Work experience 5.235 (5.093) 4.

IT work experience 0.688 (1.137) 0

Programming experience 0.582 (1.050) 0.

Likelihood of participation 0.500 (0.506) 0.

(b) v2-test

Demographic v2

Gender 4.011

Education 0.453
4.2. Results

Tests were performed for the successful randomi-

zation of subjects, and the impact of non-responses on

the experimental design. To test for successful ran-

domization, a post-hoc analysis was conducted to

compare demographic characteristics of the subjects.

Differences between age, years of work experience,

years of IT experience, years of programming expe-

rience, and likelihood of participation given assign-

ment to either the treatment or control group were

evaluated using two way independent sample t-tests.

Possible differences in groups due to gender and

educational experience were tested using a chi-

squared test. No significant differences at the

aV0.05 level were found between the groups. Table

6 presents the test results.

To test for non-response bias, two-way one sample

t-tests were conducted to compare characteristics of

the respondent sample against known characteristics

of the population of information systems students at

the university. Tests were performed on gender and

work experience. None of the results were significant

suggesting that the sample was an accurate represen-

tation of the population being studied. The university

did not collect statistics for the other demographic

variables employed in the study.

One-tailed independent sample t-tests were admin-

istered to measure the results of hypotheses 1–3. A

two-tailed independent sample t-test was administered

to measure the result of hypothesis 4, as no direction

was hypothesized. All tests were performed at the

aV0.05 level of significance and 1�bz0.8 level of
ntrol mean (S.D.) t N p-value

571 (6.153) 0.166 38 0.869

950 (6.065) 0.153 37 0.879

.611 (1.335) 0.183 35 0.856

944 (1.381) �0.869 35 0.391

537 (0.505) �0.326 81 0.746

N p-value

42 0.135

38 0.797



Table 7

Program understanding of Readable—adjusted scores

A1: mean

(S.D.)

A2: mean

(S.D.)

Effect

size

t p-value 95% Conf.

interval (min)

95% Conf.

interval (max)

Interpretation

H1 0.800 (2.167) �0.364 (2.013) 0.537 1.804 0.040 0.078 N/A Readable control flow is significantly

easier to understand

H2 0.700 (2.080) �0.227 (2.022) 0.445 1.464 0.076 �0.139 N/A Readable program states may be

significantly easier to understand

H3 0.250 (1.970) 0.909 (2.389) 0.276 �0.970 0.169 �1.804 N/A Data Flow is unlikely to be worse in

Readable

H4 0.750 (2.173) 0.545 (2.132) 0.094 0.308 0.760 �1.139 1.548 No differences can be found between the

groups
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power. Cohen’s d [19], a measure of the effect size

(magnitude of difference) was also calculated. Table 7

summarizes the adjusted results (i.e., factoring in

guessing). Table 8 summarizes the results for correct

answers only.

Despite the small sample size, the results in both

Tables 7 and 8 suggest that software developed with

the Readable approach is easier to understand than

that developed with traditional Java. For both the raw

and adjusted scores, the key hypothesis of interest

(H1) was statistically significant, which indicates

that respondents were better able to understand con-

trol flow in a Readable program than that written in

traditional Java. Although the small sample sizes did

not allow us to accept the null hypothesis for H4, the

small effect sizes suggest that any contamination was

small or practically insignificant. When scores were

not adjusted, the effect size was 0.247. When scores

were adjusted, the effect size was 0.095. Cohen [19]

suggests that an effect size of 0.2 is a bweak effectQ.
Thus, given the small sample size, we conclude that

there is sufficient evidence to accept the null hypoth-

esis (H4) that the treatment and control groups did not

materially differ on their understanding of the indi-
Table 8

Program understanding of Readable—raw scores only

A1: mean

(S.D.)

A2: mean

(S.D.)

Effect

size

t p-value 95% C

interv

H1 3.100 (1.410) 2.318 (1.359) 0.575 1.829 0.038 0.062

H2 3.000 (1.589) 2.318 (1.323) 0.515 1.516 0.069 �0.07

H3 2.800 (1.642) 2.818 (1.563) 0.012 �0.037 N/A N/A

H4 3.050 (1.959) 2.591 (1.764) 0.260 0.799 0.214 �0.70
vidual modules. It is not possible to ascertain whether

Readable has any adverse impact on respondents’

understanding of a program’s states (H2) or data flow

(H3). However, given the low effect size of any

possible adverse impact, we interpret this to mean

that for program states and data flow, Readable

did not practically differ from traditional Java. Com-

bined, these tests of hypotheses indicate that maintai-

ners find it easier to follow control flow in

Readable without potential adverse effects on un-

derstanding of other contructs such as program states,

data flow and individual modules. By implication,

Readable code is thus more easy to maintain than

code written in a traditional way.
5. Discussion

We have described a novel approach called Read-

able for developing applications (especially multi-

paradigm applications such as those for the web). The

approach facilitates communication of control flows

between the developer and the maintainer, thereby

simplifying program understanding. The empirical
onf.

al (min)

95% Conf.

interval (max)

Interpretation

N/A Readable control flow is significantly

easier to understand

5 N/A Readable program states may be

significantly easier to understand

N/A Data Flow is unlikely to be worse in

Readable

2 1.620 Likely that no differences can be found

between the groups
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results suggest that Readable does succeed in im-

proving program understanding for the maintainer,

thereby simplifying maintenance. The positive result

for hypothesis H1 and the lack of negative results for

hypotheses H2 to H4 suggest that Readable con-

tains the potential to be an effective approach for

developing maintainable software.

The experimental Readable approach represents

a nexus of multiple theoretical bases drawn from the

research streams of program understanding and soft-

ware documentation. Specifically, the approach draws

on Pennington’s [56] constructs and Parnas [53] and

Peters and Parnas’s [58] suggestion that tabular repre-

sentations can facilitate program understanding beha-

viors [82,83] regardless of the maintainers’ knowledge

of the application domain [62,89]. The key contribu-

tion of this research is this conceptual exercise and its

operationalization. The implementation we have de-

scribed in this paper represents one primitive instanti-

ation of this experimental approach for the Java

programming language. This primitive implementa-

tion nevertheless demonstrates the feasibility and use-

fulness of our approach. Other, more elegant and

sophisticated implementations using state charts or

graphical interfaces can be developed. The approach

developed in this paper can form the basis of further

work of this nature. More efficient organization and

retrieval mechanisms can be developed as well. This

paper’s goal was to demonstrate the feasibility and

establish potential usefulness of the Readable ap-

proach; these extensions are, therefore, beyond the

scope of the current study.

5.1. Benefits

As a software artifact, the Readable execution

environment is a prototype, and hence cannot be

deployed directly for commercial use. Nevertheless, it

is useful to conjecture about the role of the Readable

approach in supporting commercial application devel-

opment. We suggest that Readable will be most

suited to developing new applications instead of retro-

fitting existing ones. Retrofitting is likely to be expen-

sive because control flow and other programming

information from disparate sources must be collated.

Arguably, such an exercise would have additional ben-

efits. For example, the exercise would help the main-

tainer understand an application’s control flow.
Nevertheless, for many applications, the up front

costs of this exercise may overshadow potential future

benefits. For new application development, however,

developing a program in the manner reported in this

paper will likely present few additional demands on the

programmer with the potential of easier maintenance.

With increasing acceptance of the web as the pri-

mary programming and software deployment platform,

software evolution and maintainability concerns will

continue to be important. Another contributing factor

to this problem is the increasing complexity of web

applications as diverse technologies co-exist in the web

application development space. One recent addition to

this mix of technologies is the web services platform.

This set of standards suggests a clear separation be-

tween Web Services Description Language (WSDL)

for specification of the services, and Business Process

Execution Language for Web Services (BPEL4WS).

The Readable approach would, therefore, augment

the creation and maintenance of processes that repre-

sent the composition of web services by providing an

explicit specification of the control layer. A second set

of technologies, which underlie the web services plat-

form is XML (eXtensible Markup Language) and XSL

(eXtensible Stylesheet Language), which is being used

to replace the HTML presentation component in older

web applications. The Readable approach can ac-

commodate the XML/XSL combination in place of

HTML by simply leveraging the requisite functionality

in XSL to identify and route the module to the appro-

priate processor. The mode of execution of a Read-

able application would not change.

The Readable approach can also be used to

implement the Model-View-Controller (MVC) archi-

tecture [30] (among others). The ideas underlying the

MVC architecture suggest a separation of concerns

between models (underlying schemas), views (visible

to different users), and control (manner of use by

different users). The Readable approach builds on

the idea of separation of concerns to provide the

maintainer easy to manipulate representations of the

MVC controller layer. This also serves as the com-

munication between the developer and the maintainer.

The example presented in this paper, in fact, employs

the MVC architecture, where a user inputs some

information in a form. The benefits of Readable

are, therefore, more directly visible within the context

of applications deployed with the MVC architecture.
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However, the Readable approach provides addi-

tional benefits such as the ability to handle heteroge-

neous environments, and integration of numerous

technologies (e.g., web services, HTML forms,

XML data) and is not limited to applications devel-

oped with the MVC architecture. The N-Queens prob-

lem employed in our empirical test, for example, does

not closely follow the MVC application. The tables in

a Readable implementation (e.g., control-flow) re-

place the controllers found in a Model 2 MVC.

The use of Readable code to illustrate the MVC

architecture has particular value in pedagogy. In this

paper, we have focused on Readable as a new way

of developing software. However, Readable can

also be employed as a way to illustrate the use of

tables in software design. As mentioned earlier, Par-

nas and colleagues have demonstrated that tables can

be useful for specifying code before actual implemen-

tation [53,58]. The Readable approach provides a

way for novices to visualize how the table specifica-

tion might be implemented in actual code.

5.2. Study limitations

The generalizability of our findings is limited by

the scope of the empirical study such as the small

sample size, and use of students as subjects. Resolv-

ing these issues is beyond the scope of the present

study. Further studies are required to empirically test

usefulness of the approach for multiple tasks of dif-

ferent sizes and for expert programmers. Pragmatic

constraints on resources prevent us from performing

these additional experiments or more robust imple-

mentations that may allow use of the Readable

approach with other programming languages. We

have demonstrated that as an experimental approach,

Readable is feasible, and the limited evaluation we

report shows that it can be useful for the purpose of

improving program understanding (i.e., for develop-

ing maintainable software).

Additional studies may also be performed by allow-

ing subjects to mimic programming practices such as

access to CASE tools, integrated development envir-

onments, or other technologies to help them under-

stand the code. These would investigate the process

developers may follow for authoring programs instead

of the focus of our investigation, which was to under-

stand how maintainers would understand a program
authored by someone else. It is, however, possible to

speculate possible synergies between Readable and

CASE Tools. For example, such tools can be employed

to provide a graphical interface to the Readable

metamodel. Our research also suggests a new research

approach to software development. In this research

approach, information for development and mainte-

nance is not embedded in a tool, but instead is some-

how integrated with the source code. In this way,

developers and maintainers can make use of the infor-

mation even when the tool is unavailable.

It is difficult to ascertain the scalability of Read-

able because it currently exists as a research proto-

type. However, there is some evidence to suggest that

the Readable approach and the accompanying en-

vironment would be scalable in three ways.

! Operational Performance: The elements contained

in the Readable approach are represented in a

tabular form, i.e., they can be stored in a relational

database. Most database queries would, therefore,

require a time of O (n log n) to execute as they

directly query primary keys. Second, the research

prototype of Readable has been used to author

and deploy multiple applications of different sizes

in varied domains. One of these, the IS Biblio-

graphic Repository [17] contains information on

approximately 80 thousand journal article entries.

! Understanding Large Systems: Another test of

scalability is whether the Readable approach

can facilitate improved program understanding of

large-scale systems. Experimental methods gener-

ally cannot be applied to such settings. Instead, we

present the following argument. With the

Readable approach, the control flow is explicitly

documented and available to the maintainer in a

central location. As the scale of the application

grows, the availability of such documentation

should be even more valuable because less time

is spent tracking down control flow scattered

across modules. Further support to our argument

is provided by prior research suggesting that tables

are most useful as a representational format when a

task is complex [76,95]. Furthermore, as

Readable code is stored in a database, it is

possible to leverage operators such as dProjectT
and database search mechanisms to find relevant

sections of the tabular representations. While
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searches for code in traditional application devel-

opment environments are possible, such searches

are often difficult because the unit of storage (the

source code file) is not optimized for search. Fi-

nally, it may be possible to extend the tabular

representations in Readable to more complex

ones such as nested tables that hide complexities

across different levels of abstraction to facilitate

understanding of large-scale systems.

! Understanding in Multi-developer Settings: The

Readable approach can also be adapted to set-

tings where multiple developers work on the same

project. In traditional project settings involving

large numbers of developers, the file is the smallest

unit of information shared. Thus, one developer

requiring information is often exposed to code

irrelevant to his or her task, but nevertheless cap-

tured in the file containing the required informa-

tion. Because Readable operates from databases,

it is possible to provide developers with code-

sharing at a finer level of granularity. One can

create views on the Readable code so that a

developer is only exposed to code relevant to the

developer’s task.

The discussion above is especially relevant for

applications that are distributed over n-tier architec-

tures that may include a multitude of disparate servers.

In such cases, it is likely that a maintainer will not

have access to a portion of the code deployed on

remote servers. Following a Readable specifica-

tion, the maintainer would still be able to determine

problem situations and if possible, adjust code that is

under his/her control (treating other modules as bblack
boxQ modules) to either arrive at desired results or

coordinate maintenance efforts with other developers.

Empirical investigations of these remain beyond the

scope of the current study.
6. Conclusion

The approach we have proposed for developing

self-documenting and maintainable software for the

web can significantly improve the practice and out-

come of software created for this platform. The

approach represents program components (e.g.,

HTML, Java Servlets) and their control-flows as
tuples in a relational database. A corresponding

environment uses the tuples in the relational data-

base to execute the web application. The feasibility

of the approach and environment has been demon-

strated by extending Java and implementing multiple

prototype applications. A limited empirical assess-

ment of the approach has shown that Readable

facilitates program understanding. The results, thus,

demonstrate that Readable is both viable and

useful for creating self-documenting web applica-

tions that promote greater program understanding,

and hence become more maintainable. Our current

research focuses on the application of Readable

towards developing software factories to facilitate

the (semi) automatic manufacture of integrated soft-

ware applications [22]. We are also studying the

feasibility of integrating our approach and environ-

ment with CASE tools.

The Readable approach provides opportunities

for work in additional research streams. For example,

it would be interesting to ascertainwhether Readable

could be adapted successfully to other popular prog-

ramming languages such as Visual Basic. Alternate

experiments could be conducted on these programming

languages to determine whether Readable success-

fully enhances program understanding. The Read-

able approach also relies on encapsulation as a

mechanism for reuse. Adding other mechanisms such

as polymorphism and inheritance to Readable

would further improve robustness of the approach,

and increase its applicability to a wide variety of

problems.
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import java.io.*;
     int no_sol=0;
     int[ ] solutions=null;
     int boardsize=0;
private int[ ] add_solution (int[ ] cur_sol, int[ ] solutions,
                                               int boardsize, int no_sol)
     {
        int[ ] sol_array=new int[boardsize*no_sol];
        int x=0;
        for (x=0;x<boardsize*(no_sol–1);x++)
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Appendix A. Appendix

A.1. Experiment source code

Note from the programmer: This company adopts

an unusual practice. The main() module is implemen-

ted as a table. An example table for a program that

detects whether a whole number is even or odd is

presented below:
Initial module Condition Next module

Begin True Seed=Initialize_Module()

Initialize_module True Calculate_Numbers (Seed)

Calculate_Numbers Numbers b0 Calculate_Numbers (Seed)

Calculate_Numbers Numbers %2=1 Output_Odd()

Calculate_Numbers Numbers %2=0 Output_Even()

Output_Odd True End

Output_Even True End

          sol_array[x]=solutions[x];
        for (x=0;x<boardsize;x++)
          sol_array[boardsize*(no_sol–1)+x]=cur_sol[x];
       return sol_array;
     }
private int[ ] solve_queens (int[ ] tested, int boardsize)
     {
        int curline=0;
        int curlinesol=–1;
        int x=0;
        while (curline<boardsize)
          {
          curlinesol=solve_line (tested, boardsize, curline, tested [curline]);
          if (curlinesol==boardsize)
           {
              tested[curline]=–1;
              curline––;
              if (curline<0)
                  return tested;
            }
          else
            {
               tested [curline]=curlinesol;
               curline++;
             }
          }
        return tested;
     }
The program in this table can be described as

follows. Start with the Initialize Module. Return the

value of Initialize Module to Seed. Next, execute the

Calculate_Numbers module with the Seed argument.

Return the result to Numbers. If Numbers is less than

0, run Calculate_Numbers again. If Numbers divided

by 2 gives a remainder of 1 (i.e. an odd number),

output odd. Otherwise, output even. After outputting

odd or even, end the program.
Initial module Condition Next module

Begin True boardsize=askBoardSize ()

AskBoardSize boardsize=0 boardsize=askBoardSize ()

AskBoardSize boardsizeN0 cur_sol=initsol (boardsize)

Initsol True solve_queens (cur_sol,boardsize)

solve_queens cur_sol [0]N�1 no_sol=no_sol+1

solve_queens cur_sol [0]=�1
&& no_solN0

X=0

no_sol+1 True solutions=add_solution(cur_sol,

solutions,boardsize,no_sol)

add_solution cur_solN�1 |0

no_sol=0

solve_queens(cur_sol,boardsize)

X=0 Xbno_solutions solution(x)

Solution True X=x+1

X+1 Xbno_solutions Solution(x)

X=0 X=no_solutions End

X+1 X=no_solutions() End
Source code:
private int solve_line (int[ ] tested, int boardsize,int line)
     {
        return solve_line (tested, boardsize, line,–1);
     }
private int solve_line (int[ ] tested, int boardsize, int line, int prevused)
     { 
     int current=prevused+1;
      if (current==boardsize)
       return current;
      int x=0;
      while (x<line && !(tested[x]==current)
                 && !(tested[x]+(line–x)==current)
                 && !(tested[x]–(line–x)==current))
       x++;
      if (x<line)
       return solve_line (tested, boardsize, line, prevused+1);
      return current;



    }
private int askBoardSize ( )
    {
      try { 
         Integer I=null;
         BufferedReader in=null;
         in=new BufferedReader (new InputStreamReader(System.in));
         String s=null;
         System.out.print (“What are the dimensions of the square board?:”);
         s=in.readLine ( );
         I=new Integer (s);
         return I.intValue ( );
         }
         catch (IOException io)
         {
          System.out.println (“IOException”);
          return –1;
         }
    }
private int [ ] initsol (int boardsize)
    {
      int [ ] checksol=new int[boardsize];
      int x=0;
      for (x=0;x<boardsize;x++)
          checksol [x]=–1;
      return checksol;
    }
public int no_solutions ( )
    {
      return no_sol;
    } 
public String solution (int sol)
    {
      int x=0;
      int y=0;
      int z=0; 
      StringBuffer retString=new StringBuffer ( );
      for (x=0;x<boardsize;x++)
       {
         y=solutions [boardsize*(sol)+x];
         for (z=0;z<y;z++)
            retString.append (“.”);
         retString.append (“Q”);
         for (z=y+1;z<boardsize;z++)
            retString.append (“.”);
         retString.append (“\n”);
       }
      return retString.toString ( );
    }
public String num_sol (int sol, int[ ] tosee)
    {
      int x=0;
      StringBuffer retString=new StringBuffer ( );
      for (x=0;x<boardsize;x++)
         retString.append (“Solution”+sol+“ line no: ”+tosee [x]+“\n”);
      return retString.toString ( );
    }
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Appendix B. Demographic Questionnaire
Gender: Male Female

Current educational level: Freshman Sophomore Junior Senior

Masters PhD

Please fill in the blanks

Age: ________________________________________________

Major: _______________________________________________

No. years work experience: ______________________________

Current job: ___________________________________________

No. of years of IT work experience: ________________________

No. of years of programming experience: _________________

Programming languages known:

______________________________________________________

______________________________________________________

______________________________________________________

______________________________________________________

______________________________________________________

______________________________________________________
A.1. Program Understanding Questionnaire

For each question, circle Y if the answer to the

question is Yes. Circle N if the answer is No. Both

variables and functions are identified by the Arial

font. Functions are distinguished using parentheses

(). Array indexes are distinguished using square

brackets [].

Control flow
Y N 1. The minimum number of times solve_queens() will

be called is no_sol+1.

Y N 5. add_solution() can be called after solution().

Y N 9. solve_queens() can be called after add_solution().

Y N 13. initsol() can be called more than once.

Y N 17. In solve_queens(), when curline is 3, solve_line() has

been called at least three times.
Program States
Y N 3. The minimum possible boardsize is 0.

Y N 7. In solve_line(), it is possible for two values in the

tested array to have the same value.

Y N 11. add_solution() appends cur_sol to solution.

Y N 15. In solution(), the number of d.T Per line is 1 less

than boardsize.

Y N 19. Every time the program is executed, askBoardSize()

will be called.
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Data Flow
Y N 2. The array returned by solve_queens() becomes cur_sol.

Y N 6. boardsize determines the dimensions of cur_sol

Y N 10. The integer line in solve_line() is the same as no_sol.

Y N 14. In solve_queens(), tested[current] can be greater than

boardsize.

Y N 18. s in askBoardSize(), is the same as boardsize.
Modules
Y N 4. When the solve_queens() function exits, curline is

always equal to boardsize.

Y N 8. After askBoardSize() is executed, cur_sol is an array

whose values are all �1.
Y N 12. If boardsize is greater than 0, solve_queens() is called

at least once.

Y N 16. In solve_queens(), when curline is 3, tested [2] must be

less than 3.

Y N 20. In solveline(), if tested [3] is 3, tested [1] can be 1.
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