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A B S T R A C T

In this paper, we investigate the performance of different types of

weighted citation networks for detecting emerging research fronts

by a comparative study. Three citation patterns including direct

citation, co-citation and bibliographic coupling, have been tested in

three research domains including gallium nitride, complex net-

works, and nano-carbon. These three patterns of citation networks

are constructed for each research domain, and the papers in those

domains are divided into clusters to detect the research front.

Additionally, we apply some measures to weighted citations like

difference in publication years between citing and cited papers and

similarities of keywords between them, which are expected to be

able to effectively to detect emerging research fronts. To investigate

the performance of different types of weighted citation networks

for detecting emerging research fields, we evaluate the perfor-

mance of each approach by using the following measures of

extracted research fronts: visibility, speed, and topological and

textual relevance.
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Introduction

Over the past several decades, the number of academic papers has increased exponentially (Price,
1965), and each academic area has become specialized and segmented. Davidson et al. (1998) describe
the situation as follows: ‘‘For most of history, mankind has suffered from a shortage of information.
Now, in just the infancy of the electronic age, we have begun to suffer from information excess’’.
Therefore, it is hard for researchers to perceive their specialized fields as a whole, and segmentation
occurs simultaneously with specialization, which brings a severe problem and also opportunity to find
crucial knowledge by integrating different domains. Naturally, it is hard for researchers and managers
to detect a research front in the early stages by human effort only. Therefore, there is a strong need for
computational tools of science mapping and emerging topic detection. Previous studies have
established effective algorithms for creating academic landscapes and for detecting emerging topics
for certain research fronts.

To support the detection of research fronts and visualization of academic landscapes, methods of
science mapping by citation analysis have been proposed and developed (Boyack et al., 2005; Klavans
and Boyack, 2009). Researchers have also focused on clustering and visualization (Chen, 1999; Chen
et al., 2003; Small, 1999). For example, Leydesdorff (2004) and Leydesdorff and Rafols (2009) made a
large-scale investigation of a set of academic papers. Not only creating static academic landscapes,
topological and semantic analysis of a citation network also helps us to focus on significant
movements in research fronts and emerging research fields in a broad context (Shibata et al., 2008).

The other approach is to detect emerging clusters of densely connected papers. Price (1965)
employed the concept of a research front, that is, a research domain under development where papers
cite each other densely. Scientists tend to cite the most recently published articles in their papers;
therefore, the network belonging in a research front becomes very tight. In a given field, a research
front refers to the body of articles that scientists actively cite. Researchers have been studying
quantitative methods that can be used to identify and track a research front as it evolves over time.
Small and Griffith (1974) showed that activated scientific specialists generate clusters of co-cited
papers. Braam et al. (1991a,b) also investigated the topics discussed in co-cited clusters by analyzing
the frequency of indexing terms and classification codes occurring in these publications.

On the other hand, different citation patterns between papers offer some ways to detect emerging
research domains. Shibata et al. (2009) performed a comparative study to investigate the performance
of methods for detecting emerging research fronts between three citation patterns, co-citation,
bibliographic coupling, and direct citation. When a paper directly cites another as a reference, it is
called a direct citation. In other words, the direct citation is the citing of an earlier paper by a new
paper. Co-citation is defined as the edge between two documents cited by the same paper(s) (Small,
1973). Bibliographic coupling is defined as the edge between two documents citing the same paper(s)
(Kessler, 1963). Three patterns of citation networks were constructed for each research domain, and
the papers in those domains were divided into clusters to detect the research front. Direct citation,
which could detect large and young emerging clusters earlier, shows the best performance in
detecting a research front, and co-citation shows the worst. Small (2006) proposed a method of
tracking and predicting growth areas by co-citation analysis that analyzed co-citation networks
generated from the top 1% of highly cited papers. Klavans and Boyack (2006) compared the
performance of clustering in journal citation networks created by direct citation and co-citation. Their
results suggested that a network of co-citation has higher content similarity. Boyack and Klavans
(2010) evaluated textual similarity of papers in clusters extracted by four different citation patterns:
bibliographic coupling, direct citation, and a hybrid approach of direct citation and co-citation.
Bibliographic coupling slightly outperforms co-citation and direct-citation using textual accuracy
measures. In a certain cases, especially for large data set, bibliographic coupling might work better.
However, it cannot be applied for research front detections in a specific research domain, because hub
papers in a specific domain gather larger citations even when there are less common research topics
between citing and cited papers. In fact, this bias would have the less effect on results in large corpuses
because citation networks become globally sparse and locally dense.

Despite weighted citation networks can capture important information attributes of papers, most
of the existing works focus on the non-weighted citation networks. The purpose of this paper is to
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study the characteristics of paper–paper weighted citation networks created by different citation
patterns with different weight types. In particular, average publication year, similarities of citation
information and similarities of keywords are effective information attributes for detecting research
fronts. By introducing them as weights of links to the citation network, it is expected to detect research
fronts compared with the non-weighted citation networks effectively.

This paper studies the following three research domains. Gallium nitride (GaN) is widely
recognized as a recent prominent innovation in the fields of applied physics and material science.
Complex network (CNW) analysis is also recognized as pioneering a new research field after the
leading works by physicists has received attention. Nano-carbon (carbon nanotube [CNT]) is also
widely recognized as a recent prominent innovation in the fields of applied physics and material
science. They are typical examples of recent remarkable innovations having somewhat different
characteristics (e.g. breakthrough of the rapid development, material or model-based innovation).
These three domains are the same with those selected in our previous study (Shibata et al., 2009). We
investigate effectiveness of our weighted citation network approach in these domains to enable
comparison with previous results with non-weighted citation network approach. By demonstrating
our proposed methodologies, we can show the effectiveness and differences of our proposed method.

We constructed weighted citation networks for each domain and divided the citation networks
into clusters to detect research fronts. We evaluated the performance of each method in detecting a
research front by comparing visibility, speed, and topological and textual relevance of clustering. Our
evaluation strategy is that the best method for detecting the research front is the one that can detect a
large, textually and topologically uniform cluster of papers at an earlier stage. Regarding textual
similarity, the previous papers deal with text similarity measures for evaluating the effectiveness of
citation networks (Boyack and Klavans, 2010; Shibata et al., 2011; Jarneving, 2007; Braam et al.,
1991a,b). However, it can only focus on limited aspect of performance that each method should have.
By considering the differences, we discuss which type of weight and citation patterns is most suitable
for detecting emerging knowledge domains from diverse facets of evaluation.

The remainder of this paper is organized as follows. First, we give an overview of research domains
analyzed in our comparative case study. Next, we describe the methodology based on the network
clustering and network measures. Then, we present and discuss the performance of the types of
weighted citation network for detecting emerging research fronts. Finally, we present our overall
conclusions.

Overview of research domains and core papers

Gallium nitride (GaN), complex network (CNW), and carbon nanotube (CNT) are typical examples
of recent remarkable innovations having somewhat different characteristics. Research in GaN has
incrementally developed in the field of applied physics. Within a very short period following the mid-
1990s, researchers achieved applications of GaN as blue and green light-emitting diodes (LEDs), ultra
violet (UV) and blue laser diodes (LDs) (Nakamura, 1991; Nakamura et al., 1994, 1992). Owing to the
breakthroughs of overcoming the large acceptor activation energy of GaN by annealing, researchers
achieved commercial products. After finding the breakthroughs of overcoming the problems of GaN,
the rapid development of GaN research is attracting both researchers and funding. The number of
academic papers starts to dramatically increase after 1995. Also, these products are now commercially
available, and innovation in this research field has motivated researchers to engage in and open huge
new markets.

The second innovation is CNW, which was recently recognized as a new research field. Previously,
CNWs have been researched in the following areas: graph theory in mathematics, social network
analysis in sociology. Recently, Watts and Barabasi (Barabasi and Albert, 1999; Watts and Strogatz,
1998), whose backgrounds were theoretical and applied mechanics and applied physics revealed the
common characteristics of small-world networks (Watts and Strogatz, 1998) and scale-free networks
(Barabasi and Albert, 1999). After the leading works by these physicists, studies in this domain have
received attention, and a number of papers in this domain have been published. This is probably
because their superiority in expressing small-world phenomena by concise quantitative measures
assures researchers of future possibility in this research domain.



Table 1
Core papers that opened a new research front in three domains.

Research domain Core papers

Gallium nitride (A-1) NAKAMURA S, 1991, JPN J APPL PHYS PT 2, V30, P1705

(A-2) NAKAMURA S, 1992, JPN J APPL PHYS PT 1, V31, P1258

Complex networks (B-1) Watts DJ, 1998, NATURE, V393, P440

(B-2) Barabasi AL, 1999, SCIENCE, V286, P509

Carbon nanotube (C) IIJIMA, S, 1991, NATURE, V354, P56
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The third innovation is CNT, which is useful in nano-science and nanotechnology, due to
superior electrical and mechanical properties. A CNT is a nano-sized carbon molecule with
morphology like a tube. Fullerenes are also a well-known nano-sized carbon material with
morphology like a ball. The existence of fullerenes was known earlier than that of nanotubes
(Iijima, 1991). However, after the discovery of the carbon nanotube, the focus of researchers
shifted from fullerenes to nanotubes. Therefore, if we could detect research fronts that include
papers where the discovery of the nanotube is mentioned, we might expect such a shift of research
focus earlier than competitors.

We take these innovative cases because they are typical examples of recent remarkable
innovations having somewhat different characteristics. The breakthrough of the rapid develop-
ment of GaN research is to find the methodologies to overcome the large acceptor activation
energy of GaN. On the other hand, the breakthrough of the rapid development of CNT research is
to discover the materials (nanotube). Both GaN and CNT are material innovations, however,
these breakthroughs are different. The breakthroughs of the rapid development of CNW research
are combinations among applied mechanics, sociology and applied physics. Actually, GaN and CNT
are material innovations, while CNW is an analytical and model-based innovation. By introducing
the CNW, we can demonstrate the effectiveness and differences of our proposed method in some
scientific fields.

Core Papers are research papers that receive citations soon after publication, relative to other
papers of the same field and age. Generally, papers reach their citation peak two, three, or even four
years after publication. However, core papers are recognized very soon after publication, reflected by
rapid and significant numbers of citations. These papers are often key researches in their fields. In this
paper, core papers are defined as highly cited papers published in the rapid-growth years expected for
the review papers using Web of Science, which is a Web-based user interface of the Institute for
Scientific Information’s (ISI) citation databases. Rapid-growth years in each domain are as follows:
Gallium nitride, 1991–1994; CNW, 1998–2001; CNT, 1990–1994.

A list of core papers in each domain, which opened a new research frontier, is shown in Table 1. In
GaN, we define the core papers as ‘‘(A-1) NAKAMURA S, 1991, JPN J APPL PHYS PT 2, V30, P1705’’
(Nakamura, 1991) and ‘‘(A-2) NAKAMURA S, 1992, JPN J APPL PHYS PT 1, V31, P1258’’ (Nakamura
1992). In CNW, we define the core paper as ‘‘(B-1) Watts DJ, 1998, NATURE, V393, P440’’ (Watts and
Strogatz, 1998) and ‘‘(B-2) Barabasi AL, 1999, SCIENCE, V286, P509’’ (Barabasi and Albert, 1999). In
CNT, we define the core paper as ‘‘(C) IIJIMA, S, 1991, NATURE, V354, P56’’ (Iijima, 1991).

Methodology

The first step is to collect the data of each knowledge domain using Science Citation Index (SCI)
and the Social Sciences Citation Index (SSCI) databases. The next step is to create some weighted
citation networks. Citation networks are constructed by direct-citation, co-citation and biblio-
graphic-coupling. The weights are frequency of citations, difference of publication years, reference
similarity, and keyword similarity. In the third step, maximum connected components were
extracted from each network. In the fourth step, we divided the papers in the network into clusters.
Finally, we evaluated the visibility, speed, and topological and textual relevance of the clusters to
which selected core papers belong.
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Data collection

First, we collected citation data from the SCI and the SSCI compiled by the Institute for Scientific
Information (ISI), which maintains citation databases covering thousands of academic journals and
offers bibliographic database services, because SCI and SSCI are two of the best sources for citation
data. We used the Web of Science, which is a Web-based user interface of the ISI’s citation databases.
We searched the papers using the following terms as queries: ‘‘GaN OR gallium nitride’’ for the first
domain, ‘‘social networks OR social network OR random networks OR random network OR small-world OR

scale-free OR complex networks’’ for the second domain, and ‘‘carbon AND (nano* OR micro*)’’ for the
third domain.

In this paper, queries were selected according to the following two steps: (a) the representative
keyword, such as gallium nitride and social network, is selected and (b) if the definition of its domain is
unclear, more keywords, such as random network, small-world, scale-free, and complex networks,
were added. The second step is called as query expansion (Kostoff et al., 1997). Our intention in using
so many terms is to retain wide coverage of citation data in order to avoid omission of core papers. For
example, we selected the seven search queries in CNW by the query expansion. After selecting the
seven queries, we evaluated that these queries retain wide coverage of citation data with avoiding
omission of core papers and stopped expanding the queries to eight or more.

The queries for each dataset explained in the previous paragraph are the same as those in the
previous paper (Shibata et al., 2009), but retrieved data is not exactly the same because of the data
expansion of bibliographic records registered in ISI’s databases. The ISI’s citation databases enable us
to obtain both the attribute data of each paper such as the year published, title, author(s), abstract,
author keywords, and citation data.

Creating weighted citation networks

After collecting the data including he year published, title, author(s), abstract, author keywords,
and citation based on the queries, we create some weighted citation networks. We create citation
networks by regarding papers as nodes and three patterns of definitions of citations as edges, as shown
in Fig. 1. When a paper directly cites another as a reference, it is called a direct citation. In other words,
the direct citation is the citing of an earlier paper by a new paper. Co-citation is defined as the edge
between two documents cited by the same paper(s) (Small, 1973). Bibliographic coupling is defined as
the edge between two documents citing the same paper(s) (Kessler, 1963). For example, if both papers
A and B are cited by C, there is co-citation between A and B; and if both D and E cite C, there is
bibliographic coupling between D and E as Fig. 1 shows.

We define the citation graphs G = (N, E, w) comprising a set N of nodes, with each node Ni

representing a paper pi and a set E of edges, with each edge Eij directed from the citing node Ni to
Fig. 1. Citation patterns.
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the cited node Nj, or from the citing node Nj to the cited node Ni. jEijj means the number of
citations between pi and pj. Usually, the number of direct citations is one; however, the number of
co-citations and bibliographic-couplings is more than one. In other words, we will build the
citation networks defined as a weighted non-directed graph, with each paper representing a
node and three patterns of citations representing the edges in the graph. Each node (Ni) has
several attributes: paper title, author(s), year of publication (yi) and journal name, reference
information (Ri), and AuthorKeywords and KeyWord Plus (Ki). AuthorKeywords are set by the
authors when they write the papers. KeyWords Plus is terms which appear in the titles of
multiple references.

The network is created in each year, enabling a time-series analysis of citation networks. When we
create citation networks on year y, we use the data of papers published from 1970 to y. In this paper,
only the largest-graph component is used because this paper focuses on the relationship among
papers, and we should therefore eliminate papers that have no link with the largest-graph component.

We also introduced four types of weights to the citation networks: (i) Frequency of citations, (ii)
Publication years, (iii) Reference similarity, (iv) Keyword similarity. The definitions of these weights
are as follows:
(i) F
requency of citations: w(Eij)= jEijj

(ii) P
ublication years: w(Eij)={(yi +yj)/2�1970}/40 if (yi +yj)/2<1970, w(Eij)=0
(iii) R
eference similarity: w(Eij)= Jaccard(Ri, Rj)+1

(iv) K
eyword similarity: w(Eij)= Jaccard(Ki, Kj)+1
*Jaccard(x,y)= jx\yj/jx
S

yj (Jaccard similarity is defined by Jaccard, 1912).
By introducing some types of weights based on the attributes, we can detect the research fronts

reflecting the important attributes, such as new research fronts growing rapidly.
It is known that normalization has a large effect on clustering results (Jaina et al., 2005). Previous

research in citation-based clustering using co-citation and bibliographic coupling has used
normalization, because co-citation and bibliographic coupling can give weights to the links as our
approach of ‘‘(i) Frequency of citations’’. In this paper, we also adopt min–max normalization
technique to some weights. The min–max normalization the process of taking data measured in rates
and transforming it to a value between 0.0 and 1.0 is a particular technique of the statistical
normalization. The normalized value of this technique is defined as: (the value� the minimum value)/
(the range of values). The original functions for weight (ii) in this paper and Jaccard similarity are also
based on the min–max normalization technique.

Topological clustering

After creating some weighted citation networks, which are constructed by direct-citation, co-
citation and bibliographic-coupling, maximum connected components were extracted from each
network. A maximum connected component is an ‘‘isolated’’ part of a citation network, which does not
have citations to and from another part, and the maximum component is the part that includes most
papers in it. By doing this step, non-relevant papers that do not cite papers in the corresponding
research domain are removed.

After that, we divided the papers in the network into clusters. For dividing into clusters, a fast-
modularity clustering proposed by Newman (2004) is applied in order to discover tightly knit clusters
with a high density of within-cluster edges, which enables the creation of a weighted graph consisting
of a large number of nodes. The algorithm is based on the idea of modularity Q, which is defined as
follows:

Q ¼
X

s

ðwss � a2
s Þ ¼ TrðwÞ � jjwjj2

where wst is the possibility of the weights of edges in the network that connected nodes in cluster s to
those in cluster t, and as ¼

P
twst . In the first part of the equation, Tr(w) represents the sum of density

of weights of edges within each cluster. A high value of this parameter means that nodes are densely
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connected within each cluster. The second part of the equation, jjwjj2, represents the sum of density of
weights of edges within each cluster when all edges are placed randomly.

In Newman’s method, edges that connect clusters sparsely and extract clusters within which
nodes are connected densely is cut. A high value of Q represents good community division where
only dense edges remain within clusters and sparse edges between clusters are cut off, and Q= 0

means that a particular division gives no more within-community edges than would be expected
by random chance. Then, the algorithm to optimize Q over all possible divisions to find the best
structure of clusters is as follows. Starting with a state in which each node is the only member of
one of the n clusters, we repeatedly join clusters together in pairs, choosing at each step the
joining that results in the greatest increase in Q. The change in Q upon joining two clusters is given
by

DQ ¼ wst þ wts � 2asat

In this paper, we stop joining when DQ<0.
Topological measures for evaluating citation networks

By conducting the previous steps written in subsections, we can detect some clusters by dividing
some kinds of weighted citation networks. For comparing the tendency of some types of weighted
citation networks, visibility, speed, and topological and textual relevance are calculated after
clustering for each cluster to which these selected core papers belong. In this paper, we assume that
the important front is detected as a larger and more relevant cluster at an earlier stage. When the
normalized size of the cluster is larger, we can more easily distinguish the existence of emerging
clusters from other clusters. When the average publication year of the cluster is younger, it means
that the cluster can be speedily detected at its emerging stage. If there is a time lag for detecting the
research fronts, we could fail to find the research fronts in the emerging stage because of the lack of
the methodologies’ speed. In other words, the lack of speed of emerging detections could fail to grow
the seeds of innovations in the industry. Therefore, we consider the speed as the one of the most
important measure for evaluating the methodologies. If the cluster is denser, we can check whether
clustering is successful for dividing into clusters in the citation networks. If the cluster is more
textually relevant, we can detect the textually similar clusters.

The size of a cluster is defined as normalized size to the relative in order to compare certain types of
weights:

jNi 2 Cj
jNj

where jNj is the total number of entire nodes N and |Ni2C| is the number of nodes in cluster C.
The density is defined as follows:

jEi 2 Cj
jNj
2

� �

where |Ei2C| is the number of edges, both of the nodes are in cluster C, and
jNj
2

� �
is the number of

combinations from jNj to 2.
The textual similarity between clusters is defined as follows:P

pi 2 C; p j 2 Cði 6¼ jÞ Simð pi; p jÞP
Ci 2 Call

SimðC; CiÞ

where pi2C and pj2C are papers in cluster C, and Ci2Call is cluster set. Sim(pi, pj) is the similarity
measure between paper pi and paper pj, and Sim (C, Ci) is the similarity measure between cluster C and
cluster Ci.



K. Fujita et al. / Journal of Engineering and Technology Management 32 (2014) 129–146136
Simð pi; p jÞ ¼
X

k
t fid f ðkÞpi

t fid f ðkÞp j
where t fid f ðkÞp ¼ t f k; p � log

N

d f k

� �

SimðC; C jÞ ¼
X

j
t fid f ð jÞ

c t fid f ð jÞ
ci

where t fid f ð jÞ
c ¼ ð

X
d 2 C

t f j;d � log
N

d f j

  !

This textual similarity is based on Jarneving (2007) and is one of the general measures for evaluations
in the bibliometrics field.

Results

Basic topologies of the networks

Fig. 2 shows the time series of Qmax of each research domain. In some years, Qmax in the weight (ii) is
the largest in the three patterns of citations. These results are common regardless of the domain and
mean that citation network with the weight of the difference of publication years has a ‘‘locally dense
and globally sparse’’ structure and can be divided into clusters better than the others. In most of the
networks, the Qmax becomes smaller as the domain grows. This suggests that the network becomes
random as the domain evolves, partly because it becomes denser not only locally but also globally and
cannot be divided well. Qmax becomes higher when extracted clusters do not depend on other clusters.
In other words, there are many intra-links but fewer inter-links. The low value of Qmax means that the
network is close to a random network that is created by giving all possible ties based on a uniform
probability. Qmax becomes 0 in wholly randomized network.

In addition, weight (iii) is almost the same value as weight (iv). This result shows that the ‘‘(iii)
Reference Similarity’’ has similar effectiveness to ‘‘(iv) Keyword Similarity’’ in dividing some clusters
based on Topological Clustering. The property of paper keywords is similar to that of references at least
in our datasets.

Performance of each method in detecting emerging domains

After clustering the networks, we evaluated the performance of the results in each weighted
citation network in detecting emerging research domains. The following measures of the cluster, to
which selected core papers in each domain belong, were tracked: visibility (as normalized size), speed
(as average publication year), text relevance (as text similarity), and topological relevance (as density).
The results of the clusters to which core papers belong are shown in Tables 2–6. When the core papers
don’t form a cluster (e.g. the core paper generates a cluster whose size is 1), the results show ‘‘0’’. When
the core paper does not belong in the largest component in generating the citation network, the results
show ‘‘–’’.

Direct citations. All weights of edges are 1 using weight (i) because a paper cites another paper only
once. Therefore, all results of citation networks using weight (i) mean the ones without weights. The
normalized size in the citation network using weights (ii)–(iv) is a little smaller than that of weight (i).
Usually, the clusters with weighted citation networks form smaller cluster sizes than those with non-
weighted citation networks. On the other hand, the density in the citation network using weights (ii)–
(iv) is higher than that of weight (i). The weights of citation networks give some effects of dividing into
dense and small-sized clusters. In the citation networks with weight (ii), core papers cannot generate
the clusters in the expansion stage. In addition, the clusters with weight (ii) become smaller and
denser than the ones without the weights. Weight (iii) has similar results to weight (iv): almost the
same sizes, average years. This is because the references of the academic paper are tightly related to
keywords of the academic papers. On the other hand, the topological relevance of the results with
weight (iii) is higher than those with weight (iv), and the textual similarity of the results with weight
(iv) is higher than those with weight (iii).

Co-citations. In this citation pattern, the results of comparisons between the weights are almost the
same as the direct citations. Weight (i) could consider the frequency of citations in the co-citation.
Therefore, the density, textual similarity, and average year with weights are better than those without
weights. The shortcoming of co-citation is the existence of a time lag in co-citation as pointed out by



Fig. 2. Qmax value of each domain: (A) gallium nitride, (B) complex networks, and (C) carbon nanotubes.
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Table 2
Normalized size, average publication year, density, and textual similarity of the clusters to which core papers belong ((A-1) NAKAMURA S, 1991, JPN J APPL PHYS PT 2, V30, P1705: GaN).

Year Direct citation Co-citation Bibliographic coupling

Size Density Text Avg. year Size Density Text Avg. year Size Density Text Avg. year

(i) Frequency of citations

1991 18 0.6923 0.2059 1989.01 – – – – 8 14.476 0.3783 1989.48

1992 24 0.6624 0.6640 1989.96 – – – – 39 5.4642 0.4112 1988.74

1993 26 0.6547 1.0637 1991.43 – – – – 41 7.2106 1.4100 1992.00

1994 28 0.6328 1.2181 1992.46 – – – – 47 7.9025 1.2855 1992.92

1995 37 0.364 1.0420 1993.87 – – – – 7 12.45 0.7682 1992.44

1996 32 0.2267 1.2559 1995.00 – – – – 30 6.6962 1.3418 1995.19

(ii) Difference of publication years

1991 19 0.8771 0.3411 1987.81 – – – – 43 4.9336 0.1567 1985.01

1992 23 0.8691 0.5976 1989.82 – – – – 22 7.3939 0.4506 1989.42

1993 28 0.8402 0.9636 1991.13 – – – – 39 7.8362 1.1895 1991.99

1994 26 0.7385 1.0179 1992.40 – – – – 0 0 0 0

1995 30 0.4652 1.0465 1993.87 – – – – 0 0 0 0

1996 32 0.2661 1.2704 1994.83 – – – – 0 0 0 0

(iii) Reference similarity

1991 16 0.9343 0.5567 1988.21 – – – – 42 8.0237 0.3894 1984.07

1992 22 0.8367 0.8651 1989.58 – – – – 40 7.5632 0.5884 1988.14

1993 27 0.8738 1.0323 1991.13 – – – – 38 7.7651 0.9322 1991.99

1994 26 0.7536 1.1043 1991.63 – – – – 48 7.9772 1.3901 1992.85

1995 24 0.5462 1.0356 1993.03 – – – – 56 7.3034 1.2639 1994.05

1996 32 0.4537 1.1883 1994.69 – – – – 49 7.6888 1.4563 1995.22

(iv) Keyword similarity

1991 20 0.7431 0.3774 1988.49 – – – 9 7.8769 0.3930 1990.13

1992 25 0.8022 0.5168 1989.29 – – – – 30 5.1136 0.9610 1991.09

1993 26 0.8422 0.8463 1991.06 – – – – 39 6.3339 1.0416 1991.82

1994 19 0.9522 1.1333 1992.35 – – – – 45 7.9739 1.3529 1992.85

1995 23 0.5164 1.2942 1993.53 – – – – 52 7.7374 1.3100 1994.05

1996 19 0.3631 1.3555 1994.91 – – – – 49 7.5946 1.7370 1995.22

When the core papers do not belong in the cluster, the results show ‘‘0’’. When the core papers do not belong in the largest component in generating the citation network, the results show ‘‘–’’.

K
.

 Fu
jita

 et
 a

l.
 /

 Jo
u

rn
a

l
 o

f
 E

n
g

in
eerin

g
 a

n
d

 T
ech

n
o

lo
g

y
 M

a
n

a
g

em
en

t
 3

2
 (2

0
1

4
)

 1
2

9
–

1
4

6
1

3
8



Table 3
Normalized size, average publication year, density, and textual similarity of the clusters to which core papers belong ((A-2) NAKAMURA S, 1992, JPN J APPL PHYS PT 1, V31, P1258: GaN).

Year Direct citation Co-citation Bibliographic coupling

Size Density Text Avg. year Size Density Text Avg. year Size Density Text Avg.year

(i) Frequency of citations

1992 24 0.6624 0.6640 1989.96 0 0 0 0 39 5.4642 0.4112 1988.74

1993 26 0.6547 1.0637 1991.43 45 5.4538 0.3780 1988.90 41 7.2106 1.4100 1992.00

1994 28 0.6328 1.2181 1992.46 53 3.8517 0.9618 1991.37 47 7.9025 1.2855 1992.92

1995 37 0.364 1.0420 1993.87 55 3.2105 1.1208 1993.03 7 12.45 0.7682 1992.44

1996 32 0.2267 1.2559 1995.00 49 4.1492 0.9412 1994.28 30 6.6962 1.3418 1995.19

(ii) Difference of publication years

1992 23 0.8691 0.5976 1989.82 25 10.909 0.0927 1984.82 49 6.3323 0.0235 1981.76

1993 28 0.8402 0.9636 1991.13 36 4.6909 0.5508 1989.17 39 7.8362 1.1895 1991.99

1994 26 0.7385 1.0179 1992.40 51 3.8147 1.0043 1991.20 0 0 0 0

1995 30 0.4652 1.0465 1993.87 0 0 0 0 0 0 0 0

1996 32 0.2661 1.2704 1994.83 0 0 0 0 0 0 0 0

(iii) Reference similarity

1992 22 0.8367 0.5110 1989.58 5 11.538 0.1122 1984.08 30 11.538 0.1122 1990.60

1993 27 0.8738 0.7945 1991.13 38 5.9194 0.5668 1989.14 42 4.9194 0.5668 1991.08

1994 19 0.9782 0.9427 1992.15 51 4.77 1.0530 1991.24 40 3.77 1.0530 1992.02

1995 28 0.9546 0.9384 1993.85 60 3.8787 1.1194 1992.67 32 3.0787 1.1194 1993.24

1996 32 1.0091 1.1186 1994.69 56 1.8523 0.9767 1993.64 32 1.8523 0.9767 1994.30

(iv) Keyword similarity

1992 25 0.8022 0.1320 1989.3 37 8.181 0.16110 1979.61 26 7.2898 1.0845 1991.09

1993 26 0.8422 0.8389 1991.1 36 4.0648 1.1029 1989.56 41 7.368 1.1977 1991.82

1994 18 0.7823 1.1559 1992.2 52 3.86 1.2335 1991.19 45 8.3358 1.8647 1992.86

1995 23 0.5164 0.9909 1993.5 63 3.2483 1.3168 1992.86 33 10.105 1.2730 1993.74

1996 19 0.3631 1.3555 1994.9 68 1.2695 1.4646 1994.21 29 10.781 1.7610 1994.62

When the core papers do not belong in the cluster, the results show ‘‘0’’. When the core papers do not belong in the largest component in generating the citation network, the results show ‘‘–’’.
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Table 4
Normalized size, average publication year, density, and textual similarity of the clusters to which core papers belong ((B-1) Watts DJ, 1998, NATURE, V393, P440: Complex Networks).

Year Direct citation Co-citation Bibliographic coupling

Size Density Text Avg. year Size Density Text Avg. year Size Density Text Avg. year

(i) Frequency of citations

1998 – – – – – – – – – – –

1999 1 0.474 2.6256 1998.68 3 2.1319 2.0183 1994.04 – – – –

2000 4 0.0504 2.5901 1999.42 11 0.2744 1.9791 1994.12 – – – –

2001 9 0.0599 2.6562 2000.51 5 0.6921 2.4099 1995.92 – – – –

2002 17 0.0648 2.8793 2001.15 7 0.8217 2.9045 1997.99 – – – –

2003 22 0.0346 2.0593 2002.00 8 1.3668 2.9727 1999.42 – – – –

(ii) Difference of publication years

1998 – – – – – – – – – – –

1999 1 0.5018 2.8161 1996.10 0 0 0 0 – – – –

2000 0 0 0 0.00 0 0 0 0 – – – –

2001 0 0 0 0.00 6 0.5476 2.4579 1996.56 – – – –

2002 0 0 0 0.00 0 0 0 0 – – – –

2003 4 0.1937 3.4409 2001.78 0 0 0 0 – – – –

(iii) Reference similarity

1998 – – – – – – – – – – –

1999 2 0.3821 3.0023 1996.32 2 2.8506 2.1315 1994.73 – – – –

2000 3 0.346 2.7000 1996.37 9 0.8684 2.1999 1995.12 – – – –

2001 4 0.2131 2.4088 1998.49 8 0.6348 2.1647 1996.71 – – – –

2002 4 0.2156 2.4236 2000.37 6 0.8821 2.0359 1998.30 – – – –

2003 6 0.1904 3.1932 2001.78 10 1.389 2.4006 1998.96 – – – –

(iv) Keyword similarity

1998 – – – – – – – – – – –

1999 2 0.2838 3.0805 1996.18 2 2.5506 2.4025 1995.10 – – – –

2000 3 0.1346 2.1593 1996.67 7 0.4641 2.2844 1995.08 – – – –

2001 3 0.1239 2.4659 1998.51 8 0.4348 2.4937 1996.35 – – – –

2002 4 0.1568 2.6845 2000.52 8 0.6817 2.6009 1998.17 – – – –

2003 6 0.0949 3.3899 2001.37 10 0.9152 2.8085 1999.05 – – – –

When the core papers do not belong in the cluster, the results show ‘‘0’’. When the core papers do not belong in the largest component in generating the citation network, the results show ‘‘–’’.
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Table 5
Normalized size, average publication year, density, and textual similarity of the clusters to which core papers belong ((B-2) Barabasi AL, 1999, SCIENCE, V286, P509: Complex Networks).

Year Direct citation Co-citation Bibliographic coupling

Size Density Text Avg. year Size Density Text Avg. year Size Density Text Avg. year

(i) Frequency of citations

1999 1 0.474 2.6256 1998.68 – – – – 19 1.1893 2.2261 1994.62

2000 4 0.0504 2.5901 1999.42 11 0.2744 1.9791 1994.12 9 0.4514 2.5450 1997.03

2001 9 0.0599 2.6562 2000.51 5 0.6921 2.4099 1995.92 9 0.6509 3.0792 1998.21

2002 17 0.0648 2.8793 2001.15 7 0.8217 2.9045 1997.99 7 2.8825 3.1349 2000.16

2003 22 0.0346 2.0593 2002.00 8 1.3668 2.9727 1999.42 8 4.3301 3.5362 2001.53

(ii) Difference of publication years

1999 1 0.5018 2.8161 1996.10 – – – – 0 0 0 0

2000 0 0 0 0 0 0 0 0 0 0 0 0

2001 0 0 0 0 6 0.5476 2.4579 1996.56 0 0 0 0

2002 0 0 0 0 0 0 0 0 0 0 0 0

2003 4 0.1937 3.4409 2001.78 0 0 0 0 0 0 0 0

(iii) Reference Similarity

1999 2 0.5838 2.6805 1996.18 – – – – 19 1.4833 1.502 1994.73

2000 4 0.3346 2.0059 1996.67 6 0.6666 1.2652 1999.67 6 1.6888 1.3067 1999.80

2001 3 0.9666 1.4848 2000.60 7 0.6742 1.4232 2000.32 7 1.7387 1.6797 2000.60

2002 6 0.5681 1.7132 2001.42 8 0.9642 1.8284 2001.22 8 1.8487 2.0303 2001.54

2003 6 0.571 1.8912 2002.06 3 1.1893 1.9705 2001.72 8 1.8411 2.1857 2002.21

(iv) Keyword similarity

1999 2 0.2838 3.0805 1996.18 – – – – 19 1.2006 2.4178 1994.86

2000 3 0.1346 2.1593 1996.67 7 0.4641 2.2844 1995.08 9 0.4333 2.4869 1996.57

2001 3 0.1239 2.4659 1998.51 8 0.4348 2.4937 1996.35 9 0.6702 2.9492 1997.87

2002 4 0.1568 2.6845 2000.52 8 0.6817 2.6009 1998.17 8 2.2041 3.0275 1999.89

2003 6 0.0949 3.3899 2001.37 10 0.9152 2.8085 1999.05 8 4.036 3.3062 2001.50

When the core papers do not belong in the cluster, the results show ‘‘0’’. When the core papers do not belong in the largest component in generating the citation network, the results show ‘‘–’’.
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Table 6
Normalized size, average publication year, density, and textual similarity of the clusters to which core papers belong ((C) IIJIMA, S, 1991, NATURE, V354, P56: Carbon Nano Tube).

Year Direct citation Co-citation Bibliographic coupling

Size Density Text Avg. year Size Density Text Avg. year Size Density Text Avg. year

(i) Frequency of citations

1991 1 2.8571 1.14347 1989.43 – – – – 23 1.8826 0.6802 1989.11

1992 8 0.6057 1.76990 1991.60 10 3.746 1.8493 1991 12 4.2622 1.7598 1991.69

1993 10 0.3358 2.27078 1992.12 8 4.2261 1.4992 1991.69 10 13.3736 2.0069 1992.60

1994 9 0.2635 2.35245 1993.09 10 2.5471 2.3955 1992.42 10 0.7754 2.4486 1993.00

1995 9 0.2071 2.54667 1993.78 0 0 0 0 3 2.2466 2.3989 1993.27

(ii) Difference of publication years

1991 6 1.1 0.1597 1981.84 – – – – 23 1.874 0.7016 1989.13

1992 8 0.592 1.7599 1991.61 10 3.746 1.4139 1991.00 12 4.2622 1.6821 1991.69

1993 7 0.3419 2.3222 1992.15 14 2.3881 1.6314 1991.63 16 6.5004 2.0291 1992.51

1994 9 0.2707 2.3434 1993.07 17 1.1417 1.9159 1991.59 2 4.2778 1.9473 1992.86

1995 9 0.2108 2.6583 1993.77 0 0 0 0 0 0 0 0

(iii) Reference similarity

1991 1 2.8571 1.20748 1989.43 – – – – 19 2.3076 0.6013 1988.83

1992 8 0.792 1.61483 1991.61 10 3.746 1.19537 1991.00 12 4.2622 1.6865 1991.69

1993 7 0.4545 1.9181 1992.24 14 2.8296 1.58136 1991.65 15 7.0554 1.9091 1992.52

1994 9 0.3731 1.8792 1993.07 11 2.2262 1.8784 1992.13 16 4.7103 2.1298 1993.18

1995 9 0.3126 1.8257 1993.78 12 2.2716 1.7338 1992.97 10 12.9409 2.0442 1994.06

(iv) Keyword similarity

1991 1 2.8571 1.14929 1989.43 – – – – 17 2.6271 0.6244 1989.15

1992 8 0.5789 1.7573 1991.55 10 3.746 1.8968 1991.55 16 2.9074 1.6613 1991.70

1993 7 0.3419 2.3358 1992.15 13 2.535 1.6791 1991.84 16 6.6648 2.0540 1992.52

1994 9 0.2695 2.4406 1993.07 15 2.5579 2.2917 1992.27 11 8.9546 2.3839 1993.40

1995 9 0.2083 2.73252 1993.76 13 2.6353 2.3983 1993.02 17 4.8751 2.0085 1994.06

When the core papers do not belong in the cluster, the results show ‘‘0’’. When the core papers do not belong in the largest component in generating the citation network, the results show ‘‘–’’.
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Hopcroft et al. (2004) and Shibata et al. (2009), and therefore co-citation is not suitable for research
front detection. In addition, regarding ‘‘(A-2) NAKAMURA S, 1992, JPN J APPL PHYS PT 1, V31, P1258,’’
‘‘(B-1) Watts DJ, 1998, NATURE, V393, P440,’’ ‘‘(B-2) Barabasi AL, 1999, SCIENCE, V286, P509,’’ and ‘‘(C)
IIJIMA, S, 1991, NATURE, V354, P56’’, the core papers were not involved in the largest component in the
birth year.

Bibliographic couplings. In this citation pattern, the results of comparisons between the weights are
almost the same results as the co-citations. The bibliographic coupling could be expected to be better
than the co-citation because it could potentially detect more edges earlier than the co-citations.
However, the results of bibliographic coupling are slightly worse than direct citation when
introducing the weighted citation networks. In addition, in the case of ‘‘(B-2) Watts DJ, 1998, NATURE,
V393, P440,’’ the core paper was not involved in the largest component. Core papers with the
bibliographic coupling cannot generate more clusters than others in introducing weight (ii). This is
because that the citation network with bibliographic coupling is concentrated on the specific famous
papers regardless of its contents.

Differences between domains. In this paper, we evaluate some methodologies to three domains
(GaN, CNW, and CNT). They are typical examples of recent remarkable innovations having
somewhat different characteristics in focusing on the way of the breakthroughs of the rapid
developments. The results of sizes, average publication year, density, and textual similarity among
in three domains are almost same. On the other hand, there are some characteristic differences
among three domains. Comparing GaN with CNW, the results of GaN are the larger and denser
than the ones of CNW, however, the textual similarity of CNW is better than the one of GaN.
Comparing GaN with CNT, the results of GaN are the larger and denser than the ones of CNT,
however, the textual similarity of CNT is better than the one of GaN. The main reasons of these
results are the breakthroughs of the rapid developments. Fuller study for the generalizability
connecting the methodologies and domains lies outside the scope of this paper. On the other hand,
we conducted the comparative studies of effectiveness among some weighted citation networks in
many kinds of characteristic domains.

Discussions

A summary of comparisons of the results is shown in Table 7. Weight (i) in co-citation and
bibliographic coupling has better textual similarity and higher density clusters compared with weight
(i) in the direct citation. This means that the frequency of citations is effective for generating the
textual and topologically relevant clusters. Weight (ii) generates small-sized clusters, and is the worst
in the speed to detect research fronts. By introducing the difference in publication years for placing the
weights to new edges, we can detect the small clusters formed by the important academic papers only
in the early stage. However, it is not in the very early stage as Table 7 shows. In addition, the core-
papers acting as the important aspects in the academic fields could be missed in the expansion stage
because the weights of edges between a paper and the core-paper become weaker. Theoretically,
weight (ii) is expected to efficiently detect research fronts because it gives a large weight on the link
where both citing and cited papers are young, however, it does not work well actually. Core papers
cannot generate the clusters when the year has passed since the core paper was published.

Weights (iii) and (iv) have almost the same tendency compared with the others. The reason for this
is that both the reference similarities and the keyword similarities represent the contents of papers.
On the other hand, when the topologically relevant clusters are required, weight (iii) is especially
Table 7
Brief result of comparison of four types of weights.

Visibility Topological relevance Text relevance Speed

Direct citation (i)>(ii)=(iii)=(iv) (iii)>(ii)=(iv)> (i) (iv)> (ii)=(iii)> (i) (i)>(ii)=(iii)=(iv)

Co-citation (i)=(iii)=(iv)> (ii) (iii)>(iv)=(i)> (ii) (iv)> (i)=(iii)>(ii) (i)=(iii)>(iv)> (ii)

Bibliographic coupling (i)=(ii)=(iii)=(iv) (iii)>(i)=(ii)=(iv) (iv)> (i)> (ii)=(iii) (i)=(iii)=(iv)> (ii)

Note. (i) Frequency of citations; (ii) difference of publication years; (iii) reference similarity; (iv) keyword similarity.
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effective. When the textually relevant clusters are required, weight (iv) is especially effective. In fact,
both the references and keywords of academic papers are important information for judging the
academic area and contents of academic papers. On the other hand, the discussions of relevance of
clustering between citation information and keyword information for detecting the emerging front
have been conducted for a long time in the bibliometric field (Chen, 2006; Kostoff et al., 2001;
Losiewicz et al., 2000).

We present a comparative study to investigate the performance of methods for detecting emerging
research fronts among weighted citation networks, which include the frequency of citations, the
difference of publication years, similarities of the references and keywords. In addition, we evaluated
the weighted citation networks to some kinds of citation networks (Direct citation, Co-citation,
Bibliographic coupling). As a result of the comparative studies in the previous section, we could
produce two conclusive results.

First, we showed that the citation networks with the weights are more useful in detecting the
characteristic research fronts (emerging fronts) than those without the weights. Weighted citation
networks can capture important information attributes of papers compared with non-weighted
citation networks. In the comparative studies, the frequency of citations in co-citation and
bibliographic coupling has better textual similarity and higher density clusters compared with the
non-weighted method in the direct citation. However, most of the existing works focus on the non-
weighted citation networks. By this comparative studies, we can expand the capability of the citation
network analysis for emerging detections by introducing and evaluating the weights, practically and
scholarly.

Next, we showed the relationships between the types of weights and topological measures for
evaluating the emerging fronts. We demonstrated that different weight strategy is effective for
different purpose. When the topologically relevant clusters are required, weight of the reference
similarity is especially effective. When the textually relevant clusters are required, weight of the
textual similarity is especially effective. Based on these results, we can select the weight strategies
based on the characteristics of the task of users. When weighting strategy to adjust the purpose is
introduced, users can detect the research fronts effectively and/or reliably.

In all of the above cases, earlier and more accurate detection of research fronts is essential
information for both researchers and research and development (R&D) managers in planning their
research focus and strategy. For applying the weighted networks to detect the research fronts for
managerial purpose, selecting which weights to use by adjusting the purpose of analysis is important.
We cannot select the best method without purpose. Through the comparative studies in this paper, the
characteristics of every weight become clear. Therefore, it is important to select the effective weights
based on the definition of emerging fronts or purpose of analysis. Typically, the frequency of citations
is effective for detecting the emerging fronts, which are defined as large, young, and relevant clusters
when the co-citations and bibliographic coupling are used. On the other hand, the network with co-
citations has time-lag issues, and the bibliographic coupling was slightly worse than direct citations in
the non-weighted citation network analysis.

It is plausible that co-citation and bibliographic coupling were slightly worse because of the
process of creating networks. In our method, only the citations among papers within the dataset
that were collected by the queries were used to create each citation network. By performing an
additional examination to create a network using the data of additional ‘‘one path’’ from the
collected papers, the results of co-citation and bibliographic coupling networks show superior
performance by considering this additional link (Boyack and Klavans, 2010). We cannot decline a
possibility that the co-citation and bibliographic coupling weighted networks can extract better
emerging clusters. It is the one of the important and possible future directions in more detailed
comparative studies.

Another important aspect of effective weighted citation network analysis is the way to decide the
mathematical representations in the functions of weights. In this paper, the functions of weights are
decided based on the ad-hoc heuristics for gallium nitride (GaN), complex network (CNW), and carbon
nanotube (CNT) domains. However, the automatic identifications of optimal functions of weights are
necessary for effective analysis. By introducing machine learning technology, we could achieve them.
Fuller study of this topic lies outside the scope of this paper.
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Conclusions

This paper presents a comparative study to investigate the performance of methods for detecting
emerging research fronts among weighted citation networks, which include the frequency of citations,
the difference of publication years, similarities of the references and keywords. A case study was
performed in three research domains, gallium nitride, complex networks, and carbon nanotubes. After
some types of weighted citation networks were constructed, papers in each research domain were
divided into clusters using topological clustering. We evaluated the visibility, speed, and topological
and textual relevance of the clusters to which selected core papers belonged.

By using the weight based on the frequency of citations, young and dense clusters are detected. By
using the weight based on the difference of publication years, clustering techniques generate small
clusters. Using the weight based on keywords and reference information has almost the same
tendency. In addition, the weight with the references shows more topologically relevant contents than
that with author keywords, and the weight based on paper keywords shows more textually relevant
contents than that with author keywords as expected.
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