
ARTICLE IN PRESS
0166-4972/$ - se

doi:10.1016/j.te

�Correspond
E-mail addr
Technovation 28 (2008) 758–775

www.elsevier.com/locate/technovation
Detecting emerging research fronts based on topological measures in
citation networks of scientific publications

Naoki Shibata, Yuya Kajikawa�, Yoshiyuki Takeda, Katsumori Matsushima

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
Abstract

In this paper, we performed a comparative study in two research domains in order to develop a method of detecting emerging

knowledge domains. The selected domains are research on gallium nitride (GaN) and research on complex networks, which represent

recent examples of innovative research. We divided citation networks into clusters using the topological clustering method, tracked the

positions of papers in each cluster, and visualized citation networks with characteristic terms for each cluster. Analyzing the clustering

results with the average age and parent–children relationship of each cluster may be helpful in detecting emergence. In addition,

topological measures, within-cluster degree z and participation coefficient P, succeeded in determining whether there are emerging

knowledge clusters. There were at least two types of development of knowledge domains. One is incremental innovation as in GaN and

the other is branching innovation as in complex networks. In the domains where incremental innovation occurs, papers changed their

position to large z and large P. On the other hand, in the case of branching innovation, they moved to a position with large z and small P,

because there is a new emerging cluster, and active research centers shift rapidly. Our results showed that topological measures are

beneficial in detecting branching innovation in the citation network of scientific publications.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Scientific activities are playing an increasingly important
role not only in solving social problems but also as seeds of
industrial innovations. Previous studies have focused on
establishing the relationship between the investments and
the outcomes of scientific research (e.g., Mansfield, 1972;
Rosenberg, 1974; Sveikauskas, 1981; Adams, 1990; Narin
and Hamilton, 1996). The importance of R&D is widely
recognized as essential in promoting technological innova-
tions, especially in science-oriented disciplines such as
chemicals, pharmaceutics, and electronics (Tijssen, 2002),
as well as in nutrition and food research (van Raan and van
Leeuwen, 2002). There is additional empirical support for a
link between scientific research and technological innova-
tion. Jaffe and Trajtenberg showed a positive relationship
between university research expenditure and local patent-
e front matter r 2008 Elsevier Ltd. All rights reserved.
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ing rates (Jaffe, 1989; Jaffe and Trajtenberg, 1996). It is
often observed that, in the innovation processes, scientists
create the seeds of innovation, and then companies take up
these seeds, develop technologies, and industrialize as seen
in the development of the photocatalyst in Japan (Tryk
et al., 2000; Hashimoto et al., 2005). Technological
inventions are developed by coupling independent pieces
of scientific outputs (Fleming and Sorenson, 2004).
Although such a linear model is often criticized (Williams
and Edge, 1996; Niosi, 1999), it still seems to form a
remarkable route of technological innovations.
While the importance of scientific activities in industrial

innovations has been established, it is still a controversial
topic concerning how each researcher and engineer should
obtain, absorb, and utilize scientific knowledge for their
competitive advantage. Massini et al. (2005) discussed the
difference between pioneers (innovators) and adopters
(imitators). For innovators and early adopters, it is
essential to detect emerging research fields promptly before
other competitors enter the research domain. Currently,

www.elsevier.com/locate/technovation
dx.doi.org/10.1016/j.technovation.2008.03.009
mailto:kaji@biz-model.t.u-tokyo.ac.jp


ARTICLE IN PRESS
N. Shibata et al. / Technovation 28 (2008) 758–775 759
the main output of scientific activities still lies in a number
of journal papers, and scientific publications play an
important role as the primary ‘‘raw material’’ building
scientific knowledge to accelerate technological innovation.
In fact, Sorenson and Fleming observed that patents that
refer to scientific materials receive more citations (Sorenson
and Fleming, 2004; Fleming and Sorenson, 2004). This
partially supports the hypothesis that scientific publications
play an important role in accelerating technological
innovation. Scientific publications constitute the generally
accepted, although not always perfect, major output of the
scientific activity stimulating technological innovations.

In today’s increasingly global and knowledge-based
economy, competitiveness and growth depend on the
ability of an economy to meet fast-changing market needs
quickly and efficiently through the application of new
science and technology. The capacity to assimilate and
apply new knowledge relies on scientific innovativeness.
Therefore, for both R&D managers in companies or
research institutions and policy makers, noticing emerging
research domains among numerous academic papers has
become a significant task. However, such a task becomes
highly laborious and difficult as each research domain
becomes specialized and segmented. Davidson et al. (1998)
consider this situation as follows: ‘‘For most of history,
mankind has suffered from a shortage of information.
Now, in just the infancy of the electronic age, we have
begun to suffer from information excess.’’ There are two
approaches to detecting emerging research domains and
the topics discussed there (Kostoff and Schaller, 2001). One
straightforward manner is the expert-based approach,
which utilizes the explicit knowledge of domain experts.
However, it is often time-consuming and is also subjective
in the current information-flooded era. Another is the
computer-based approach, which is compatible with the
scale of information, and it is therefore expected to
complement the expert-based approach. There is a
commensurate increase in the need for scientific and
technical intelligence to discover emerging research do-
mains and the topics discussed there, even for unfamiliar
domains (van Raan, 1996; Kostoff et al., 1997, 2001;
Losiewicz et al., 2000; Boyack and Böner, 2003; Porter,
2005; Buter et al., 2006).

One promising approach to detect emerging research
domains is to analyze the citation network of scientific
publications. In his classical paper, de Solla Price (1965)
originally introduced the concept of a research front,
research domains under developing where papers cite each
other densely. According to Price, there seems to be a
tendency for scientists to cite the most recently published
articles. The research front builds on recent work, and the
network there becomes very tight. In a given field, a
research front refers to the body of articles that scientists
actively cite. Researchers have studied quantitative meth-
ods that can be used to identify and track the research front
as it evolves over time. Small and Griffith (1974)
represented currently activated scientific specialties as
clusters of co-cited articles. Co-citation strengths between
pairs of documents are computed and the documents
subsequently clustered to identify the research domain.
Braam et al. (1991) investigated the topics discussed in the
co-cited clusters by analyzing the frequency of indexing
terms and classification codes occurring in these publica-
tions. Peters and van Raan (1993a) evaluated the useful-
ness of co-word technique by questionnaire, and improved
the clustering method for co-word map (Peters and van
Raan, 1993b). Citation and publication counts are used to
evaluate the significance of patents (Albert et al., 1991),
scholar (Mayer et al., 2004), journal (Leydesdorff et al.,
1994), emerging research domain, and nation (Zhou and
Leydesdorff, 2006).
The temporal patterns of co-cited clusters are usually

tracked to detect emerging fields with a variety of
visualization techniques. The multidimensional scaling
(MDS) plot on a two-dimensional (2-D) plane is a typical
example of such visualizations (Small, 1977). However,
spatial configurations in MDS do not show links explicitly.
There are number of efforts to improve the efficiency of
visualization such as a self-organizing map (SOM) (Skupin,
2004) and a pathfinder network (PFNET) (Chen, 1999,
2004). White et al. (2004) compared these two visualization
techniques and noted that while PFNETs seem to be
directive about relationships, SOMs are merely suggestive.
Morris et al. (2003) used a timeline visualization of the
hierarchical structure produced by clustering. The ani-
mated representation of a citation network also helps us to
focus on significant movements in research fronts and
emerging research fields in a broad context (Boyack et al.,
2002; Chen et al., 2002). However, the detection of
emerging research domains by visualization requires
implicit judgment by the users. It is desirable to develop
statistical measures to detect emerging fields without the
help of visualizations. The aim of this paper is to develop a
computational tool to detect research fronts by using the
topological measures (measures representing the topologi-
cal role or position of a paper in citation network) of
citation networks in addition to visualization.
We performed a comparative study in two research

domains. One is a study on gallium nitride (GaN), which is
widely recognized as a recent prominent innovation in the
fields of applied physics and material science. The other is
on complex networks (CN) analysis, which is also recently
recognized as pioneering a new research field. We divide
the papers in each research domain into clusters, track the
positions of the papers in each cluster, and visualize
citation networks with characteristic terms for each cluster.
Topological measures are introduced to detect emerging
domains without the help of visualizations. There are
distinct differences between the topological measures in the
two cases. By considering the difference, we discuss the
possibility of detecting emerging knowledge domains using
topological measures. In the next section, we give a brief
historical overview of the two research fields. In Section 3,
we explain our methods of this study. In Section 4, the



ARTICLE IN PRESS
N. Shibata et al. / Technovation 28 (2008) 758–775760
results are shown. Finally, in Section 5, we discuss how our
method contributes to detecting emerging knowledge
domains.

2. Overview of research domains

In this paper, we performed a comparative study in the
following two research domains: GaN and CN. We take
these cases because they are typical examples of recent
remarkable innovations having somewhat different char-
acteristics. As explained later, research in GaN has
incrementally developed in the field of applied physics
(Fig. 1(a)). However, branching innovation occurs in CN
(Fig. 1(b)). In the following, we briefly describe the
historical background of these domains. Therefore, a
comparative study on these topics might bring us fruitful
outcome to discuss the effectiveness and usefulness of our
method.

2.1. Gallium nitride (GaN)

During the last decade, nitride semiconductors, espe-
cially GaN, have experienced an exciting development in
the field of materials science and applied physics. Within a
very short period after the middle of the 1990s, researchers
realized the applications of GaN as blue and green light-
emitting diodes (LEDs) and ultra-violet (UV) and blue
laser diodes (LDs). These products are now commercially
Fig. 1. Brief description of each domain:
available. Innovation in this research field motivates
researchers to engage in and open huge new markets for
manufacturers and customers.
However, blue luminescent devices had not been realized

in the middle of the 1990s. Until 1993, the only blue light-
emitting devices commercially available were based on
silicon carbide (SiC), which has an indirect band gap, and
is thus not capable of sufficient brightness. GaN was also a
candidate for blue luminescent devices due to its wide band
gap. For GaN researchers, it was clear that the most
serious problem in GaN was poor film quality, which was
caused by large lattice mismatch between GaN and the
underlying sapphire substrate. The difficulty in p-type
doping, which is necessary to work a thin film of GaN as
LED, was another crucial problem. However, the latter
problem was considered to be connected to the former
problem (Akasaki, 1998). These shortcomings were over-
come by Akasaki and co-workers in the late 1980s. They
deposited a buffer layer on the sapphire substrate prior to
GaN deposition (Amano et al., 1986; Akasaki et al., 1989).
The introduction of a buffer layer greatly improved the film
quality. Then, they also succeeded in p-type doping by low-
energy electron irradiation (Amano et al., 1989), which can
overcome the large acceptor activation energy of GaN.
Later, the doping was improved by annealing (Nakamura
et al., 1992). Owing to these breakthroughs, the first
commercial LEDs finally appeared at the end of 1993
through Shuji Nakamura working for Nichia Company in
(a) GaN and (b) complex networks.
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Japan (Nakamura et al., 1994). They also succeeded in
realizing LD (Nakamura et al., 1996). The rapid develop-
ment of GaN research is attracting both researchers and
funding. The number of academic papers starts to
dramatically increase after 1995. In 2004, we annually
have about 2000 papers reporting on the material
(Fig. 2(a)).

2.2. Complex networks

The second example is the CN, which is also recently
recognized as pioneering a new research field. Complex
networks have been researched by several types of
researchers. Traditionally, the study of CN has been the
territory of graph theory in mathematics and also social
network analysis in sociology. In the 1950s, two mathe-
maticians, Paul Erdös and Alfréd Rényi, proposed a
random graph, which is the simplest and most straightfor-
ward example of CN (Erdös and Rényi, 1959, 1960, 1961).
The formal elegance of the random model has arrested
many mathematicians. On the other hand, in sociology,
applied research has studied a variety of networks from
individuals to families and nations. One well-known
instance is the ‘‘six degrees of separation’’ theory by the
social psychologist, Milgram (1967). His famous theory
Fig. 2. Changes in the number of papers: (a) GaN and (b) complex

networks.
claims that there is a path of acquaintance with a typical
length of about six between most pairs of people in the
United States. Milgram’s accomplishment was to show
empirical evidence of the daily wonder of our ‘‘small
world.’’
Recently, Watts and Barabási, whose backgrounds were

theoretical and applied mechanics and applied physics
revealed the common characteristics of small-world net-
works (Watts and Strogatz, 1998) and scale-free networks
(Barabási and Albert, 1999). After the leading works by
these physicists, studies in this domain have received
attention, and a number of papers in this domain have
been published. This is probably because their superiority
in expressing small-world phenomena by concise quantita-
tive measures assures researchers of future possibility in
this research domain. Although even in 1977 a sociologist,
Freeman (1977), quantitatively treated networks and
proposed the concept of centrality, most sociologists’ work
still comprises qualitative and descriptive reports. Cur-
rently, we have more than 1000 papers annually (Fig. 2(b)).

3. Research methodology

In this section, the methodology of this research is
shown. Analyzing schema is depicted in Fig. 3. The first
step is to collect the data of each knowledge domain and to
make citation networks for each year. The problem, how
we should define a research domain, is difficult to solve.
One solution is to use a keyword that seems to represent
the research domain. When we collect papers retrieved by
the keyword, we can make the corpus for the research
domain. However, it causes two problems. One is the
deficiency of relevant papers. It is not always true that a
research domain can be represented by a single keyword.
Another is the surplus of papers. In some cases, the same
keyword is used in different research domains, which
includes the noisy papers to the corpus. To overcome the
first problem, we use broad queries to retain wide coverage
of citation data. For the second problem, we analyze only
the maximum component of the citation networks.
(A component is an ‘‘isolated’’ part of a citation network,
which does not have citations to and from another part,
and the maximum component is the part that includes most
papers in it.) By doing this step, non-relevant papers that
do not cite papers in the corresponding research domain
are removed. With this process, proper papers can be
necessarily in the maximum component, because proper
papers cite or are cited by certain important papers, which
gain many citations and are central in maximum compo-
nent.
After extracting the maximum component, we perform

the topological clustering, in order to discover tightly knit
clusters with a high density of within-cluster edges with
Newman’s algorithm (Newman, 2004). With this process,
citation networks are divided into clusters, within
which papers cite densely each other. In the last step,
two topological measures, within-cluster degree, zi, and
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Fig. 3. Method proposed in this paper.

Fig. 4. Difference between intercitation and co-citation. Solid line is an

intercitation and dotted line is a co-citation.
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participation coefficient, Pi, proposed by Guimera and
Amaral (2005) are calculated in order to track the position
of each paper in the clustered citation network.

3.1. Data collection

We collect citation data from the Science Citation Index
(SCI) and the Social Sciences Citation Index (SSCI)
compiled by the Institute for Scientific Information (ISI),
which maintains citation databases covering thousands of
academic journals and offers bibliographic database
services, because SCI and SSCI are two of the best sources
for citation data. We use Web of Science, which is a web-
based user interface of ISI’s citation databases. Papers
published after 1970 are contained in ISI’s citation
databases. We search the papers using the following terms
as queries: ‘‘GaN OR Gallium Nitride’’ for the first
domain, and ‘‘social networks OR social network OR
random networks OR random network OR small-world
OR scale-free OR complex networks’’ for the second
domain. In our method, the queries are selected as the
following two steps: (1) the representative keyword, such as
GaN and social network, was selected; (2) if the definition
of its domain is unclear, more keywords, such as random
network, small-world, scale-free, and CN, should be added.
The second step is known as query expansion (Kostoff
et al., 1997). Our intention to use such many terms is to
retain wide coverage of citation data in order to avoid the
omission of significant papers. As a result, we obtained the
data of 15,134 papers on GaN and 7370 papers on CN that
had been published from 1970 to 2004. Fig. 2(a) shows the
changes over time in the number of papers in GaN, and
Fig. 2(b) shows the changes over time in CN. In the area of
GaN, the number of papers started increasing dramatically
in 1995 and reached a peak in 2000, whereas in CN, the
number of papers started growing in 2000 and is currently
increasing.

The ISI’s citation databases enable us to obtain both the
attribute data of each paper such as the year published,
title, author(s), abstract, and so on, and relational data,
i.e., citation data. We create citation networks by regarding
papers as nodes and intercitations as links. The network
created in each year enables a time-series analysis of
citation networks. In traditional citation analysis, the
citation threshold is usually set to reduce the calculation
load, and the citation patterns derived therefore reflect the
mainstream domain knowledge. The results of the pruning
papers by citation threshold often consist of chains among
highly cited classic works. It excludes relatively infre-
quently cited works such as recent contributions from the
analysis (Chen et al., 2001). The use of co-citation in
traditional citation analysis is also problematic (Hopcroft
et al., 2004). In co-citation, two papers are linked if they
are both cited by another paper published later. This is a
useful similarity measure. However, in order to make this
measure work properly, a certain time lag is inescapably
needed in order that papers build up a citation record
when we use co-citation. Suppose a following case, shown
in Fig. 4.
(1)
 At t1, node A is born.

(2)
 At t2 (4t1), node B is born and B cites A.

(3)
 At t3 (4t2), node C is born and C cites both A and B.
When we use intercitation analysis, edge from B to A is
made at t2. But in co-citation analysis, such a link is not
formed immediately, because A and B are not cited by the
same paper when B is published at t2. If we use co-citation
analysis, the link between A and B is formed only after C
citing both A and B is published at t3. In sum, although
with co-citation analysis edge between B and C is not made
until t3, with intercitation analysis edge from B to A is
made at t2. Intercitation analysis is more sensitive to recent
citations than co-citation analysis. Because our objective is
to detect changes as early as possible, we opted for
intercitation that uses the common reference set of each
paper. Additionally, the analysis of intercitation is more
straightforward than co-citation. Klavans and Boyack
(2006) compared the similarity of the clustering results by
intercitation to that by co-citation. They concluded that
intercitation is more appropriate for the clustering of the
similar documents. Intercitation also allows us to group
papers that are only rarely cited, which is a significant
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portion of all papers (Hopcroft et al., 2004). In network
analysis, only the data of largest-graph component is used,
because this paper focuses on the relationship among
papers, and we should therefore eliminate the papers that
have no link with any other papers. The number of papers
contained in the largest component in 2004 is 14,240 (94%
of collected papers) in GaN and 3524 (48%) in CN. The
reason why the size of the largest component in CN is
relatively small was because we used more queries. We used
many queries in order to avoid the omission of significant
papers.

3.2. Statistical method

In this work, we analyze intercitation networks of
scientific publications in the above two domains with
topological clustering and extracting topological measures.
The topological clustering divides papers into some clusters
and the topological measures are determined after the
clustering. We focus on the topological clustering method
in order to discover tightly knit clusters with a high density
of within-cluster edges, which enables the creation of a
non-weighted graph consisting of a large number of nodes.
Citation networks where each paper is connected by
intercitation are divided into clusters. Clustering of a
citation network divides collected papers having similar
citations into the same cluster in order to specify the
research domain. Although these clustering methods have
been difficult to achieve due to the difficulty in cluster
analysis of non-weighted graphs consisting of a large
number of nodes, there has in recent years been a lot of
progress in methods for topological clustering with great
progress in CN research (Newman, 2004). After clustering,
the position of each paper in the clustered citation network
is tracked using topological measures, i.e., within-cluster
degree, zi, and participation coefficient, Pi, proposed by
Guimera and Amaral (2005).

3.2.1. Clustering

Amongst many clustering methods and algorithms, in
this paper we apply a method proposed by Newman which
is able to deal with large networks with relatively small
calculation time in the order of O((m+n)n), or O(n2) on a
sparse network, with m edges and n nodes; therefore, this
could be applied to large-scale networks (Newman, 2004).
The algorithm proposed is based on the idea of modularity.
Modularity Q was defined as follows:

Q ¼
X

s

ðess � a2
s Þ ¼ TrðeÞ � jjejj2 (1)

where est is the fraction of the edges in the network that
connect nodes in cluster s to those in cluster t, and
as ¼

P
test. The first part of the equation, Tr(e), represents

the sum of density of edges within each cluster. A high
value of this parameter means that nodes are densely
connected within each cluster. However, the maximum
value of this (Tr(e) ¼ 1) is given if whole nodes are
regarded as one cluster. The second part of the equation,
||e||2, represents the sum of density of edges within each
cluster when all edges are placed randomly. For instance,
suppose that all nodes are regarded as one cluster. In this
case, matrix e has only one row, e ¼ (1). Therefore,
Tr(e) ¼ 1, ||e||2 ¼ 0, and Q ¼ 1, which is the theoretical
maximum value of Q. That is, Q is the fraction of edges
that fall within communities, minus the expected value of
the same quantity if the edges fall at random without
regard for the community structure. Newman’s method
cuts off edges that connect clusters sparsely and extract
clusters within which nodes are connected densely. A high
value of Q represents a good community division where
only dense-edged remain within clusters and sparse edges
between clusters are cut off, and Q ¼ 0 means that a
particular division gives no more within-community edges
than would be expected by random chance. Then, the
algorithm to optimize Q over all possible divisions to find
the best structure of clusters is as follows. Starting with a
state in which each node is the only member of one of n

clusters, we repeatedly join clusters together in pairs,
choosing at each step the join that results in the greatest
increase in Q. The change in Q upon joining the two
clusters is given by

DQ ¼ est þ ets � 2asat ¼ 2ðest � asatÞ (2)

In this paper, we stop joining when DQ became minus,
because the purpose here is not to gain a whole
dendrogram but extract more relevant structures with
regard to the citation networks.
3.2.2. Extracting the role of each paper

After dividing the papers into optimized clusters using
Newman’s method, the role of each paper is determined by
its within-cluster degree and its participation coefficient,
which define how the node is positioned in its own cluster
and between clusters (Guimera and Amaral, 2005). This
method is based on the idea that nodes with the same role
should be at similar topological positions. These two
properties can be easily calculated after clustering the
network. Within-cluster degree zi measures how ‘‘well
connected’’ node i is to other nodes in the cluster, and is
defined as

zi ¼
ki � ksi

sksi

(3)

where ki is the number of edges of node i to other nodes in
its cluster si, ksi

is the average of k over all nodes in si, and
sksi

is the standard deviation of k in si. zi is high if the
within-cluster degree is high and vice versa.
Participation coefficient Pi measures how ‘‘well distrib-

uted’’ the edges of node i are among different clusters and
is defined as

Pi ¼ 1�
XNM

s¼1

kis

ki

� �2

(4)
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where kis is the number of edges of node i to nodes in
cluster s, and ki is the total degree of node i (the number of
edges of node i). Participation coefficient Pi is close to 1 if
its edges are uniformly distributed among all the clusters
and 0 if all its edges are within its own cluster.

Guimerà and Amaral applied this analysis to biological
networks and heuristically defined seven different universal
roles, by a different region in the z�P parameter space as
shown in Fig. 5. According to the within-cluster degree,
they classified nodes with zX2.5 as hub nodes and nodes
with zo2.5 as non-hub nodes. In addition, non-hub nodes
can be naturally divided into four different roles: (R1)
ultra-peripheral nodes; that is, nodes with most of their
edges within their cluster (Po0.05), (R2) peripheral nodes;
that is, nodes with many edges within their cluster
(0:05oPp0:62); (R3) non-hub connector nodes, that is,
nodes with a high proportion of edges to other clusters
(0:62oPp0:80); and (R4) non-hub kinless nodes, that is,
nodes with edges homogeneously distributed among all
clusters (P40.80). Similarly, hub nodes can be classified
into three different roles: (R5) provincial hubs, that is, hub
nodes with the vast majority of edges within their cluster
(Po0.30); (R6) connector hubs, that is, hubs with many
edges to the other clusters (0.30oPp0.75); and (R7)
kinless hubs, that is, hubs with edges homogeneously
distributed among other clusters (P40.75).

3.2.3. Topic detection by Natural Language Processing

In this section, the method of extracting the character-
istic terms for each cluster by Natural Language Processing
(NLP), which enable research topic detection, is described.
First of all, candidate terms are extracted by linguistic
filtering, using all abstracts of papers (Mima et al., 1998;
Frantzi et al., 2000). Linguistic filtering extracts candidate
noun phrases, such as
(1)
 Noun+Noun,

(2)
 (Adj|Noun)+Noun,

(3)
 ((Adj|Noun)+|((Adj|Noun) (NounPrep)?)(Adj|Noun))Noun.
Fig. 5. Role of each node in the topology.
Then, these noun phrases are weighted by tf–idf weight,
which is a weight often used in information retrieval. The
term frequency, tf, in the given documents gives a measure
of the importance of the term within the particular
document. The inverse document frequency, idf, is a
measure of the general importance of the term, which is
the log of the number of all documents divided by the
number of documents containing the term, enabling
common terms to be filtered out. Therefore, a term with
high tf–idf means that the term has a high term frequency
in the given document and a low document frequency of
the term in the entire documents. The tf–idf weight of term
i in document j is given by

wi;j ¼ tf i;j � idf i ¼ tf i;j � log
N

df i

� �
(5)

where tfi,j is the number of occurrences of term i in
document j, idf i ¼ logðN=df Þ is the inverse document
frequency, a measure of the general importance of the
term, dfi is the number of documents containing term i, and
N is the total number of documents. In this paper, in order
to extract the important terms not in a certain document
but in a certain cluster, we extend the tf–idf weight
to clusters, and the tf–idf weight of term i in cluster s is
given by

wi;s ¼ tf i;s � idf i ¼ tf i;s � log
N

df s

� �
(6)

where tfi,s is the number of occurrences of term i in cluster
s. In this paper, the top ten terms of the tf–idf (term
frequency–inverse document frequency) value in each
cluster are regarded as terms characteristic of that cluster.

4. Results

Fig. 6(a) shows the number of papers in each cluster and
the average age of the papers included in each cluster from
1992 to 2004 in GaN. As shown in Fig. 6(a), the age of the
clusters, which is the average of the ages of the papers in
the cluster, seems to decrease up to 1998. This is because
many fresh papers join these clusters, therefore reducing
the ages of these clusters. However, after 1998, the ages of
large clusters increase, which shows that these research
domains have become mature. In 2004, there are three big
clusters that we name G1, G2, and G3. In 2004, G1 includes
2509 papers and is 4.4-years old, which is older than G2

(2267 papers and 1.8-years old), and G3 (1525 papers and
1.4-years old).
Fig. 6(a) shows the historical succession of the papers

included in these clusters. The similarity of papers included
in the cluster is the highest in the G1 cluster. In other words,
most of the papers in G1 in a certain year will also appear in
G1 in subsequent years. On the other hand, G2 and G3 are
strongly mixed and interrelated. Table 1 shows a list of the
most cited papers in these clusters. G1 includes break-
through papers reporting new processes such as the
introduction of a buffer layer and a successful p-type
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Fig. 6. Cluster size and average age. The circles are clusters, and the size of each circle means the relative value of the number of papers in each cluster in

(a) GaN and (b) complex networks.
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doping technique, which are the key to realizing blue
LEDs, while research in G2 and G3 focus on the study of
the physical properties of synthesized GaN films and the
development of light-emitting devices. Moreover, the
average age of papers in G1 is still higher than the other
clusters. These results suggest that innovation in GaN
mainly occurs in the traditional research domain of process
development, G1, rather than in newly developing research
on physical properties and device fabrications. This result
accords with the fact that the breakthrough in GaN
domains is recognized to occur in new process development
such as the buffer layer and p-type doping. In a certain
research field, tracking the average age of each cluster in
the domain is effective in detecting emerging research
fronts where innovative breakthrough occurs. However, we
must note that such breakthrough appears in the tradi-
tional cluster; therefore, we call this type of innovation
incremental innovation. As shown in Fig. 7, in GaN each
cluster was strongly connected and these connections
contributed the growth of existing clusters, rather than
the creation of new clusters.

Fig. 6(b) shows the number of papers in each cluster and
average age of the papers included in each cluster from
1994 to 2004 in CN. There is a different tendency between
GaN and CN. In CN, the age of most of the clusters seems
to be unchanged, which indicates the gradual development
of research in this domain. However, in CN, there seems to
be a new emerging cluster in 2000 of the age of about one
as seen in the bottom of Fig. 6(b). This is also confirmed by
the historical succession of the papers included in these
clusters (Fig. 7(b)). In 2004, there are three main clusters,
which we name C1, C2, and C3 clusters. C1 has 1256 papers
and is 8.3-years old, C2 has 785 papers and is 5.7-years old,
and C3 has 1099 papers and is 1.1-years old. Table 2 shows
a list of the most cited papers in these clusters in 2004. C1

and C2 typically have sociological origins, while papers in
C3 are published in physics journals. This shows that in
CN, physical clusters appear from traditional sociological
research domains, but not in those domains, and form a
new research domain. We call this type of innovation
branching innovation.
Fig. 8 shows plots of z and P for the top 10 papers in the

number of citations of 2000 in GaN and of 2004 in CN.
These scores have year-to-year variation. There is a
remarkable difference between these two types of innova-
tion, incremental, and branching innovations. In GaN,
where incremental innovation occurred, the top 10 papers
changed position from (R2) peripheral nodes to (R6)
connector hubs as the domain developed. However, in CN,
where branching innovation occurred, the top 10 papers
moved from (R1) ultra-peripheral nodes to (R5) provincial
hubs, and became provincial hubs. This means that there
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Table 1

Clustering result of GaN at 2000. TC(t) means the number of citations and in year t

Cluster

id

# Paper Average

age

Top 10 tf–idf terms Papers (TC (2000)X150 Year TC

(2000)

G1 2509 4.4 Degree, growth,

substrate, films, ga, gaas,

gan, nh, si, surface

Strife, S., 1992, Journal of Vacuum Science and

Technology B 10, 1237

1992 837

Nakamura, S., 1994, Applied Physics Letters, 64,

1687

1994 659

Amano, H., 1989, Japanese Journal of Applied

Physics Part 2, 28, L2112

1989 519

Amano, H., 1986, Applied Physics Letters, 48, 353 1986 488

Nakamura, S., 1991, Japanese Journal of Applied

Physics Part 2, 30, L1705

1991 395

Akassaki, I., 1989, Journal of Crystal Growth, 98,

209

1989 306

Nakamura, S., 1992, Japanese Journal of Applied

Physics Part 1, 31, 1258

1992 295

Dingle, R., 1971, Physical Review B, 4, 1211 1971 293

Strite, S., 1991, Journal of Vacuum Science and

Technology B, 9, 1924

1991 217

Paisley, M.J., 1989, Journal of Vacuum Science and

Technology A, 7, 701

1989 213

Nakamura, S., 1995, Japanese Journal of Applied

Physics Part 2, 34, L 797

1995 198

Monemar, B., 1974, Physical Review B, 10, 676 1974 197

Powell, R.C., 1993, Journal of Applied Physics, 73,

189

1993 181

LEI T, 1991, Applied Physics Letters, V59, P944 1991 172

Nakamura, S., 1992, Japanese Journal of Applied

Physics Part 2, 31, L 139

1992 163

Davis, R.F., 1991, Proceedings of the IEEE, 79, 702 1991 163

Dingle, R., 1971, Solid State Communications, 9,

175

1971 160

Lei, T., 1992, Journal of Applied Physics, 71, 4933 1992 156

G2 2267 1.8 Degree, contact, gan, al,

ni, ga, ti, au, physics,

american institute

Morkoc, H., 1994, Journal of Applied Physics, 76,

1363

1994 518

Mohammad, S.N., 1995, Proceedings of the IEEE,

83, 1306

1995 206

Neugebauer, J., 1994, Physical Review B, 50, 8067 1994 205

Ogino, T., 1980, Japanese Journal of Applied

Physics, 19, 2395

1980 181

Barker, A.S., 1973, Physical Review B, 7, 743 1973 176

Chichibu, S., 1996, Applied Physics Letters, 69, 4188 1996 172

Bernardini, F., 1997, Physical Review B, 56, 10024 1997 166

G3 1525 1.4 gan, mg, layers, ga,

physics, american

institute, structures,

defects,

photoluminescence, strain

Nakamura, S., 1996, Japanese Journal of Applied

Physics Part 2, 35, L74

1996 500

Lester, S.D., 1995, Applied Physics Letters, 66, 1249 1995 285

Nakamura, S., 1995, Japanese Journal of Applied

Physics Part 2, 34, L1332

1995 236

Nakamura S, 1998, Applied Physics Letters, 72, 211 1998 180

Akasaki, I., 1996, Electronics Letters, 32, 1105 1996 167

Usui, A., 1997, Japanese Journal of Applied Physics

Part 2, 36, L899

1997 160
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was only a narrow bridge among clusters such as the
‘‘Physics’’ cluster and the ‘‘Social’’ cluster. In other words,
they became independent clusters as the research devel-
oped. Furthermore, in CN, existing papers, such as
BERKMAN LF, 1979, and FREEMAN LC, 1979, were
at (R6) connector hubs before C3 appeared as an
independent cluster. This result revealed that although
sociological papers were globally central before physics
papers started to be published, these became not connector
hubs but provincial hubs after the activated center of
research shifted from sociology to physics.
The results also supported the visualization of citation

networks and topic detection by NLP. In order to visualize
citation maps, we used large graph layout (LGL), an
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Fig. 7. Time line visualization of the development of each cluster in (a) GaN and (b) complex networks. The circles are clusters, and the size of each circle

means the relative value of the number of papers in each cluster. The percentages from cluster i in year t to j at t+1 in this figure mean (the number of

papers from cluster i at t to j at (t+1))/(the number of papers in cluster i at t).
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algorithm developed by Adai et al. (2004), which can be
used to dynamically visualize large networks in the order of
hundreds of thousands of nodes and millions of edges, and
applies a force-directed iterative layout guided by a
minimal spanning tree of the network in order to generate
coordinates for the nodes in two or three dimensions. We
visualize the citation network by expressing intercluster
links as the same color. Through this visualization, clusters
are intuitively understood. Characteristic terms for each
cluster extracted by NLP are shown in Table 3, and the
visualization of the clustering result of CN in 2000 is shown
in Fig. 9. Characteristic terms for each cluster were
automatically extracted by NLP from abstracts of papers,
and only the cluster names in Fig. 9 were manually
assigned. For example, in the ‘‘Social, Support or Disease’’
cluster, patients, support, depression, schizophrenia, cli-
ents, mental illness, social support, and so on were
discussed. The average age of papers in the ‘‘Social,
Support or Disease’’ cluster was 8.4-years old. There were
also some other large clusters such as ‘‘Social, Network
Analysis’’ cluster which was 6.5-years old and in which
social structure were discussed, ‘‘Social, Support’’ cluster
which was 4.9-years old and about supports, health,
association, smoking and survival, and ‘‘Social, HIV’’
cluster which was a rather young cluster and about
infections through social networks. Other than that, the
papers in the ‘‘Physics, Small-World ‘‘cluster in 2000,
whose average age was a mere 1.1, apparently had different
research topics from other domains because these papers
were published in physical journals such as Science, Nature,
and Physical Review, whereas papers of other clusters were
mainly published in sociological journals.
Fig. 10 is a time series of a citation network in GaN for

Fig. 10(a) and CN for Fig. 10(b-1) and (b-2) visualized by
LGL. In the visualization, the positions of all the papers
are fixed at the position calculated by using the data from
1970 to 2004 in Fig. 10(a) and Fig. 10(b-1), whereas in
Fig. 10 (b-2) positions are with the data from 1970 to each
year. Each link is shown when each paper including the
link is published. The links with the same color belong to
the same cluster. Looking at Fig. 10(b-1), we can see three
independent clusters; sociological clusters, a ‘‘Physics,
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Table 2

Clustering result of complex networks at 2004

Cluster

id

# Papers Average

age

Top 10 tf–idf terms Papers (TC (2004)X50) Year TC

(2004)

C1 1256 8.3 Support, women,

patients, men, health, age,

social support, friends,

studies, loneliness,

mortality

Berkman, L.F., 1979, American Journal of

Epidemiology, 109, 186

179 252

Tolsdorf, C.C., 1976, Family Process, 15, 407 1976 110

Orthgomer, K., 1987, Journal of Chronic Diseases,

40, 949

1987 55

Mckinlay, J.B., 1973, Social Forces, 51, 275 1973 54

Seeman, T.E., 1998, Social Science and Medicine,

26, 737

1988 51

C2 785 5.7 Model, women, children,

groups, patients, paper,

studies, structure,

families, developments,

article

Freeman, L.C., 1979, Social Networks, 1, 215 1979 162

Klovdahl, A.S., 1985, Social Science and Medicine,

21, 1203

1985 67

C3 1099 1.1 Nodes, scale, graphs,

model, vertices, proteins,

links, distribution,

topologies, degree

distribution, connectivity

Watts, D.J., 1998, Nature, 393, 440 1998 722

Barabasi, A.L., 1999, Science, 286, 509 1999 558

Albert, R., 2002, Review of Modern Physics, 74, 47 2002 499

Strongatz, S.H., 2001, Nature, 410, 268 2001 299

Albert, R., 2000, Nature, 406, 268 2000 248

Jeong, H., 2000, Nature, 407, 651 2000 243

Dorogovtsev, S.N., 2002, Advanced Physics, 51,

1079

2002 210

Barabasi, A.L., 1999, Physica A, 272, 173 1999 148

Newman, M.E.J., 2003, SIAM Review, 45, 167 2003 133

Cohen, R., 2000, Physics Review Letters, 85V, 4626 2000 119

Newman, M.E.J., 1999, Physics Review E, 60, 7332 1999 112

Barrat, A., 2000, European Physics Journal B, 13,

547

2000 106

Krapivsky, P.L., 2000, Physics Review Letters, 85,

4629

2000 104

Liljeros, F., 2001, Nature, 411, 907 2001 103

Callaway, D.S., 2000, Physics Review Letters, 85,

5468

2000 99

Barthelemy, M., 1999, Physics Review Letters, 82,

3180

1999 90

Newman, M.E.J., 2002, Physics Review Letters, 89 2002 84

Moore, C., 2000, Physics Review E, 61, 5678 2000 83

Ravasz, E., Science, 297, 1551 2002 78

Cohen, R., 2001, Physics Review Letters, 86, 3682 2001 71

Kuperman, M., 2001, Physics Review Letters, 86,

2909

2001 62

Newman, M.E.J., 1999, Physics Letters A, 263, 341 1999 61

Milo, R., 2002, Science, 298, 824 2002 60

Newman, M.E.J., 2000, Physics Review Letters, 84,

3201

2000 59

Kleinberg, J.M., 2000, Nature, 406, 845 2000 51

Barabasi, A.L., 2000, Physica A, 281, 69 2000 51

Monasson, R., 1999, European Physics Journal B,

12, 555

1999 50
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Water’’ cluster, and a ‘‘Physics, Small-World’’ cluster.
Comparing 1998 with 2004, we can see that in 1998, only
the sociological cluster was visible on the upper left;
however, in 2004, papers by physicists appeared on the
lower right, while sociological papers were continuously
published. In fact, after about 2001, papers by physicists
became detectable in Fig. 10(b-1). Fig. 9 is an enlargement
of a visualized citation map in 2000 in Fig. 10(b-2). We can
also detect a rather small cluster as a branch of ‘‘Social,
Network Analysis’’ cluster. The interdependence of these
clusters is clearly seen in Fig. 10(b-2) where we use the
citation data at each year and successively visualize these
data. When we visualize citation network at each year, we
can see that ‘‘Physics, Small-World’’ cluster was born as a
branch of a traditional cluster and then gradually became
an independent cluster. Therefore, we can interpret and
conclude it as physical clusters emerge from traditional
sociological research domains but not in those domains
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Fig. 8. Changes in the roles of top 10 papers of times cited in (a) GaN and (b) complex networks.
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and form a new research domain. These visualizations
enable us to understand when these clusters emerged
visibly. Fig. 10(a) is a time series of a citation network
in GaN. In contrast to CN, in GaN, each cluster is difficult
to distinguish, and the entire papers incrementally in-
creased as one strongly connected body. As we showed
by topological measures, differences between incre-
mental and branching innovations are also visible with
visualizations.

5. Discussions

As described above, we performed a comparative study
in two research domains to develop a method of detecting
emerging research domains. We performed citation net-
work analysis on GaN and CN research. Papers dealing
with a similar topic cite each other and are strongly
connected, and papers dealing with different topics are
weakly connected. Therefore, the division of a knowledge
domain into strongly connected clusters is necessary in
order to detect emergence. We performed topological
clustering method to detect such emerging research
clusters, and then track the topological positions of each
paper by z and P.
By performing a comparative study, we found that two

types of innovation, incremental innovation and branching
innovation, can be distinguished by our method. In
incremental innovation, breakthrough occurs and develops
within traditional research clusters, and reflecting it hub
papers are connector hubs with large z and large P. On the
other hand, in branching innovation, breakthrough occurs
from traditional research clusters but develops as an
independent cluster. In this case, active research centers
shift rapidly, and hub papers become provincial hubs with
large z and small P. Two types of innovation can be
distinguished by using topological measures, i.e., z and P.
Therefore, monitoring z and P enable us to judge how each
domain developed.
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Table 3

Clustering and NLP result of complex networks in 2000

Cluster

id

# Papers Average

age

Top 10 tf–idf terms Papers (TC (2000)X30) Year TC

(2000)

C01 331 8.4 Patients, supports,

depression,

schizophrenia, clients,

mental illness, social

support, women, child,

families, treatment

Tolsdorf, C.C., 1976, Family Process, 15, 407 1976 102

Mckinlay, J.B., 1973, Social Forces, 51, 275 1973 47

Hirsch, B.J., 1979, American Journal of Community

Psychology, 7, 263

1979 39

C02 322 6.5 Model, scale, child,

patients, women,

structure, families, paper,

group, development,

relationship

Freeman, L.C., 1979, Social Networks, 1, 215 1979 95

Breiger, R.L., 1975, Journal of Mathematical

Psychology, 12, 328

1975 39

C03 281 4.9 Women, men, mortality,

ci, supports, health,

association, age, smoking,

year survival

Berkman, L.F., 1979, American Journal of

Epidemiology, 109, 186

1979 189

Orthgomer, K., 1987, Journal of Chronic Diseases,

40, 949

1987 43

Seeman, T.E., 1987, American Journal of

Epidemiology, 126, 714

1987 36

Hanson, B.S., 1989, American Journal of

Epidemiology, 130, 100

1989 30

Seeman, T.E., 1988, Social Science and Medicine,

26, 737

1988 30

C04 71 1.1 World, dynamics, site,

connectivity, model,

graphs, transition,

phenomena, vertices,

probability, games

Watts, D.J., 1998, Nature, 393, 440 1998 46

C05 71 2.9 HIV, infection, syphilis,

risk, HIV infection, drug

injectors, transmission,

persons, epidemic, HIV

transmission, AIDS

Klovdahl, A.S., 1985, Social Science and Medicine,

21, 1203

1985 43

Klovdahl, A.S., 1994, Social Science and Medicine,

38, 79

1994 32

Fig. 9. Citation networks with characteristic terms of complex networks at 2000. The same visualizations are drawn in parts (a) and (b). The position of

each citation is calculated by LGL algorithm using the citation data from 1970 to 2000. The same edge colors means the same cluster that was calculated

by Newman’s modularity Q. The thick yellow line in part (b) is a guide for the eye. In part (b), cluster names and characteristic terms were also shown.
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Currently, the management of R&D activity faces
increasing difficulty in overviewing diverse research do-
mains and detecting emerging research fronts due to the
specialization and segmentation of research domain as
well as the flood of information. However, there is still a
lack of researchers, R&D managers, and policy makers
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Fig. 10. Visualization of the evolution of citation network in (a) GaN and (b-1, b-2) complex networks. In Fig. 9(a) and (b-1), the position of each citation

is calculated by using the citation data from 1970 to 2004 and then fixed in other figures, whereas in Fig. 9 (b-2) the position us calculated by using citation

data from 1970 to each year.
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overviewing scientific activities and detecting emerging
research domains. Our topological approach can become a
tool to assist them to detect emerging research domains
among a pile of publication in a manner that meet a
commensurate increasing need as scientific and technical
intelligence to discover emerging research domains in an
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era of information flooding. Our approach can also be
utilized to describe how innovation occurs in traditional
discipline, coevolves within it, and/or become an indepen-
dent discipline.

Then, let us discuss the limitation of our research
concerning with the broadness of our queries we used
and their influences. Our intention to use such many terms
for CN is to retain wide coverage of citation data in order
to avoid the omission of significant papers. These opera-
tions did not distort our conclusion. Suppose that we have
citation data of all papers. In that case, if we could detect
emerging knowledge domains with our method, there is no
doubt that ‘‘physics cluster’’ we detected is a newly
emerging one. Because collecting all papers in the world
is a hard task and not a practical solution, we used broad
queries to make the similar corpus to that of whole papers.
But then, it is legitimate to have doubts about the
influences of query selection on the results. In order to
evaluate the influences of query selection, we examined
additional calculation using the data collected only by the
query ‘‘social network*’’. The results were so similar to our
original one that our method could detect the physics
papers as a new emerging cluster, independent of broad-
ness of queries. But the year when we can detect a ‘‘Physics,
Small-World’’ cluster was 2001, which was 1 year later
compared to our original result with the broader queries. It
means that we should comprehend a research domain with
broader characteristic terms if we want to notice the
emerging domain as early as possible.

Finally, let us discuss the significance of our computer-
based method, in the viewpoint of contribution to policy
making. For both R&D managers in companies or
research institutions and policy makers, there are two
types of approaches, i.e., expert-based and computer-based
approach to notice emerging research domains among
numerous academic papers. However, the former approach
becomes a highly laborious and difficult task as each
research domain becomes specialized and segmented. Our
computer-based method, at least, complements this expert-
based approach for the following three reasons. First of all,
experts’ judgment is not always right, especially in the
current information-flood era. Sometimes, once-humble
researchers accomplish great scientific achievements. Ex-
perts may fail to give credit to emerging trends. Second,
gathering experts is expensive. Identifying the quality of
these papers before they become a new emerging cluster
requires numerous experts. Finally, our method is scalable.
Even if the publication cycle becomes shorter and the
number of publications grows, the computer-based ap-
proach could be effective. Moreover, although the previous
researches in knowledge mapping emphasized on the
method of visualization in order to detect emergence,
our method enables us to detect by monitoring variables,
such as z and P. When we use visualization, we must
judge the emergence of research cluster by the visualized
map itself. Utilization of quantitative variables such as z

and P open a way to detect it by machine-friendly manner.
By tracking the evolution of these variables, we can
distinguish the different patterns of innovation as described
above.
In this paper, we focused on academic publications and

showed that our analyzing schema can be utilized to track
the evolution of scientific research, to detect the emerging
research domain, and to illustrate the innovation process
such as incremental and branching innovation. One
direction of future research is to apply it to patent system.
The intellectual property rights are becoming significant for
the management of firms (Hanel, 2006; Storto, 2006;
Bader, 2008). Frietsch and Grupp (2006) illustrated the
paradigm shift from bulbs to opto-electronics and photo-
nics by using rather simple science and technology
indicators such as the number of publications and patents.
By analyzing citation network of academic publications
and patents simultaneously, we can more fully understand
the process of technical progress.

6. Conclusion

In summary, we performed a comparative study in two
research domains to develop a method of detecting
emerging research domains. One is a study on GaN, which
is widely recognized as a recent prominent innovation in
the fields of applied physics and material science. Another
is CN analysis, which is also recognized as pioneering a
new research field. We divided the papers in each research
domain into clusters using the topological clustering
method, tracked the evolution of the clusters and the
positions of the papers in each cluster, and visualized
citation networks with characteristic terms for each cluster.
Papers dealing with a similar topic cite each other and

are strongly connected, and papers dealing with different
topics are weakly connected. Therefore, the division of a
knowledge domain into strongly connected clusters is
necessary in order to detect emergence. The method we
applied here aims to retain dense connections and remove
sparser ones. We analyzed the clustering results using the
average age and the historical relation of each cluster.
In the case of GaN, the age of the cluster whose research

topic is new process development abruptly decreases up to
1999, which suggests the existence of breakthrough in this
cluster. In the case of CN, new cluster by physicists appears
from sociological clusters and can be detected in 2000 as a
new emerging research front. There are two types of
innovation: incremental innovation and branching innova-
tion. In incremental innovation, breakthrough occurs and
develops within traditional research clusters. On the other
hand, in branching innovation, breakthrough occurs from
traditional research clusters but develops as an independent
cluster. These two types of innovations can be distin-
guished by using topological measures, i.e., the within-
cluster degree and the participation coefficient. In domains
where incremental innovation occurs, hub papers are
connector hubs with large z and large P. On the other
hand, in the case of branching innovation, there is a new
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emerging cluster and active research centers shift rapidly
and hub papers become provincial hubs with large z and
small P. This means that in the case of GaN, hub papers
have intercluster edges, which connect some clusters;
however, in the case of CN, hubs connect mainly in their
own clusters and have few intercluster edges.

Therefore, monitoring z and P enable us to judge how
each domain developed. We also describe the development
of each research domain by the visualization of citation
networks and topic detection by Natural Language
Processing. Our approach, detecting emergence by topolo-
gical measures, succeeds in distinguishing the type of
innovation and noting whether there is an emerging
knowledge cluster. Some may complain that monitoring
increases in the number of papers in each cluster, without z

and P monitoring, is sufficient to detect emergence.
However, clustering results change year by year because
topology changes, and clusters to which a certain paper
belongs differ as time goes by due to the autopoietic nature
of citation networks. Autopoietic system is self-creating
from their internal interactions, self-organizing, and self-
defining of their own boundaries. When we regard
academic publications as a system, we can also regard it
as an autopoietic one, because it includes internal interac-
tions via mutual citations among papers, and it is self-
organizing (past paper determines the future direction of
research), and self-defining (scientific domain is determined
as it evolves as the publications itself not beforehand).
Therefore, monitoring z and P is more beneficial in
detecting the emergence than monitoring increases of the
number of papers in each cluster, in order to track the
development of research domains.

In this paper, we showed that our analyzing schema can
be utilized to track the evolution of scientific research, to
detect the emerging research domain, and to illustrate the
innovation process such as incremental and branching
innovation. As shown above, the results supported that the
method proposed in this paper could be a computational
tool to detect research fronts by using the topological
measures of citation networks in addition to visualization.
With this method, we could monitor the research fronts
and detect the emerging research just by computational
calculation. Currently, the management of R&D activity
faces increasing difficulty in overviewing diverse research
domains and detecting emerging research fronts due to the
specialization and segmentation of research domain as well
as the flood of information. However, there is still a lack of
researchers, R&D managers, and policy makers over-
viewing scientific activities and detecting emerging research
domains. Our topological approach can become a tool for
future ‘‘Research on Research’’ (R on R) and can meet a
commensurate increasing need as scientific and technical
intelligence to discover emerging research domains in an
era of information flooding. Our research could promote
quantitative method in R on R and technology and
innovation management (TIM), and therefore contribute
these research domains.
But we must remind the limitation of our approach. In
the detection of emerging research domains, the short-
coming of this approach is the existence of time lag. It takes
1 or 2 years until a paper receives citations from other
papers. It also takes 1 or 2 years from the completion of
research to the publication of the research. Therefore, in
the context of TIM and research policy, policy makers
should complement this approach with not-published
information such as academic conference and expert
opinion. We must also notice that we focused only on
academic publications in this paper. But it is not sufficient
to focus on them when we study innovation. One of the
future research directions is to apply our approach to
patent system coupled with academic publications. Such an
approach will quantitatively describe whether the focal
innovation is strongly coupled with traditional research
domain or form a new independent one, and how it has
been across the academia–industry relations.
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