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Abstract

The econometrics of inequality measurement is adapted in order to investigate the publishing
habits of the economists of seven European countries: Belgium, France, Germany, Italy, Nether-
lands, Spain and UK. California is added for comparison. Data come from the CD-ROM of the
Journal of Economic Literature. A Bayesian model selection procedure helps to select a Weibull
distribution as an admissible reduction of the generalised Beta-II. Analytical upper partial mo-
ment curves and modi&ed generalised Lorenz curves are derived for the Weibull model and serve
to detect a group of three dominant european countries: The Netherlands, the UK and Belgium.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There is a vast literature on how to rank the research output of economic depart-
ments, see e.g. Dusansky and Vernon (1998) for the USA and the recent paper of
Kalaitzidakis et al. (1999) for Europe. Some authors have focused on individual Euro-
pean countries: Combes and Linnemer (2001) on France, Bauwens (1999) on Belgium,
van Damme (1996) on the Netherlands. CoupBe (2000) was one of the &rst to face the
challenge of obtaining a world ranking. Other authors have focussed on particular do-
mains such as econometrics as did Cribari-Neto et al. (1999). But none of these authors
explicitly acknowledged the fact that scienti&c production is a random variable and that
consequently uncertainty has to be taken into account when producing a ranking.
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Another branch of the literature investigates “patterns of research output and author
concentration” (Cox and Chung, 1991). It started with the historical work of Lotka
(1926) who plotted on logarithmic paper the number of authors against the number of
their respective contributions in the &eld of chemistry and physics. He found a straight
line with a negative slope of 2. This corresponds to the logarithmic regression

log an = log a1 − � log n; (1)

where an is the number of authors having made n contributions and a1 the number
of authors having made one contribution. When �= 2, this empirical law implies that
approximately 60% of the authors have made only one contribution. Several theoretical
justi&cations have been given for Lotka’s law, (see the references given in Cox and
Chung, 1991), but to our knowledge, it was never noticed that this is clearly connected
to the Pareto distribution. Modern bibliometric research no longer proceeds by simply
counting the number of publications of an author, but tries to measure his performance
by taking into account the quality of the journal in which his paper is published
and the number of co-authors involved. An index is thus constructed which can be
considered as a proxy for an underlying continuous random variable. Thus, the change
from n (a discrete variable) to y (a continuous variable) means that Lotka’s law implies
f(y) = f(1)y−�. Imposing the constraint that f(y) integrates to unity yields that:

f(1)
∫ ∞

1
y−�dy = 1 ⇒ f(1)

y−�+1

1− �

∣∣∣∣
∞

1
= 1 ⇒ f(1) = �− 1: (2)

In the general case, observations do not start from 1 but from y0 so that the expres-
sion of the density is f(y) = (� − 1)y�−10 y−� with y¿y0 and �¿ 1. This is the
Pareto density of the &rst kind. 1 The aim of this paper is to analyse the empirical
distribution of individual scores observed on a country basis and to propose statistical
tools for comparing countries. The approach taken here can be motivated by consid-
ering the paradigm of a PhD student applying for a grant under a bilateral exchange
program and having to decide in which country he should write his PhD dissertation.
Each country will have a distribution of research output and the student has to order
these distributions. This is a decision problem under uncertainty which can be solved
by ranking distributions using the tool of stochastic dominance. We have chosen in
this paper to estimate parametric distributions. The Pareto distribution has some very
restrictive features as will be underlined in what follows. So a more general distribu-
tion is needed and the generalised Beta-II which is often used to model the income
distribution is a good starting point. Adopting a parametric approach opens the way to
Bayesian inference. Bayesian inference allows us to take into account in a simple way
the uncertainty which is attached to the parameters of the distributions. We can then
compute posterior probabilities of stochastic dominance as simple functions of these
parameters.
The paper is organised as follows. In section two, we describe the data and their char-

acteristics. In section three, we introduce the notion of stochastic dominance and its use

1 Johnson et al. (1994) note the Pareto density as akay−(a+1) so that a+1=�. If y is a discrete variable,
the corresponding distribution is the Zypf distribution, often used to model the occurrence of words in a
text.
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in a decision problem. We propose a new way of implementing it which is speci&c
to our particular problem. We emphasize the connection between ranking academic
institutions and income inequality analysis. In section four, we specify some useful
parametric distributions related to the generalised Beta-II and indicate a Bayesian pro-
cedure for model selection. In section &ve, we derive upper partial moment functions
and the Lorenz curve for the Weibull model and use these to rank countries. Section
six concludes.

2. The data and their characteristics

This section is devoted to the construction of the index characterising the scienti&c
production of an author for a given period.

2.1. Sources of information

The data can be viewed as transformations of a counting process where the objects
counted are papers published over a given period of observation. They are extracted
from the JEL CD-ROM over a period of 10 years (1991–2000) for seven european
countries (Belgium, France, Germany, Italy, Netherlands, Spain, UK) plus California
to have a US point of comparison. We obtained a total of 41 570 articles written by
21 326 diOerent authors. These data are part of a wider project initiated by the European
Economic Association. Lubrano et al. (2004) contains the full details.
The second step involves ranking the journals in which these articles have been

published. The JEL contains 681 journals. European countries have used essentially
506 journals. We ranked these journals on a scale between 1 for low quality to 10
for top quality. This ranking is obtained from expert opinions. We used the opinions
of the panel of experts reported in Combes and Linnemer (2001) and completed it
by opinions expressed by Alan Kirman. The obtained ranking was confronted with
citation data available from the Journal Citation Reports for 167 journals. There were
discrepancies for only 20 journals which were either professional journals at the border
of the &eld or small academic journals. We give the top 68 journals in the appendix.
In the &eld of econometrics, Econometrica scores 10, the Journal of Econometrics
8, Econometric Theory 6, the Journal of Applied Econometrics 6 and Econometric
Reviews 4.
The third step aggregates this information for every author. An article i is credited

to an author according to the formula

pi = vi=
√
ni; (3)

where ni is the number of coauthors involved and vi the quality index of the journal
where paper i is published. The total score of an author is obtained by summing all
his pi over the period of observation. This formula deserves two comments. First, it
does not take into account the number of pages. As reported in Cribari-Neto et al.
(1999), the main journals used by econometricians have average page numbers which
varies between 10 and 23. If we introduce the number of pages in (3), we would
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Table 1
Descriptive statistics for authors scores

Country Authors Aut./Pop. Mean Median Max 1− F(10)

Belgium 806 80.60 6.56 2.31 146 0.15
France 2699 45.76 5.50 2.00 216 0.11
Germany 2506 30.26 4.40 2.00 98 0.10
Italy 1921 32.87 4.19 1.71 102 0.09
Netherlands 1793 111.94 7.35 2.83 187 0.18
Spain 1527 39.15 4.64 1.42 90 0.12
UK 6656 117.55 6.78 2.83 159 0.17
Total 17908 55.05 5.84 2.31 216 0.14
California 3419 100.86 9.58 4.00 190 0.22

dramatically alter the implicit journal ranking. Second, this formula is super-additive
as it gives each coauthor more than an equal share of credit for an article. Using

√
ni

instead of ni favours co-authorship. 2

2.2. Some descriptive statistics

Table 1 summarizes the main characteristics of the data set. The second column
gives the total number of authors having published at least one article over the ten
year period (this is the size of the sample for each country).
This number divided by the total population in million gives in the third column

the proportion of active authors in the population. There is a large variation in this
proportion, with three outstanding top countries: UK, Netherlands and California. The
other columns show other statistical characteristics of the authors by country. Compared
to the maximum, the average score is very low and the median even lower. The median
score is roughly equivalent to 2 papers published in low ranked journals in ten years
for Europe, but twice that number for California. The last column give the proportion
of authors having a publishing score greater than 10.

2.3. Non-parametric density inference

Our aim is to &t a parametric density to the data. We &rst use a non-parametric kernel
smoother 3 to get an idea about the shape of the empirical distributions. Because all
the weight of the distribution is located for low values of y whereas the maximum of
y can be very large, we have split Fig. 1 into two panels to present independently the

2 Simple aggregation would use ni instead of
√
ni . But the diOerent calculations we made for this case

and that are not reported in the paper show that this option does not signi&cantly change the results.
3 A density kernel smoother means f̂(y) = 1=(nh)

∑
K((yi − y)=h), where K is a normal kernel (among

many other possibilities), h is the window size determined by h=c× �̂y=n1=5 and c is a parameter monitoring
the degree of smoothing. For instance, with Silverman’s rule, c = 1:06.
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Fig. 1. Density estimates of authors’ scores.

left tails and the major part of the right tails of the country densities. The smoothing
parameter c is equal to 1.06 in the left panel and to 5 in the right panel. 4

3. Stochastic dominance and academic ranking

The empirical investigation described above does not give much of a guess as to how
to choose a single measure for ranking academic systems (understood as a collection
of authors located in a particular country). A look at the stochastic dominance and
the expected utility literature is useful in this connection. The notion of stochastic
dominance is quite old as it can be traced back to e.g. Blackwell (1953) or Lehmann
(1955). However there have been many recent developments.

3.1. Maximising expected utility

Let us return to the case of a PhD student and suppose that he is applying for
a bilateral exchange program and has to decide in which country he should write
his PhD dissertation. He is looking for two things: a PhD supervisor and a scienti&c
environment (externalities). These two aspects are captured by the random variable
Y which measures the performance of academics (their publishing score) in a given
country. He is faced with a decision problem under uncertainty. Let us suppose that
he has a Von-Neuman-Morgenstern utility function u(y) and that he maximises his
expected utility. He has to choose among diOerent distributions Fi(:) of Y and will

4 The smoothing parameter is greater for the right panel because it concerns fewer observations. In this
right panel the maximum value of y is equal to the minimum of all the diOerent sample maxima.
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choose the country i which maximises his expected utility

max
i

∫ ∞

0
u(y) dFi(y) (4)

as the support of Y is [0;+∞[. This class of decision problem under uncertainty was
investigated in a series of papers by Quirk and Saposnik (1962), Hadar and Russell
(1969), Hanoch and Levy (1969). The main result we can infer from these papers is
that if the student’s utility function is increasing, he will prefer country i to country j
if and only if Fi stochastically dominates Fj at the &rst order. If the student’s utility
function is increasing and concave (risk aversion), he will prefer country i to country
j whenever Fi stochastically dominates Fj at the second order. A side result of this
literature is that the traditional Markowitz (1952) mean and variance criterion is not
valid except if the utility function is quadratic or if the distribution functions are normal.
The usual de&nition of stochastic dominance at the order one (or &rst degree stochas-

tic dominance) is (see e.g. Hadar and Russell, 1969):

De�nition 1. The probability distribution F stochastically dominates the probability
distribution G at the order one if and only if

F(x)6G(x) ∀x∈ [0;+∞[: (5)

This de&nition means that the probability of getting x or less is not larger with F than
it is with G, whatever the value of x. Of course, when the two cumulative distribution
functions intersect, this de&nition cannot be applied. Second order (or second degree)
stochastic dominance is based on the comparison of the surface under the cumulative
distribution functions and may remove this indeterminacy. We have:

De�nition 2. The probability distribution F stochastically dominates the probability
distribution G at the order two if and only if∫ x

0
[F(t)− G(t)] dt6 0 ∀x∈ [0;+∞[: (6)

To understand what is involved mathematically, it is useful to consider the sequence
of integrals for the density f

F0(x) = f(x); F1(x) =
∫ x

0
F0(t) dt; F2(x) =

∫ x

0
F1(t) dt; : : : (7)

and the same sequence for the density g. Because cumulative distribution functions are
positive and increasing in x, stochastic dominance at the order s, which means

Fs(x)6Gs(x) ∀x∈ [0;+∞[ (8)

implies stochastic dominance at all higher orders. In particular, stochastic dominance
at the order two means the ordering F2(x)6G2(x), ∀x and implies the ordering
F2+j(x)6G2+j(x), ∀j¿ 1, but does not require the ordering F1(x)6G1(x), ∀x.
Because it may be time consuming to check for stochastic dominance when selecting

among a large set of distributions as in portfolio selection, a branch of the literature
has devoted eOorts to &nding necessary (but not suTcient) conditions which enable
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one to eliminate irrelevant alternatives. In that spirit, Bawa (1975), Fishburn (1977)
and Jean (1984) introduced lower partial moments (LPM) of order s (s¿ 0) for a
distribution F with reference value z

LPMs
F(z) =

∫ z

0
(z − t)s dF(t): (9)

The semi-variance corresponds to s= 2. Fishburn (1977) uses it as a measure of risk
in portfolio selection. For a given z, this measure is asymmetric because it does not
treat upper and lower deviations from the mean or from the target symmetrically as
the variance does. It concentrates on the left tail of the distribution.
Using integration by parts, it is easy to show by recurrence, the link between the

sequence of integrals (7) and the LPM de&nition (9):

Fs(z) =
1

(s− 1)!
LPMs−1

F (z) s¿ 1: (10)

Stochastic dominance at the order s implies the ordering of partial moments starting
from order s − 1. For instance, stochastic dominance at the order two implies the
ordering of all partial moments; but the ordering of semi-variances is not a necessary
condition for stochastic dominance at the order four. See Jean (1984) for more results
on partial moments.
LPM can be transformed into a function of x∈ [0;+∞[ as follows:

LPMs
F(x) =

∫ x

0
(x − t)s dF(t) (11)

and because we have now

Fs(x) =
1

(s− 1)!
LPMs−1

F (x) (12)

the ordering of LPM functions of order s− 1 for distributions F and G corresponding
to

LPMs−1
F (x)6LPMs−1

G (x) ∀x∈ [0;+∞[ (13)

is strictly equivalent to the condition for stochastic dominance of F over G at the
order s.

3.2. Upper partial moment functions

Many of the authors appearing in the JEL CD-ROM are occasional writers. They
have either left the academic system or are involved in administrative tasks. These per-
sons should not be taken into account when comparing countries. This means that our
student’s utility function u(x) has a lower bounded support, [z;∞]. To avoid counting
such individuals, we need to introduce z which represents a minimal level of activity
which allows us to diOerentiate an occasional writer and someone who is suTciently
active to qualify as a PhD superviser. A bounded support for the utility function means
that the condition for stochastic dominance has to be veri&ed only for x belonging to
that bounded support. This is the concept of restricted stochastic dominance as intro-
duced by Atkinson (1987). This notion (under a diOerent name) is already present in
Hanoch and Levy (1969).
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The particular shape of the lower bounded interval [z;∞[ suggests that we could
concentrate our interest on the right tail of the distribution and no longer on the
truncated left tail. To illustrate this idea, we introduce the concept of the upper partial
moment (UPM) function of a distribution which is the symmetric counterpart of the
LPM function (13):

UPMs
F(x) =

∫ ∞

x
(t − x)s dF(t) x∈ [0;+∞[: (14)

For x = z and s = 1, UPM 1
F(z) measures the mean publication gap over the reference

level z. Intuitively, it makes more sense to try to rank countries using UPM func-
tions which are increasing in x than using LPM functions which are decreasing in x.
Roughly speaking, a ranking using UPM functions compares the number of productive
academics, while a ranking using LPM functions compares the number of unproductive
academics.
We have now to see whether UPM is a meaningful notion and what is its relation

to stochastic dominance. Let us de&ne F̃s(x) as

F̃s(x) =
1

(s− 1)!
UPMs−1

F (x) =
1

(s− 1)!

∫ ∞

x
(t − x)s−1 dF(t): (15)

Theorem 1. A UPM function at the order s for a distribution function F is well
de"ned (convergence of the integral) provided there exist a j¿ s− 1 so that

lim
t→∞ (t − x)j[1− F(t)] = 0: (16)

The proof of this and of the subsequent theorems are given in the appendix. Let us
now investigate the relation existing between ordering UPM functions and stochastic
dominance.

Theorem 2. Let us suppose that the condition stated in Theorem 1 is satis"ed.
Stochastic dominance at the order one and at the order two are strictly equiva-
lent to the ordering of the upper partial moments functions of order zero and one
∀x∈ [0;∞[.

Remarks.

• Hanoch and Levy (1969) already noted that it was equivalent to consider the ordering
F(x)6G(x) or the ordering 1−F(x)¿ 1−G(x). A similar property was, however,
not noted for second order stochastic dominance.

• When we are interested in restricted stochastic dominance, curves may intersect
outside the domain of interest and in this case considering the lower partial moment
or the upper partial moment functions, may not give the same ordering. This is what
we were looking for.
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3.3. Connection with income inequality measurement

Ordering the distributions of authors’ scores is closely related to the literature of
income inequality measurement. In his pioneering article Atkinson (1970) drew ex-
tensively on the same literature on decision making under uncertainty, replacing the
individual utility function by a social welfare function.
This parallel has been made and can be justi&ed by the common ground (the expected

utility literature). We can therefore borrow some of the concepts developed in the
&eld of income inequality measurement. Typically, z is a poverty level for income
measurement (i.e. some minimum subsistance level) while here represents a minimum
level of academic activity. Thus z − x is a poverty gap for x¡ z whilst x − z is an
activity gap or production gap for x¿ z.
A large class of inequality indices (those proposed by Foster et al., 1984) are

mere transformations of LPM. They can thus immediately be translated into indexes
expressed as functions of UPM. It can be easily shown that Kakwani (1993) in-
ferential results on inequality indices are directly transposable to the present situa-
tion. If we now turn to partial moment functions, empirical estimates of LPM and
UPM functions have essentially the same statistical properties and thus the distribu-
tional results derived, for instance by Davidson and Duclos (2000) for dominance
apply.
Finally we might also borrow from the literature on income inequality measurement

another concept, the generalised Lorenz curve. This is de&ned as the graph of the
proportion of individuals (horizontal axis) having at least a given level z of income.
De&ning p the proportion of the population below z as p=F(z), the generalised Lorenz
curve is

GL(F(z)) =
∫ z

0
y dF(y): (17)

Using the change of variable t=F(y), we get the alternative form of the Lorenz curve
popularized by Gastwirth (1971)

GL(p) =
∫ p

0
F−1(t) dt: (18)

As shown in the literature (see e.g. Foster and Shorrocks, 1988), generalised Lorenz
ordering is equivalent to second order stochastic ordering.
Let us now de&ne p as the proportion of the population above a given level z,

implying p=1−F(z). We arrive at the following expression for a modi&ed generalised
Lorenz curve:

MGL(1− F(z)) =
∫ ∞

z
y dF(y)

MGL(p) =
∫ 1

1−p
F−1(t) dt: (19)

and to the following de&nition:
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De�nition 3. Country i Lorenz dominates country j in the modi&ed Lorenz sense if
MGLi(p)¿MGLj(p) for all p∈ [0; 1].

One can prove that generalised Lorenz dominance is equivalent to the second order
stochastic dominance. Furthermore, we can prove the same type of equivalence between
the modi&ed generalised Lorenz ordering and second order stochastic dominance. 5

3.4. Comparing countries

Let us now specify a minimum admissible level of activity z. We can de&ne this in
absolute terms, by choosing a minimum number of published papers of a given quality
over the 10 years of the sample. For instance, one might require one paper in a top
ranked journal with a single author. This score can also be obtained with two papers
published in a medium range journal, or 10 papers in low range journals. This would
mean accepting z=10 as our academic minimum level of activity. This level may seem
very conservative by accepted academic standards, but column 7 of Table 1 shows that
it is reached on average by only 14% of the authors in the seven European countries
considered!
First order stochastic dominance of Fi over Fj means that the proportion of academics

with an output above z is greater in country i than it is in country j, whatever the
value of z. This measure counts the proportion of authors above the minimum level,
but does not take into account their distribution. It does not change if an author above
the minimum increases his production.
Second order stochastic dominance corrects for this since it involves the mean ac-

tivity gap. The activity gap Max(y − x; 0) measures the distance between the score
y of a given author and the reference level x¿ z, provided that this author is above
the minimum level of activity. Contrary to the above head count measure, it changes
if an author above the minimum level increases his production. In this context, the
dominance of country i over country j means that the average activity gap is greater
in i than in j, and that this is true for every value of x above z.

4. The choice of a parametric distribution

In many papers (see the references given in Davidson and Duclos, 2000) dominance
curves (or lower partial moment functions) are estimated from discrete data without
making any assumption as to considering the distribution of the sample. These esti-
mators are obtained by replacing the theoretical cumulative distribution function by its
natural estimator, F̂(x)=

∑
5(yi ¡x)=N and integrals by discrete sums. For LPM and

5 A formal proof can be obtained by using a result adapted from Foster and Shorrocks (1988):
∫ ∞
x (F(t)−

G(t)) dt¿ 0 for all x if and only if
∫ 1
1−p(G

−1(t)− F−1(t)) dt¿ 0 for all p∈ [0; 1]. This result itself can
be proved using integration by parts.
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UPM, we have:

[LPMs
F(x) =

1
N

N∑
i=1

(x − yi)s5(yi6 x);

[UPMs
F(x) =

1
N

N∑
i=1

(yi − x)s5(yi¿ x): (20)

where 5 is the indicator function. Statistical properties of these types of estimators and
related tests for stochastic dominance can be found in Kakwani (1993), Kaur et al.
(1994) or Davidson and Duclos (2000).
There are however many good reasons choosing a parametric formulation for the

distribution of y. The direct estimate of the curve LPMs
F(x) is sensitive to sampling

errors and to observations in the extreme tails of the distribution. For instance testing
for stochastic dominance requires one to de&ne a grid over x where partial moment
functions are compared. The grid chosen may lead to “the veto of the extremes” so that
distributions are eOectively ordered according to the observed maximum of the sample.
To avoid this problem, some authors recommend doing some trimming of the data (see
for instance Cowell and Victoria-Feser (2001) and the references cited therein). But
this practice can be justi&ed only when the ranges of the samples to be compared
are fairly similar. Our samples have a common minimum, but their maxima vary
considerably (from 90 to 216). As noted and advocated by Cowell and Victoria-Feser
(1996), a parametric formulation of the distribution has several advantages. First it
opens the way to classes of estimators with well de&ned sampling properties. Second, it
allows one to detect outliers resulting from coding errors. Finally, we would add that it
operates some kind of smoothing for the estimated distribution (see the non-parametric
estimates reported in Fig. 1 as a point of comparison). For the case considered here,
the &rst argument is particularly important because a parametric formulation for the
distribution of the data leads naturally to Bayesian inference. On top of these traditional
justi&cations for using a parametric distribution, there is the problem of the low number
of observations which is speci&c to our case. The population of academic authors is
very small compared to the total population. Moreover, we are mainly interested in the
right tail of the distribution. Thus it is useful to impose some structure by means of a
parametric distribution in order to be able to extract more information from the data.
The problem is of course that of choosing an adequate parametric distribution which
does justice to the information contained in the data.

4.1. The family of the generalised Beta-II

In the &eld of income inequality measurement, the generalised Beta-II (GB2) intro-
duced in McDonald (1984) is one of the most general distributions which have been
proposed in the literature for &tting income data. The density of this four parameter
distribution is given by

fGB2(y|a; b; p; q) = ayap−1

bapB(p; q)[1 + (y=b)a]p+q
(21)
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with y¿ 0 and where B(p; q) is the Beta function. The parameters a, b, p and q have
to be positive. 6 The analytical expression of its un-centred moments 7 is

E(Y h) = &′
h = b

h B(p+ h=a; q− h=a)
B(p; q)

= bh
'(p+ h=a)'(q− h=a)

'(p)'(q)
; (22)

where '(p) is the Gamma function. The hth moment exists provided aq¿h. Note that
b is a scale parameter which does not inWuence the moment ratios. The incomplete hth
moments and the cumulative distribution involve conWuent hypergeometric functions.
McDonald (1984) presents in a graph all the possible reductions of this family of
densities. Three densities will be useful for us: the generalised gamma (GG), the
Weibull and marginally the Pareto density.

4.2. Related distributions

The generalised gamma density is obtained as a limit of the GB2 when q → ∞
fGG(y|a; (; p) = lim

q→∞fGB2(y|a; b= (q1=a; p; q)

=
ayap−1

(ap'(p)
exp[− (y=()a]: (23)

The cumulative distribution function is

F(x) = G[(x=()a;p] (24)

where G is the incomplete Gamma function. The un-centred moments are

E[Y h] = (h
'(p+ h=a)
'(p)

: (25)

No parametric restrictions are needed for the existence of the moments, other than
positivity restrictions.
The Weibull density is obtained as a restriction of the generalised gamma for p=1:

fW (y|a; () = fGG(y|a; (; p= 1) = a
(
(y=()a−1 exp(−(y=()a) (26)

with a and ( positive. The cumulative distribution function is

FW (x) = 1− exp(−(y=()a): (27)

The un-centred moments reduce to

E(Y h) = (h'(1 + h=a): (28)

6 In the most general formulation, there is no restriction on the sign of a because it appears with an
absolute value in the numerator of fGB2. But in all the empirical applications we have seen, a was positive,
so we &nally adopted this more simple notation of the density.
7 The centred moments and moments ratios are obtained as

&1 = &′
1; �2 = &′

2 − &21 ; �3 = (&′
3 − 3&′

2&1 + 2&
3
1)=�

3; �4 = (&′
4 − 4&′

3&1 + 6&
′
2&
2
1 − 3&41)=�

4:



M. Lubrano, C. Protopopescu / Journal of Econometrics 123 (2004) 345–369 357

The Pareto density corresponds to a completely diOerent line of restriction of the GB2
as now q is &nite and becomes the sole parameter while a= b= p= 1

fP2(y|�) =fGB2(y|a= 1; b= 1; p= 1; q= X�)

= X�[1 + y]−( X�+1): (29)

This is the Pareto of the second kind (or Lomax distribution). The usual Pareto is
obtained after a change in variable x=� = 1 + y (with Jacobian 1=�) so that

f(x) = X�� X�x−( X�+1)5(x¿�): (30)

The cumulative distribution function is

F(x) = 1− (�=x) X�: (31)

The un-centred moments are

E(X h) = �h
X�

X�− h
if X�¿h: (32)

The existence condition X�¿h is a rather restrictive. For instance, Lotka’s law implies
X� = � − 1 = 2 − 1 = 1 which precludes the existence of the mean as well as the
existence of &rst order upper partial moment. Consequently, we cannot consider the
Pareto distribution as an interesting reduction of the GB2 to conduct our analysis. We
shall limit our investigations to the GB2, the generalised gamma and the Weibull,
noting that for these last two distributions there are no restrictions for the existence of
moments other than positivity restrictions.

4.3. Bayesian model choice

Which density &ts our data best and how can we devise an interesting model choice
criterion? Lubrano (2001) builds on the old idea of comparing actual data yd to hypo-
thetical replicated samples yrep obtained by simulating the model. If the model under
inspection &ts the data in a satisfactory way, the observed sample and the simulated
samples should not look too diOerent. To implement this idea, the main stream Bayesian
literature (see references below) de&nes a sample statistics g(yd) to compute a tail area
probability

Pr{g(y)¿ g(yd)|M} (33)

which quanti&es the extremeness of the observed value g(yd) with reference to the
distribution of the transformation g(:) of the random variable y which represents the
possible outcomes of the model. A small tail area probability casts doubts on validity of
the model. For Box (1980), this probability is computed in reference to the predictive
distribution associated with model M

p(y|M) =
∫
f(y|-;M)’(-|M) d-: (34)

In this formulation, f(y|-;M) is the data density, - the vector of parameters and
’(-|M) the prior density. Rubin (1984) develops the posterior predictive approach
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arguing that, if in some situations it may be interesting to operate unconditional fre-
quency checks, in other cases it may be preferable “to regard - as a &xed feature of
the replications” and then to average over the posterior distribution of -. This is the
posterior predictive approach. This last approach has seen a signi&cant development
in the statistical literature with Meng (1994), Gelman and Meng (1996) or Gelman
et al. (1996) and more recently with Bayarri and Berger (2000). With the posterior
predictive approach, interest is focused on the &t of the model to the observed data.
The choice of the transformation g(:) is crucial for the method. It is used to sum-

marise the observed sample into a single number. Lubrano (2001) suggests that it is
better to avoid choosing a particular transformation and consequently prefers to com-
pare a non-parametric estimate f̂(x) of the density of the observed sample directly
with the data density fM (x|-) of the model using the square of the Hellinger distance
de&ned as

DH (-) = 2
(
1−

∫ √
f̂(x)fM (x|-) dx

)
: (35)

We have to approximate the integral in (36) using a Simpson rule and a prede&ned
grid xj of k points covering the sample range. Given N posterior draws -i, we obtain
N posterior draws of DH . Model A will be preferred to model B if the posterior distri-
bution of DAH stochastically dominates the posterior distribution of D

B
H in the traditional

sense. A necessary condition is provided by the ordering of the means implying that
the preferred model has the smallest posterior mean for DH . It is rather diTcult to indi-
cate a particular value for DH over which a richer model than those considered should
have to be considered (for instance mixtures) because the value of DH is sensitive to
the window size used for the non-parametric estimate. For more details see Bos and
Lubrano (2002).

4.4. Bayesian inference for adjusting parametric distributions

The classical statistical literature abounds with exemples of the numerical diTculties
induced in applying the maximum likelihood method to the generalised gamma distri-
bution (see e.g. Johnson et al., 1994 and also Tsionas, 2001) and we can reasonably
suppose that these diTculties apply also to the richer GB2 distribution. In general,
the statistical literature does not recommend to use the GG model for empirical work
unless there are enough observations to group data in a frequency table. Considering
these diTculties, the classical literature favours the use of a method of moments. We
propose to use a generalised method of moments to estimate the parameters. These
classical estimates are necessary as starting points in the subsequent MCMC methods
used to integrate the posterior density.
We leave on one side the Pareto model which has received a particular treatment

in the literature (see e.g. Arnold and Press, 1983). To our knowledge, there does not
exist a Bayesian treatment for inference with the generalised Beta-II. Tsionas (2001)
has proposed a Bayesian analysis for the generalised gamma. He introduces a reparam-
eterisation of the density which provides an analytical expression for the conditional
posterior density of the scale parameter. He then builds a Gibbs sampler algorithm.
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Table 2
Bayesian inference results

Bel Fra Ger Ita Net Spa UK Cal

Generalised Beta-II

a
3:700
[0:655]

5:650
[0:505]

5:487
[0:600]

6:266
[0:633]

1:277
[0:133]

9:413
[0:939]

1:028
[0:063]

0:789
[0:066]

b
0:492
[0:044]

0:500
[0:026]

0:492
[0:026]

0:502
[0:024]

0:539
[0:093]

0:492
[0:017]

0:266
[0:037]

0:437
[0:092]

p
3:196
[0:789]

4:156
[0:899]

4:318
[0:912]

3:881
[0:848]

4:478
[0:811]

3:733
[0:855]

8:987
[1:101]

6:361
[0:910]

q
0:209
[0:047]

0:144
[0:015]

0:154
[0:019]

0:137
[0:016]

0:830
[0:138]

0:088
[0:009]

1:103
[0:114]

1:511
[0:238]

Hel 0.485 0.500 0.377 0.407 0.346 0.464 0.239 0.334

Generalised Gamma

a
0:438
[0:020]

0:396
[0:008]

0:428
[0:011]

0:439
[0:012]

0:407
[0:013]

0:421
[0:013]

0:373
[0:006]

0:368
[0:009]

b
0:298
[0:101]

0:075
[0:014]

0:092
[0:019]

0:111
[0:025]

0:158
[0:040]

0:132
[0:033]

0:058
[0:010]

0:119
[0:027]

p
3:181
[0:284]

4:410
[0:192]

4:438
[0:227]

4:174
[0:237]

3:936
[0:242]

3:671
[0:228]

4:969
[0:168]

4:122
[0:196]

Hel 0.327 0.475 0.203 0.222 0.279 0.279 0.195 0.291

Weibull

a
0:748
[0:020]

0:758
[0:011]

0:845
[0:013]

0:840
[0:015]

0:773
[0:014]

0:764
[0:015]

0:809
[0:008]

0:738
[0:010]

b
5:215
[0:286]

4:276
[0:126]

3:924
[0:110]

3:710
[0:118]

6:045
[0:216]

3:759
[0:147]

5:855
[0:103]

7:587
[0:202]

Hel 0.292 0.267 0.172 0.185 0.250 0.238 0.171 0.266

Standard deviations are between brackets. The Hel line gives the posterior mean of the Hellinger distance.

Tsionas (2000) proposes a similar approach for the Weibull density. This elegant repa-
rameterisation is not convenient in our context as it makes diTcult the computation of
partial moments functions. So we stick to the original parameterisation.
The three models we shall consider have one scale parameter b or ( and one, two or

three shape parameters: a (Weibull), a and p (generalised gamma), a, p and q (gen-
eralised Beta-II). Either from the classical or the Bayesian side, the likelihood function
presents the same pitfalls. In the GB2 model, we have an extreme negative correlation
between a and q and between b and p. For the GG model, there is an extreme negative
correlation between b and p. For these two models, the posterior density cannot be
feasibly integrated under a non-informative prior. Tsionas (2001) evokes the possibility
of independent exponential priors. We adopt the following speci&cation:

&(a; b; p; q)˙ - exp(−-(a+ 1=b+ p+ 1=q)) (36)

which might counterbalance the extreme negative correlations. Let us call l(x|a; b; p; q)
the likelihood function, the posterior density of the parameters is then

&(a; b; p; q|x)˙ &(a; b; p; q)l(x|a; b; p; q): (37)
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Fig. 2. Posterior density of the Hellinger distance between data density and posterior predictive density.

We shall use an independent Metropolis algorithm with a Student importance function
centred on the moments estimates and with 4 degrees of freedom to integrate this
density. We shall iterate the method several times with 20 000 draws each time until
convergence which was checked using CUMSUM graphs. We took as prior values
- = 3 for the GB2 model, - = 2 for the GG model and - = 0 for the Weibull model
which does not present special numerical diTculties.
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4.5. Posterior results

Posterior means and standard deviations are presented in Table 2 together with the
posterior mean of the Hellinger distance attached to each model.
Fig. 2 presents the graph of the posterior density of the Hellinger distance. It is

clear from this graph that there is a huge cost to complexity for the GB2 and the GG
models. The Weibull model is rewarded for its parsimony and Wexibility. We have
tried other models, including the Burr XII and the Pareto which were also rejected,
especially the latter.

5. Ranking countries using the Weibull model

5.1. Stochastic ordering

The partial moment function for stochastic dominance of order s = 1 has a simple
analytical expression as it is a mere translation of the cumulative distribution function:

UPM 0(x|a; b) = 1− F(x) = exp
(
−

( x
b

)a)
: (38)

Stochastic dominance of F over G at the order s=1 means UPMs−1
F (x)¿UPMs−1

G (x)
for all x. We have the following theorems. Proofs are given in the appendix.

Theorem 3. Within the Weibull model, distribution F stochastically dominates dis-
tribution G at the order one if aF6 aG and bF¿ bG provided bG ¿ 1. G dominates
F if aF¿ aG and bF6 bG provided bF ¿ 1. In the other cases, we cannot conclude
because the partial moment functions intersect.

Theorem 4. The partial moment function for stochastic dominance at the order
s= 2 is

UPM 1(x|a; b) = b
a
'

(
1
a

) [
1− G

(( x
b

)a
;
1
a
+ 1

)]
− x exp

(
−

( x
b

)a)
; (39)

where G(x;p) is the incomplete Gamma function.

Theorem 5. The modi"ed generalised Lorenz curve for the Weibull model is

MGL(p|a; b) = b
a
'

(
1
a

) [
1− G

(
−log(p); 1

a
+ 1

)]
: (40)

Lorenz ordering of F over G means MGLF(p)¿MGLG(p) for all p and is veri"ed
if aF6 aG and bF¿ bG.

Second order stochastic ordering conditions follow using the equivalence between
Lorenz ordering and second order stochastic dominance.
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5.2. Bayesian testing for stochastic dominance

We have a complete stochastic ordering of F over G if aF6 aG together with
bF¿ bG. This type of joint inequality is relatively easy to test in a Bayesian frame-
work. When two models are estimated by a MCMC method (or more simply when
one manages to simulate draws in the posterior distribution of the parameters), the
probability of the joint event Pr[(aF6 aG)

⋂
(bF¿ bG)|yF ; yG] is simply obtained as

the proportion of times this event is true among the draws of the posterior densities
of the parameters of models F and G.
When partial moment curves intersect, it is no longer possible to have a complete

stochastic ordering. But the same partial moment curves may not intersect for a re-
stricted range of x. This case is more tricky as restricted stochastic dominance is no
longer obtained as a direct restriction on the parameters of two distributions. One has
to compute two partial moment curves for a given grid of x. But as these curves
are after all transformations of the parameters of the estimated distributions, what we
have to compare are two speci&c transformations of the parameters. Let us de&ne
ds(x|-)=UPMs

F(x|-F)−UPMs
G(x|-G). We want to test for stochastic dominance of F

over G when x∈ [z∗; z∗]. We de&ne a grid [xj] of m points for x with endpoints z∗ and
z∗. To characterize the event that ds(x|-)¿ 0, we focus our interest on the probability
that Minj ds(xj|-) is positive:

Pr
(
Min
j
ds(xj|-)¿ 0

)
=

∫
-
5

[
Min
j
ds(xj|-)¿ 0

]
&(-|y) d-

� 1
N

∑
i

5
[
Min
j
ds(xj|-i)¿ 0

]
; (41)

where the -i are the N draws from the posterior densities of -F and -G.

5.3. Ranking countries

We &rst ignore the value of z, the minimum level of activity and compute the prob-
ability that a country strictly dominates another one. Table 3 shows that few numbers
are large, indicating that we have a total ordering only for very few cases, e.g. most
partial moment functions cross. It is quite clear that Italy is dominated by all the other
countries, except perhaps by Germany (but Italy does not dominate Germany). Cali-
fornia, at the other end, dominates all the other countries. We encourage the reader
to examine this table further. It appears that the heterogeneity in the academic popu-
lation precludes a useful ranking. So we have to restrain our attention to the segment
[10;+∞[.
Table 4 presents posterior probabilities of restricted stochastic dominance at the order

one. The image is now much clearer. California increases its leading position as all
probabilities of its line are equal to one. The Netherlands dominates all other European
countries. There is an ambiguity about the ranking of Belgium and the UK. France and
Spain follow. There is an ambiguity about the ranking of Germany and Italy. Going
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Table 3
Posterior probability of complete stochastic dominance

Cal Net UK Bel Fra Spa Ger Ita

Cal 1.000 0.996 1.000 0.639 0.913 0.975 1.000 1.000
Net 0.000 1.000 0.752 0.059 0.083 0.262 1.000 0.997
UK 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.990
Bel 0.000 0.006 0.011 1.000 0.632 0.861 1.000 0.999
Fra 0.000 0.000 0.000 0.000 1.000 0.797 1.000 1.000
Spa 0.000 0.000 0.000 0.000 0.000 1.000 0.141 0.616
Ger 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.390
Ita 0.000 0.000 0.000 0.000 0.000 0.000 0.049 1.000

A line indicates the probability that the horizontal country dominates the countries given in columns.
A column indicates the probability a country is dominated by the line countries.

Table 4
Posterior probability of restricted stochastic dominance at the order one over the range [10;∞[

Cal Net UK Bel Fra Spa Ger Ita

Cal 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Net 0.000 0.000 0.914 0.707 1.000 1.000 1.000 1.000
UK 0.000 0.000 0.000 0.032 0.996 1.000 1.000 1.000
Bel 0.000 0.014 0.080 0.000 1.000 1.000 1.000 1.000
Fra 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000
Spa 0.000 0.000 0.000 0.000 0.000 0.000 0.959 0.989
Ger 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.721
Ita 0.000 0.000 0.000 0.000 0.000 0.005 0.091 0.000

Table 5
Posterior probability of restricted stochastic dominance at the order two over the range [10;∞[

Cal Net UK Bel Fra Spa Ger Ita

Cal 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Net 0.000 0.000 0.994 0.667 1.000 1.000 1.000 1.000
UK 0.000 0.007 0.000 0.025 0.984 1.000 1.000 1.000
Bel 0.000 0.048 0.436 0.000 1.000 1.000 1.000 1.000
Fra 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000
Spa 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000
Ger 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.721
Ita 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.000

to the second order with Table 5 clari&es the situation for Germany and Italy, but
ambiguity as to the relative ranks of the UK and Belgium remains.
Fig. 3 displays the posterior expectation of the upper partial moment function. It

illustrates the previous ranking.
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Fig. 3. UPM functions for second order stochastic dominance.

Remark. Because it has a single parameter, the Pareto distribution leads to partial
moment functions UMP0(x) = 1− F(x) = ��x−� that can never intersect, provided the
� are the same, which is the case here. Consequently it is not possible in this model to
diOerentiate between complete and restricted stochastic ordering. Our empirical results
show that this distinction may be important. This is a stylised fact which mitigates
against Lotka’s law. The Weibull is the most parsimonious distribution that allows
curve crossing.

6. Conclusion

Using a parametric and a Bayesian approach, we were able to provide posterior
probabilities for the proposed country rankings. Surprisingly the Weibull density with
only two parameters is preferred to more elaborate models such as the generalised
gamma density or the generalised Beta-II. Only a mixture of two Weibull densities
could have slightly improved the &t according to the experiments we made, but this
was at the cost of losing the nice analytical results concerning the ordering of partial
moment functions. We are fairly con&dent in the results obtained with the Weibull
model as this model is both simple and suTciently Wexible.
As for the empirical results, we have not ranked institutions, but countries. We have

considered a picture of the whole academic system, because we mixed all the authors
of a same country. This penalises countries having numerous economic departments
like the UK. Netherlands comes &rst in Europe because it has few departments, but all
of them are of a fairly high quality.
Which country will our PhD student select in the face of uncertainty? If he had really

the choice, he would select unambiguously California. Fig. 3 shows that its posterior
UPM function is well above all the other curves. If we exclude this choice, Fig. 3
suggests a leading group of three European countries: the Netherlands, Belgium and
the UK. The surprise of this study is that the UK is not &rst in this leading group.
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Appendix A. Proof of theorems

Proof 1.∫ ∞

x
(t − x)s−1 dF(t) =−

∫ ∞

x
(t − x)s−1 d[1− F(t)]

=−[(t − x)s−1[1− F(t)]]∞x

+(s− 1)
∫ ∞

x
(t − x)s−2[1− F(t)] dt:

The &rst term converges to zero by the above assumption. The second integral con-
verges because

(t − x)s−2[1− F(t)] = (t − x)j[1− F(t)]
1

(t − x)j−s+2

and limt→∞(t−x)j[1−F(t)]=0 by assumption, while 1=(t−x)j−s+2 is integrable.

Proof 2. For s= 1, the de&nition of UPM implies that

F̃1(x) =
∫ ∞

x
f(t) dt = 1− F1(x):

So for two distributions F and G, ordering the UPM functions of order zero for all x
is equivalent to &rst order stochastic dominance because

F(x)6G(x) ⇔ 1− F(x)¿ 1− G(x) ∀x∈ [0;+∞[

For s= 2, as in the proof of Theorem 1, we obtain that

F̃2(x) =
∫ ∞

x
(t − x) dF(t) =

∫ ∞

x
[1− F(t)] dt

when F2(x) is

F2(x) =
∫ x

0
(x − t) dF(t) = [(x − t)F(t)]x0 −

∫ x

0
−F(t) dt

=−
∫ x

0
[1− F(t)− 1] dt = x −

∫ x

0
[1− F(t)] dt:

Let us consider two distributions F and G for which we have F2(x)6G2(x) ∀x, which
means

x −
∫ x

0
[1− F(t)] dt6 x −

∫ x

0
[1− G(t)] dt:
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This is strictly equivalent to∫ ∞

x
[1− F(t)] dt¿

∫ ∞

x
[1− G(t)] dt:

Thus for two distributions F and G, LPM 1
F(x)6LPM 1

G(x) ∀x is equivalent to
UPM 1

F(x)¿UPM 1
G(x) ∀x.

Proof 3. exp(−(x=bF)aF )¿ exp(−(x=bG)aG) is equivalent to (x=bF)aF 6 (x=bG)aG and
the result follows because x is positive.

Proof 4. Introducing the formula of the Weibull density into the expression of the
upper partial moment function for s= 2, we have

UPM 1(x|a; b) = a
ba

∫ ∞

x
(y − x)ya−1 exp(−(y=b)a) dy:

Let us consider the change of variable x= (y=b)a which implies dy= (b=a)x1=a−1. We
have

UPM 1(x|a; b) = b
∫ ∞

(x=b)a
x1=a exp(−x) dx − x

∫ ∞

(x=b)a
exp(−x) dx

which is equal to

b
a
'

(
1
a

) [
1− 1

'(1=a+ 1)

∫ (x=b)a

0
x1=a exp(−x) dx

]
− x exp(−(x=b)a):

The result follows when we recognize the expression of the incomplete Gamma func-
tion.

Proof 5. Let us combine the de&nition of the modi&ed generalised Lorenz curve with
the expression of the inverse of the cumulative Weibull distribution

MGL(p|a; b) =
∫ 1

1−p
b[log(1=(1− t))]1=a dt:

Let us introduce the change of variable y = log(1=(1− t)).

MGL(p|a; b) = b
∫ ∞

−log(p)
y1=a exp(−y) dy:

Let us decompose this integral into the diOerence of two integrals so that

b'(1 + 1=a)

[
1

'(1 + 1=a)

∫ ∞

0
y1=aexp(−y)dy− 1

'(1 + 1=a)

∫ −log(p)

0
y1=aexp(−y)dy

]

=b'(1 + 1=a)

[
1− 1

'(1 + 1=a)

∫ −log(p)

0
y1=a exp(−y) dy

]
:

Lorenz ordering conditions follow because the MGL is a decreasing function in a and
an increasing function in b.
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Appendix B. Journal ranking

The journal rankings are given in Table 6.

Table 6
Top journal ranking

Journals Grade

American-Economic-Review 10
Econometrica 10
Journal-of-Economic-Theory 10
Journal-of-Political-Economy 10
Quarterly-Journal-of-Economics 10
Review-of-Economic-Studies 10
American-Political-Science-Review 8
International-Economic-Review 8
Journal-of-Econometrics 8
Journal-of-Economic-Literature 8
Journal-of-Finance 8
Journal-of-Financial-Economics 8
Journal-of-International-Economics 8
Journal-of-Labor-Economics 8
Journal-of-Law-and-Economics 8
Journal-of-Monetary-Economics 8
Journal-of-Money,-Credit,-and-Banking 8
Journal-of-Public-Economics 8
Journal-of-the-American-Statistical-Association 8
Michigan-Law-Review 8
Rand-Journal-of-Economics 8
Review-of-Economics-and-Statistics 8
Yale-Law-Journal 7
Accounting-Review 6
American-Journal-of-Agricultural-Economics 6
Brookings-Papers-on-Economic-Activity 6
Demography 6
Econometric-Theory 6
Economica 6
Economic-Journal 6
Economics-Letters 6
Economic-Theory 6
European-Economic-Review 6
Games-and-Economic-Behavior 6
Industrial-and-Labor-Relations-Review 6
International-Journal-of-Game-Theory 6
Journal-of-Applied-Econometrics 6
Journal-of-Banking-and-Finance 6
Journal-of-Business-and-Economic-Statistics 6
Journal-of-Comparative-Economics 6
Journal-of-Development-Economics 6
Journal-of-Economic-Behavior-and-Organization 6
Journal-of-Economic-Dynamics-and-Control 6
Journal-of-Economic-Growth 6
Journal-of-Economic-History 6
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Table 6 (continued)

Journals Grade

Journal-of-Economic-Methodology 6
Journal-of-Economic-Perspectives 6
Journal-of-Economics-and-Management-Strategy 6
Journal-of-Environmental-Economics-and-Management 6
Journal-of-Financial-and-Quantitative-Analysis 6
Journal-of-Health-Economics 6
Journal-of-Human-Resources 6
Journal-of-Industrial-Economics 6
Journal-of-Law,-Economics-and-Organization 6
Journal-of-Mathematical-Economics 6
Journal-of-Risk-and-Insurance 6
Journal-of-Risk-and-Uncertainty 6
Journal-of-Urban-Economics 6
Macroeconomic-Dynamics 6
Marketing-Science 6
Mathematical-Methods-of-Operations-Research 6
National-Tax-Journal 6
Oxford-Bulletin-of-Economics-and-Statistics 6
Public-Choice 6
Regional-Science-and-Urban-Economics 6
Scandinavian-Journal-of-Economics 6
Social-Choice-and-Welfare 6
Urban-Studies 6
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