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Most 2D visualization methods based on multidimensional scaling (MDS) and self-organizing maps
(SOMs) use a symmetric distance matrix to represent and visualize object relationships in a data set.
In many real-world applications, however, raw data such as a world-trade data are best captured as an
asymmetric proximity matrix. Such asymmetric matrices cannot be perfectly represented by most
previous methods. To handle such an intrinsic limitation, in this paper, we propose a dynamic learning
for metric representations of asymmetric proximity data to better understand the data. The proposed
learning generates two representations (maps) with the row vectors (sending or exporting) and column
vectors (receiving or importing) of the matrix, respectively. To better present the patterns, we
supplement the maps with two analysis tools: cluster analysis and distance analysis, which connect
and compare the different patterns from the different maps. Experiment results using three real world
data sets confirm that the proposed learning method is useful to understand asymmetric proximity data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Visualization is a procedure that helps represent the complex data
(usually in a high-dimensional space) in an effective way (usually in a
low-dimensional space). Dimensionality reduction algorithms have
been used for this purpose. Multidimensional scaling (MDS) [1]
and principal component analysis (PCA) [2] are popular linear
methods for dimensionality reduction. Manifold learning is a non-
linear dimensionality reduction approach, which induces a smooth
nonlinear low-dimensional manifold from a set of data points drawn
from the manifold. Recently, various dimensionality reduction meth-
ods (for example see [3-6]) have been developed in machine
learning community drawing an attention in pattern recognition
and signal processing.

In data analysis, many times, information is provided as a
similarity (or dissimilarity) matrix, whose elements could be the
distances between the data points. For visualization of such data,
most methods based on a dimensionality reduction approach such as
MDS or self-organizing maps (SOMs) [7] rely on a symmetric matrix
which represents the object relationships [3]. Although sometimes
those methods seem to be applied to an asymmetric matrix, they
convert the asymmetric matrix into a symmetric one, and actually
work on the symmetric matrix [8-10]. However, a symmetric matrix
cannot represent any directional relationship between data points,
while asymmetric matrix can. It means potential information loss if
we use only symmetric relationship.
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In many real-world applications [11], raw data can be best
captured as an asymmetric proximity matrix. For example, a
world-trade dataset can be represented as an asymmetric matrix
with each column and each row corresponding to one country, and
each cell indicating the money amount transferred from one
country to another. Journal citation data (or bibliometric data)
is another example for asymmetric similarity (or dissimilarity),
where the numbers of citation between two journals are usually
different [12]. In pattern classification, a confusion matrix as in
Morse code [13] is asymmetric. Also, in social network service, the
following relationship as in Twitter (www.twitter.com) can be
represented as an asymmetric matrix, while the friendship as in
Facebook (www.facebook.com) is symmetric.

To visualize such asymmetric proximity data, some methods have
been proposed. However, most previous methods first decompose it
into a symmetric and a skew-symmetric component, and then put
much focus on the symmetric component using MDS-like methods
[14-17]. Those methods do not present the data as 2D points with
their asymmetric properties, and fail to visualize asymmetric proper-
ties geometrically on a metric space and also fail to discover
regularities in such data (e.g. differences between importing and
exporting within and across multiple countries). Furthermore, separ-
ating the representations of the symmetric and skew-symmetric
components makes it very hard to understand nature structures and
properties of the data set intuitively.

In fact, asymmetric relationships cannot be represented in any
single metric space including 2D space, keeping the asymmetric
properties perfectly. Once a data set is represented as points in a
metric space, their geometric relations become symmetric. MDS-like
methods implicitly assume that the proximity matrix was obtained
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from the data points in a metric space, which makes the methods not
capable of handling asymmetric matrices. Therefore, such 2D repre-
sentations cannot present the asymmetric properties. But still visual
representation, if possible, is very attractive, so we propose a
dynamic learning algorithm of asymmetric relations to represent
the asymmetric data on metric spaces. We plot the data onto two
different maps separately, focusing on one direction in the asym-
metric matrix at a time: one based on the column vectors (e.g.
importing) and one based on the row vectors (e.g. exporting).

In addition, the two maps are supposed to be considered
together, since they are derived from the same matrix. To enable
users to better understand the data, we supplement the two maps
with two analysis tools on the maps: cluster analysis and distance
analysis, allowing users to connect and compare various patterns
within each map and across two maps. These tools provide
quantitative measures of the difference between before and after
learning, or the difference between the sending map and the
receiving maps. Although the proposed method does not provide a
perfect view of asymmetric properties, it increases users’ under-
standing of the asymmetric data.

Several case studies conducted with real data sets reveal the
effectiveness of our approach. The cola-brand-switching data is
presented to explain the maps and analysis functions, and the
other data sets follow after that to confirm that the proposed
method is useful to understand asymmetric proximity data.

2. Background
2.1. Asymmetric proximity data

Given N objects with a similarity matrix S, where S;; is the
proximity between the ith and jth objects. Asymmetric relation is
defined when S # S;;. If this inequality is from noise or error, we
can symmetrize it by (S+S7)/2. Otherwise, we have to deal with
the asymmetric property differently from the previous methods
that are based on the symmetry assumption.

In this paper, to present how our method works, we use three data
sets: cola-brand switching data between 15 cola brands [14], threat
display behaviours data [18], and 113 countries’ trading data in 2009
from International Monetary Fund (IMF) web page, www.imf.org.
These data can be summarized as an asymmetric matrix as shown
in the left of Fig. 1. Note that for the world-trade data, we use

logarithmic values of the trade amount since the absolute amount of
trade is too much dominated by a few countries. The directional flow
of the trade among the countries can be presented as in the right of
Fig. 1. However, it is hard to understand the underlying pattern from
the matrix or the directional flow arrows.

2.2. Previous work

Although multidimensional scaling (MDS) is not perfect for
asymmetric data, it can approximately present the data points on
a 2D space after the symmetrization procedure. Many previous
methods are based on MDS and our proposed learning method
takes MDS as an initial step to present the asymmetric properties
of data.

2.2.1. Multidimensional scaling

To simply connect the asymmetric matrix to classical MDS, we
need to transform the asymmetric matrix to a distance matrix.
Given an asymmetric matrix, M for N objects, we make a
symmetric matrix

T

M = M 1
2

Then, as in [1], a distance matrix, D, can be given by

Dyj = 1-M;,. @)

Note that M is a normalized matrix by the maximum value of
the elements of M. Next, the constant adding technique is applied
to make sure that each distance is the length of two points on a
metric space, as in kernel Isomap [19]. In classical MDS, given a
distance matrix, D, a popular cost function is defined by

] =X, x)-Dy), 3)
ij

where d(-, -) is a binary function to calculate the Euclidean distance
between two points on a low dimensional space, and X =[xy,
X5, ...,XN] is a representation on the low-dimensional space. Let B
be the inner product matrix, where

B=X"X. “)

Considering B as a kernel matrix as described in [6], B can be
given by

B=—1HD’H, ®)

FRANCE , , 4

Fig. 1. Asymmetric world-trade data. (Left) 113 countries' trade data matrix, (Right) the directional flow of the trade which shows only the flows with higher values than
twice the standard deviation of the matrix elements from the mean. The G7 countries' names are shown.
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where D? means element-wise square of D, H is the centering
matrix, given by

H= I—%eeT , 6)

and e=[1,...,1]" e RN. Finally, connecting the two formulations,
Egs. (4) and (5), the solution of the cost function is given by

X=AV2yT, (7)

where V and A are the eigenvector and the eigenvalue matrix of B,
respectively. See [6] for more details.

2.2.2. Other methods for asymmetric proximities

To geometrically understand asymmetric proximity data on a
2D space, several approaches have been applied. First, the simplest
way would be to symmetrize the asymmetric matrix in different
ways, and then apply MDS-like methods [15,16]. Second, some
methods decompose the asymmetric matrix into a symmetric and
a skew-symmetric component, and plot the two matrices onto
two separate spaces using MDS-like methods [17] or use only the
symmetric matrix [15]. Some others put much focus on the
symmetric component using MDS-like methods, and the skew-
symmetric component is added to the symmetric part as in Gower
diagram, drift vectors, or unfolding method [14].

Those approaches fail to visualize and discover asymmetric
properties geometrically on a 2D space and regularities in such data
(e.g. differences between importing and exporting within and across
multiple countries). It is partly due to the intrinsic property that any
single 2D representation cannot preserve perfectly asymmetric rela-
tionship between the points. So, we propose to produce two separate
representations with the column vectors (receiving) and the row
vectors (sending) in an asymmetric matrix, respectively. This method
reveals the hidden asymmetric dynamics. Also, since the method
generates two maps, we need some analysis tools to connect and
compare various patterns within each map and across the two maps.

3. Dynamic learning method

In this section, we propose a dynamic learning method to
represent geometrically the hidden dynamics of the two directions
in the asymmetric matrix: sending or receiving. The directional
information can be interpreted as how objects are attracted to other
objects, and we can move all the points based on the amount of the
attraction. As some previous methods, we apply MDS to the
symmetrized matrix to have an initial representation. From
the MDS representation, the proposed method moves all the points
(representation of objects) iteratively, until they converge to equili-
brium statuses, which may reveal the dynamics in the two directions.

For example, Fig. 2 shows the MDS representation of the
symmetrized matrix of the cola-brand switching data, whose ele-
ments mean how many consumers have switched the cola brand
from one to another. Three clusters are presented: diet type cola,
original type cola, and the rest type cola including ‘decaf’. There are
more transitions within each cluster than across clusters. However
there is no asymmetric relation in this figure. From this representa-
tion, the proposed method moves all the points to generate two
maps: a sending (or exporting) and a receiving (or importing) maps.

3.1. Learning algorithm

Without loss of generality, in this section, we use sending
information. Let the points on the low-dimensional space be X. For
the ith point x;, the sending information is given by Mj, for j=1,
2, ...,N. Now, we move x; based on the sending information. The goal
is to move x; as much as needed, which is the difference between the
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Coke diet decaf

Coke classic
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Pepsi diet decaf RC

Private label
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Coke dedapneld
cm.ladwood

Pepsi decaf

Fig. 2. MDS result on the symmetrized matrix from the cola-brand-switching data.
The closer the two brands are, the more the transitions occur between them. Note
that the real point of the brand on the coordinate is located on the left of the string.

symmetric matrix M° and the asymmetric matrix M. That is, M;—Mj
means the amount of movement that x; is supposed to take toward x;.
After normalization, the amount is given by
M;i—M;;
pj=—1 8)
M
However, since Mj; and Mj; are not updated, we need to know
when they should stop moving. So, we can measure how much
they have moved by
i=—g U 9
Qj D; ()]
where dj; is the distance between ¥; and x; on the current iteration.
Here, since Q; is the amount of relative distance that the point ¥;
has moved toward x;, at the current iteration, a point x; needs
to move toward x; at the amount of P;—Q;. Considering all the

points, finally the update rule of x; at time ¢ is given by

X =X+ A TP Qy) ), (10)
J

where « is a learning rate, set to around 0.1 in our experiments.

For the receiving information, the update rule for x; is the same
as the one for the sending information, except using (P;—Q;)
instead of (P;—Qj). Note that this approach can work with massive
data sets since the update rule in Eq. (10) can be executed in
parallel. Also, x; in Eq. (10) can be selected from only the neighbors
of x; assuming that the non-neighbors do not affect much on x;.

To stop the iteration using the sending information, we check
the change in the update defined by

E:%Z\\xg“—x,ﬂl. an
1

If E is lower than a threshold, 10™> in our experiments, we
consider that the iteration has converged. E for the receiving
map is defined in the same way.

With this method, one can see the hidden dynamics in the
asymmetric relationship. In Fig. 3, note that Pepsi decaf is different
in the two maps. In the sending map, Pepsi decaf is out of the
cluster which means people have not much changed from that to
the other brands. However, in the receiving map, it has moved into
the center of the cluster which means people have replaced the
other brands by Pepsi decaf.
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Fig. 3. Cluster analysis on each map of the cola data after dynamic learning. (Left) Sending map, and (Right) receiving map. (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of this article.)

This method can be understood in analogy of the gravity
model. In the gravity, both objects have the same force to move,
but the amount of movement is different due to the different
masses. For example, an apple falls down to the earth, but the
earth does not to the apple. Likewise, in the sending map and
receiving map, we can interpret that the same object has different
masses on the different maps. The final representations are the
equilibrium statuses of the dynamics on the maps, as the objects
converge to the equilibrium status of the gravity model.

Note that even at the equilibrium status, the points might be
following other points and make circles as an ant mill where army
ants follow one another in circle to death. Also, an MDS repre-
sentation has rotation ambiguity. So, after updating all the points
at each iteration, we need to rotate the updated representation to
make it as similar to the previous one as possible.

3.2. Rotating a representation

We provide a method to rotate the updated representation to
minimize the difference to the previous one. Let X = [x1,X>, ..., Xn]
and Y =[y;,¥,,....yn] be the two representations of the points
before and after moving the points, respectively. The goal is to
rotate Y so that Y is as similar to X as possible. A cost function for
this goal can be formulated by

Jr=X®—Ry)?, (12)
1
where R is a rotation matrix defined by
cos(@) —sin()
T | sin@ cos(®) } 13)

where @ is the angle that Y is supposed to rotate. Note that if
det(R) is negative, it means reflection should be considered, so
before finding the rotation matrix, the second dimension of Y is
negated.

Then, using the least square method, the cost function has a
unique algebraic solution which is given by

R=XY") (YY" (14

However, since Y is not perfectly generated by rotating X, R is
not a pure rotation matrix and we need to extract just the rotation
part from R. To find the angle, 6, for the rotation, we use a simple
trick. Let v=[1,0]" and u = Rv. Then, the angle, @, is obtained by

6 = atan(uy, uy), (15)

where u = [uy, uy]".

If the determinant of YY” is close to zero, which is the case
when Y has almost all the points on the same line, then the
estimation of R is not stable. In that case, we take the two points
which has the longest distance in Y, and directly calculate the
angles between the line in Y and the corresponding line in X.
Then, as stated above, the rotation matrix is obtained by Eq. (13).

4. Visual analysis tools

After plotting the representations on two maps, to make the
representations more comprehensible, we apply two analysis tools
on the two maps: cluster analysis and distance analysis, allowing
users to connect and compare various patterns within each map
and across the two maps.

4.1. Cluster analysis

After dynamic learning of the representations, the points are
distributed differently on the sending and receiving maps. Cluster
analysis can show the distribution of the points, which helps users
better understand how the points are distributed on each map.

Our cluster analysis is based on the expectation minimization
(EM) algorithm with a mixture of Gaussian model for the density
estimation of the points on 2D spaces [20]. In the EM algorithm,
generally, the number of mixture of Gaussians should be given.
Instead, we set the maximum number of Gaussians and execute EM
algorithm with different mixture numbers. Then, we find the best
fitting number using model selection methods such as normalized
entropy criterion (NEC), Bayesian inference criterion (BIC) and
integrated completed likelihood (ICL) [3]. Note that some other
clustering methods such as k-means can be adopted too.

Fig. 3 shows the cluster analysis of the cola-brand-switching data
after the dynamic learning. The EM algorithm was used on each map
with ICL. On such a clearly separable data, the number of clusters is
the same on the both maps. The clusters are presented by ellipses
from the covariance matrix. After clustering, the distances between
the clusters’ centers are calculated in red as in Fig. 3. Also, the
determinant of each cluster's covariance matrix is calculated in
brown to show relatively the area of the corresponding cluster. The
bigger the determinant is, the less the transition happens in the
cluster compared to the transition in the other clusters.

4.2. Distance analysis

Distance analysis calculates the difference between the dis-
tances of point to other points on two maps. Basically these
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comparisons are conducted on 3 pairs of maps: (1) the sending
map and the initial map, (2) the receiving map and the initial map,
and (3) the sending map and the receiving map. This analysis
presents how individual variables’ geometric relationship with
other variables change due to the dynamic learning. This analysis
allows the users to compare quantitatively the representations of
individual variables. While cluster analysis gives somehow big
picture of how the data represented on the two maps, distance
analysis compares the distances of individual variables before and
after the learning, and compares the distances between the
sending and receiving maps.

In Fig. 4 the top and the middle graphs are for either the
sending map or the receiving map. On the other hand, the bottom
graph compares the sending map and the receiving map directly
to show some interesting pattern. From this analysis, users can see
which variables get closer to which variables by the dynamic
learning. Also, users can measure how close or far the variables are
to the other variables in the sending and receiving maps. Note that
the highlighted variables (in this figure, numbers 1 and 4) are
compared to all other variables. The numbers on the horizontal
axes are brand indices of the cola data. The red bars are for Pepsi
decaf and the blue bars for Coke decaf. For example, the red bars in
the first row mean the differences between the distances on the
sending map and the initial map of Pepsi decaf to all brands.

sending current - initial

01 — T T T T T T T T T T

_D1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 B 7 8 9 10 11 12 13 14 15
receiving current - initial

0.1 L e e N —— T

_D1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
sending current - receiving current
22— -
K
_02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 B 7 8 9 10 1 12 13 14 15

Fig. 4. Distance analysis of the cola data after the dynamic learning, which made
the current maps. The before maps were the initial map by MDS. The variable
number 1 is Coke decaf and 4 is Pepsi decaf. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)

Basically, we can interpret the maps after learning as follows. If
a variable ‘A’ becomes closer to a specific variable ‘B’ in a sending
(or receiving) map, it means that ‘A’ sends much information to (or
receives from) ‘B’. However, if ‘A’ becomes closer to most variables
in a sending (or receiving) map, then the other variables send
much information to (or receives from) ‘A’. Also, their inversions
are possible. For example, if ‘A’ becomes far way from ‘B’ in a
sending map, then it means that ‘A’ sends less information to ‘B’.

For example, from Figs. 3 and 4, one can see that after the
learning, Pepsi decaf and Coke decaf went closer to the other brands
in the sending map. This means that many people have changed
from the other brands to the two decaf brands. Meanwhile, in the
receiving map, Pepsi decaf went further away from almost all the
other brands, while Coke decaf moved away from some variables
and toward the others, especially number 10 (RC diet). This means
that many people keep enjoying Pepsi decaf, while some people
have replaced their RC diet by Coke decaf. The third row says that
Pepsi decaf is closer to other variables in the sending map than the
receiving map, which means more likely people have moved from
the other brands to Pepsi decaf.

5. Case studies

For case studies, we applied the proposed method to two more
data sets: (1) threat display behaviors in a species of bird, great tit,
and (2) world trade data.

5.1. Threat display behaviors

In [18], Jones measured preceding-following contingencies for
certain types of threat display behaviors in the great tit. Fig. 5
shows the numbers corresponding to the proportion of times that
the behavior in column j follows the behavior in row i, which is
definitely asymmetric. For example, Feeding (or 6) follows Fluffing
(or 11) with the probability of 3%, and after Hopping around (or 8),
Incomplete feeding (or 7) follows with the probability of 46%. Fig. 6
shows the initial plot by MDS with the symmetrized matrix from
the preceding-following contingencies matrix.

Figs. 7 and 8 show the two different maps with cluster analysis
after the dynamic learning based on the sending and the receiving
information, respectively. We can see some different patterns
on the two maps. First of all, the number of clusters is different on
the two maps. In the sending map, there are three clusters, while
there is only one cluster in the receiving map. This means that in
the sending map, the threat display behaviors precede the other
behaviors in a clustered way. That is, a certain behavior is followed
more probably by a small number of behaviors rather than the

Behavior types 1 2 3 4 5 6 7 8 9 10 11 12 13
1 Attack 4 17 16 11 10 13 11 0 6 0O O 9 4
2 Head down 26 0 5 14 4 13 2 8 5 0 0 5 18
3 Horizontal 2 3 0 12 13 11 3 2 10 8 0 4 9
4 Head up 5 9 8 8 14 15 5 4 13 0 2 5 12
5 Wings out 22 13 10 5 2 10 2 7 7 0 0 2 19
6 Feeding 2 5 18 13 11 3 3 5 13 8 1 16 1
7 Incomplete feeding | 4 10 15 4 4 13 7 22 0 0 12 8 0
8 Hopping around 1 10 0 4 2 4 46 0 3 6 11 11 3
9 Hopping away 0 4 6 9 5 1 8 4 1 6 31 15 10
10 Crest raising o 0 o0 6 7 3 0 11 17 1 30 13 12
11 Fluffing 0 4 5 6 3 3 0 23 13 35. 0 6 3
12 Looking around 5 0 5 0 3 6 12 12 11 30 8 0 9
13 Hopping towards | 5 25 12 8 21 4 2 2 2 7 5 6 0

Fig. 5. Preceding-following contingencies matrix.
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Fig. 6. Initial plot of the threat display behavioral data by MDS on the symmetrized
matrix.
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Fig. 7. Cluster analysis on the sending map of the threat display behavioral data.
Three clusters are presented.
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Fig. 8. Cluster analysis on the receiving map of the threat display behavioral data.
There is only one cluster.

sending current - initial

0
_02 1 1 1 1 1 1 1 1 1 1 1 1 1
T2 3 4 5 6 7 8 9 10 11 12 13
receiving current - initial
0.8 T T T T T T T T T T T T T
0 ‘1_._._-__l-_-_—_-_l_r_'_l_l_
»DS 1 1 1 1 1 1 1 1 1 1 1 1 1
T2 3 4 &5 6 7 8 &8 10 1 12 13
sending current - receiving current I :
0.5 T T T T T T T T T T T -
_05 1 1 1 1 1 1 1 1 1 1 1 1 1

T2 3 4 5 6 7 8 8 10 1 12 13

Fig. 9. Distance analysis between sending map and receiving map. Hopping away
(9) and Hopping towards (13) have strongly asymmetric relationship with the other
behaviors.

others. On the other hand, in the receiving map, the behaviors
follow other behaviors without any patterns.

In addition to the global pattern, there are some different
patterns for the individual behaviors. For example, Wings out is on
the boundary of the cluster in the sending map and at the center
of the cluster in the receiving map. From the sending map, we can
see that Wings out precedes Attack more likely than the other
behaviors, which is consistent with Fig. 5, where Wings out
precedes Attack with the probability of 22% which is the most
dominant probability. But, from the receiving map, we can tell that
Wings out does not have any preference to follow any other
behaviors, which is also consistent with Fig. 5. Based on the
results, we can tell that the sending and receiving maps faithfully
represent the properties of the asymmetric relations in metric
spaces.

To check how much the distance has changed, we can apply
distance analysis as shown in Fig. 9, where as an example Hopping
away (9) and Hopping towards (13) are compared within and
across the two maps. As we have seen on the maps, we can see
that, compared to the initial plot, they became very close in the
sending map (negative values for 9 and 13 in the top figure), and
they became far from each other (positive in the middle figure).
This means that they precede each other more likely than they do
the other behaviors, but they follow each other less likely than
they do others. Also, the comparison across the two maps shows
directly that they are closer to each other on the sending map than
on the receiving map (negative on the bottom figure), which can
be interpreted in the same way as above.

5.2. World-trade data

In this section, we applied the dynamic learning algorithm to the
world-trade data set. We extracted the 2009 direction of interna-
tional trade (DOTS) data including 113 countries with the largest
amount of trade. Note that we converted the empty cells in the table
like Afghanistan-Angola into zero. As shown in Fig. 1, 113 countries’
trade data can be summarized up to a 113 x 113 asymmetric matrix.
The initial plot by MDS on the symmetrized matrix is shown in
Fig. 10, where the clusters roughly keep the geographical proximities.

After moving all points iteratively based on the dynamic learning
method, cluster analysis shows how the countries are distributed in
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Fig. 10. Initial plot of the world trade data by MDS on the symmetrized matrix. The
clusters roughly keep the geographical proximities.
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Fig. 11. Cluster analysis after dynamic learning on the exporting map of the world-
trade data. Three clusters are presented.

Figs. 11 and 12. As above, we can see some patterns from the maps.
For example, in the maps, the South American countries are in the
same cluster. However, in the exporting (sending) map, the area of
the ellipse measured by the determinant of the covariance matrix is
larger than the one in the importing (receiving) map. Also it is closer
to the other clusters in the exporting map. From these patterns, we
can see that they import more from their geographical neighbors
compared to export. Note that the geometric relationships on the
maps are relatively the same as the flow amounts from the original
asymmetric matrix, which means that the 2D representations reflect
faithfully the asymmetric properties given by an asymmetric matrix.

Fig. 13 shows the distance changes within and across the maps.
Serbia (90) is closer to the other countries in the importing (receiv-
ing) map than exporting (sending) map, and UAE (105) has the
opposite relationship with the other countries. From this figure, we
can see that for Serbia, importing is greater than exporting, while for
UAE, exporting is greater than importing.

Although the 2-dimensional representations are not enough to
provide the full understanding of the world-trade data set, we
could increase our understanding of the data set.
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Fig. 12. Cluster analysis after dynamic learning on the importing map of the world-
trade data. Three clusters are presented. The South American countries at the
bottom are more separated from the other clusters compared to the exporting map.
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Fig. 13. Distance analysis between the sending map and the receiving map of the
world-trade data. Serbia (90) and UAE (105) have strongly asymmetric relationship
with the other countries.

6. Conclusion

In this paper, we proposed a dynamic learning method for metric
representations of an asymmetric proximity data set to better
understand it. The proposed learning method generates two repre-
sentations (maps) with the column vectors (importing) and row
vectors (exporting) of the matrix, respectively. In addition, by adding
visual analysis tools to the two maps, we have created an insightful
way of building intuition about the nature structure and asymmetric
properties of such kinds of data.

Experimental results using three real-world data sets con-
firmed that the proposed dynamic learning method is useful to
understand asymmetric proximity data. We can apply this method
to other data sets such as clinical data to have better under-
standing on causes and effects. As future work, we can add more
analysis tools on the maps.
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