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a b s t r a c t

Currently, large amounts ofWi-Fi access logs are collected in diverse indoor environments,
but cannot be widely used for fine-grained spatio-temporal analysis due to coarse
positioning. We present a Log-based Differential (D-Log) scheme for post-hoc localization
based on differentiated location estimates obtained from large-scale Access Point (AP)
logs of WiFi connectivity traces, which can be used for data analysis and knowledge
discovery of visitor behaviours. Specifically, the location estimates are calculated by
utilizing a combination of Received Signal Strength Indicator (RSSI) records from two
neighbouring APs. D-Log exploits real-world industry WiFi logs where RSSI data sampled
at low rates from single AP sources are recorded in each connectivity trace. The approach is
independent of device and network infrastructure type. D-Log is evaluated usingWiFi logs
collected from controlled environment as well as real-world uncontrolled public indoor
spaces, which includes discrete single-AP RSSI traces of around 100,000 mobile devices
over a one-year period. The experiment results indicate that, despite of the challengeswith
the infrequent sampling rate and the limitations of the data that only records RSSI from
single AP sources in each instance, D-Log performs comparatively well to the state-of-the-
art RSSI-based localization methods and presents a viable alternative for many application
areas where high-accuracy positioning infrastructure may not be cost effective or where
positioning applications are considered on legacy information infrastructure.
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1. Introduction

The use of a RSSI frommultipleWiFi APs to estimate the position of mobile devices in a wireless networked environment
is a well established procedure. Three main approaches are commonly used when RSSI traces are available: trilateration,
scene analysis (WiFi fingerprinting), and proximity-based localization. Most of these methods aim to generate an accurate
estimate of a mobile device’s position in the networked environment. Furthermore, these approaches often demand either
that the WiFi networks are configured for high sampling rates and continuous monitoring from multiple access points,
or require users to install an app on their device for data collection. This leads to implementation barriers such as high
setup, engineering, and calibration cost and the requirements for user participation. Hence, there is a need for approaches
applicable to low sampling rates and single access point monitoring. Another source of data that has thus far been barely
examined for enhancing localization: large volumes of WiFi AP logs of non-continuous WiFi connectivity traces that are
normally stored in an external system, representing timestamped connections between a device and a single Access Point,
along with the associated RSSI. With such data, a research question emerges:

How to perform accurate indoor localization using large-scale logs of discrete single-AP RSSI traces with low sampling rate?
This problem opens a new direction for localization research. Specifically, we describe a robust WiFi log-based

localization scheme which is:

1. non-intrusive: it expects nothing from the client mobile device, e.g. there is no need to install an app, turning-on of
sensors other than WiFi;

2. generic: it is simple to deploy and applicable in anyWiFi installation, which has an overlap between the coverage areas of
adjacent APs and is capable of recording RSSI values when handovers occur between them. Additionally, the knowledge
of the relative transmitter output power of the APs should be known by the operator;

3. light-weight: it uses algorithms that are simple to implement and maintain and do not overload existing computational
infrastructures;

4. effective: as long as a mobile device connects to the WiFi network, the localization technique can be applied; and
5. accurate: the scheme delivers accuracy that is comparable to scene analysis, and exceeds the classical path loss model

[1,2], as demonstrated in the evaluation.

The D-Log positioning method is an enhancement over existing methods that roughly localize a device anywhere in the
service area of an AP, by providing an estimate of the distance between the mobile device and the connected AP. This allows
to further restrict the space in which the device is found. D-Log focuses on static localization, not the continuous tracking of
people’s movement.

D-Logworks by improving distance estimations fromdiscrete single-AP RSSI traces of amobile device. Specifically, D-Log
applies the WiFi path loss model in combination with knowledge of the distance of neighbouring APs in a WiFi network
and the probability distribution of each logged RSSI record to better estimate this distance. The key point is to utilize
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Fig. 1. (a) Coverage areas of two adjacent APs and the cell boundary overlap. The overlapping area is 10%–20% of a cell’s area. (b) An experimental
illustration of the dependence of the accuracy of the method on the number of available RSSI observations during handover.

a combination of RSSI records from two neighbouring APs where handovers occur: a location that is known with some
certainty [3,4]. This information can be used to reduce errors introduced from the path loss model.

D-Log computes an enhanced distance estimate of a mobile device within the region served by a given AP for each
individual logged RSSI record. D-Log treats these estimates as independent instances drawn from the same distribution.
Applying probability theory, the average of these measurements allows estimation, with greater accuracy, of the distance
between the AP and the mobile device. The theoretical analysis is provided to show D-Log’s performance in terms of
localization accuracy (Section 3.5).

Consider two neighbouring APs ax and ay and the mobile device at the distance dt , served by AP ax, as shown in Fig. 1.
D-Log calculates one estimate of dt by using each logged RSSI value when a handover occurred. As there are a large number
of WiFi log records for numerous devices, D-Log obtains a large number of estimates of dt at handover, and uses them to
determine the average estimate as the distance to the handover location dt . This allows us to establish the empirical signal
strength decay progression around anAP, alongwhich anynon-handover locations can be interpolated for any observation of
RSSI. Thus, we use the knowledge of the handover to calibrate the signal strength decay function based on a path loss model
for each AP. Fig. 1(b) illustrates the dependence of the accuracy of the D-Log method on the number of RSSI observations
during handover, based on the experiments discussed later. As the number of logged RSSI records increases, the average
error of the position estimate decreases (Fig. 1(b)), converging towards a limit value little above 3.0 m, achieved at around
300 observations.

Once a sufficient amount of WiFi AP logs has been recorded, they can be used to train the D-Log algorithm. D-Log can
then be used in (near) real-time, similar to other existing RSSI-based localization methods. The D-Log scheme is, however,
primarily meant to be deployed to improve the location estimate in mobile device access records collected in aWiFi system
in a post-processing step. Note that such logs are collected at infrequent sampling rates froma single RSSI source towhich the
device is connected to. Most existing RSSI-based methods are infeasible in such scenarios. Such enhancement of location
estimation is important for the improvement of indoor context estimation supporting a range of applications exploiting
indoor behaviour information mining and recommender systems [5,6], in environments with free and publicly available
WiFi networks. Potential application areas include retail and advertising (e.g. shopping malls, airports), leisure and tourism
(e.g. attractions, entertainment areas), rich media consumption (e.g. smart displays), teaching and learning support (e.g. in
universities), and operational logistics (e.g. in airports, transport hubs). Once accurate post-hoc localization of users within
indoor spaces is possible, large-scaleWeb activity and connectivity logs from theWiFi systems will enable extensive indoor
information behaviour mining and long-term prediction of user behaviours [7,8].

The remainder of the paper is organized as follows. Section 2 presents the related work. The D-Log scheme is detailed
in Section 3, where a theoretical analysis is provided to show the performance benefit of D-Log. Section 4 presents the data
that we experiment with. Section 5 includes the evaluation of the proposed method, and Section 6 concludes the paper and
discusses possible future research.

2. Related work

2.1. Indoor localization techniques

Existing research on indoor localization can be categorized into device-based [9–13], device-free (passive) localization
[14,15], and infrastructure-based localization [16–18].
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Device-based localization has gained popularity in recent years. This is due to the ability to integrate data frommultiple
smartphone sensors (e.g. [19]) and thus allow for the combination of dead reckoning [12,20,21] and particle filter estimation
methods [22]. Although such a rich combination of signals improves indoor localization, this is outside the scope of this
paper, which is focused on post-hoc localization based on (sparse) WiFi AP logs of all the registered WiFi users. For device-
based localization, it requires on-device processing, typically via amobile app, as well as continuous sampling of data. Given
the requirement of user participation anduptakewith amobile app, it limits the coverage of indoormonitoring. Full coverage
is often considered as a major requirement for indoor monitoring by facility owners and operators.

The most recent, albeit less common technique is device-free (passive) localization [14,15]. Mobile device-free
localization does not require a device attached or carried by indoor visitors. But such methods require high and continuous
sampling rates and substantial post-processing efforts. They operate well only in controlled environments, and multi-user
tracking capability is often limited to small numbers of simultaneously tracked objects. Themost recent device-free (passive)
localization method is capable of tracking three users simultaneously [23]. Given the challenges with multi-user tracking
and the need for highly densed monitoring points and RSSI sampling, this is not applicable for tracking users in large-scale
public indoor spaces.

Many infrastructure based techniques utilize trilateration, which requires RSSI frommultiple nearby APs. However, these
techniques are expensive to implement, since the WiFi networks have to be deployed with a data logging configuration
allowing multiple access points to be monitored across each device connection for passive localization. This is typically not
the case with most indoor environments currently operatingWiFi networks. As such, the logs acquired cannot be mined for
accurate indoor spatial behaviour estimation.

Some research employs fusion of techniques. In [21], in-device recorded RSSI from a single access point is used, however,
the technique relies on dead reckoning to provide a perceived triangulation on the device. Khan et al. improved the coverage
of localization through active participation of users [24]. Other localization techniques employ the use of ZigBee networks
(e.g. [25,26]), RFID tags [27], or propagation model and autonomous crowdsourcing [28].

2.2. RSSI use in indoor localization

With regard to the use of RSSI from WiFi access points in localizing devices of a WiFi network, traditionally, there are
three main methods that are widely employed: trilateration, scene analysis, and proximity analysis [29,30].

First is trilateration, which estimates the position of a device by calculating its distance from multiple reference
points [30]. When RSSI traces from multiple access points are available, the use of this path loss based method is a more
accurate approach to localize a device, rather than using Time-of-Arrival or Time-Difference-of-Arrival calculation [30] to
approximate a device location, as the latter two methods require a clear Line-Of-Sight (LOS) between the transmitter and
the receiver [30]. An example of the use of trilateration is in [17], where WiFi RSSI traces from multiple reference (access)
points were recorded in order to monitor around 18,000 devices in a hospital. They used WiFi signals measured on mobile
devices to first localize users in the building, extracted the spatial and temporal features from the traces, analysed the flow
of people from entrance to exit, and classified their behaviours based on the user roles [17]. However, in our study, RSSI
from multiple reference points are not available, hence, trilateration is not applicable.

The second established RSSI-based localization approach is Radio Frequency (RF) based scene analysis, a method to use
prior-collected features, or fingerprints, of a scene to determine the location [29]. The most widely used scene analysis
method is RSSI-based fingerprinting [30]. Swangmuang and Krishnamurthy presented an analytical model to predict the
performance of fingerprinting-based indoor localization systems by applying proximity graphs [31]. AWiFi RSSI fingerprint
for each location is used to match the monitored (indoor) environment for accurate localization of the device [32]. In some
cases, fingerprinting at the actual site is not feasible, e.g., in a very large shoppingmall or airport. Since fingerprinting requires
a large amount of time and resources and costly system calibration in the beginning [32], the real-world use of this approach
was difficult. For example, in a highly dynamic environment, where layouts and objects often change, RF fingerprints
could easily change due to alterations of the indoor environment, hence requires frequent fingerprinting [12]. [33] used
knowledge about the geometry of the environment and made assumptions about continuous indoor movement tracking
to address this problem, while [34] collected user feedback to improve the fingerprinting process. Want et al. proposed a
combination of subarea fingerprinting and gradient descent search to improve localization by probabilistic fitting [35], but
this fingerprinting approach requires high frequency sampling.

The third approach is proximity-based localization, which uses RSSI captured on users’ devices to compute approximate
sets of devices that are located in proximity to each other to localize the position of a device relative to another
device [29]. This method does not apply in our study since we do not use apps or device-based approach to localize a
user.

In this paper, we propose the D-Log scheme as a new reference scheme for post-hoc localization, which aims to be
easy to implement and maintain, is independent of devices and network infrastructure, and is effective and reasonably
accurate. In Table 1, we compare D-Logwith existing schemes, including trilateration, scene analysis, proximity analysis and
device free approaches in terms of their deployment characteristics. The D-Log scheme is low cost, because it only requires
infrequent RSSI sampling from single RSSI source, rather than continuous RSSI sampling from multiple RSSI sources like
others (e.g. scene analysis).
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Table 1
Comparison of indoor localization schemes.

Schemes Signal Cost Client
sensors/apps

AP
placements

RSSI source (No. of
APs)

Sampling rate Comments

Trilateration RSSI Med No Normal At least 3 Low
(continuous)

Infrastructure-based

Scene analysis RSSI &
Sensors

High Yes Normal Multiple High
(continuous)

Device-based

Proximity
analysis

RSSI High Yes Dense Multiple High
(continuous)

Device-based

Device free RSSI High Yes Dense Multiple High
(continuous)

Device-free/passive

D-Log RSSI Low No Normal Single Low (discrete) Log-based

3. Log-based differential scheme

In this section, we formulate the targeted research question and present twoD-Log algorithms to estimate the distance of
the mobile device to the AP. Furthermore, the complexities of the D-Log algorithms are analysed, and a theoretical analysis
is provided to show the performance benefit of the entire proposed D-Log scheme.

3.1. Problem formulation

In this paper, the research question is the estimation of a mobile device location within the coverage area of several WiFi
APs based on logs of discrete RSSI traces from single APs. We assume that theWiFi log includes discrete RSSI measurements
relating to a single AP connection at any one time, in contrast to the trilateration and scene analysis methods requiring
multiple parallel RSSI observations. Single RSSI records are recorded in most real-worldWi-Fi system data logs, where non-
serving APs and their RSSI are not recorded. Although these single-AP RSSI traces are normally discrete and sampled at low
frequency, the quantity of records obtained from different devices for each WiFi AP is large. For example, the real-world
WiFi log we examined (as detailed in Section 4), was collected with a 5min sampling rate for each registeredmobile device;
logging only the RSSI values for currently connected APs. This resulted in 480,924 connections distributed amongst 35 APs,
with in average around 13,000 records per AP. This large volume of available records for each AP creates an opportunity to
accurately estimate the distance of a mobile device from an AP given its RSSI value.

There are several techniques to calculate dt given an RSSI value rt for a mobile device when associating with an AP. The
path loss model [1,2] enables to determine the device distance based on the full set of inputs:

d̂t = 10
 TXpwr−rt−Ltx−Lrx+Gtx+Grx−PL−s

10e


(1)

where d̂t denotes the estimated distance between the transmitter and the receiver (the client mobile device) in metres;
TXpwr is the transmitter output power in dB; rt is the detected RSSI in dB; Ltx is the sum of all transmitter-side cable and
connector losses in dB; Lrx is the sum of all receiver-side cable and connector losses in dB; Gtx is the transmitter-side antenna
gain in dBi; Grx is the receiver-side antenna gain in dBi; PL is the reference path loss in dB for the desired frequency when
the receiver-to-transmitter distance is one metre; s is the standard deviation associated with the degree of shadow fading
present in the environment; e denotes the path loss exponent for the environment. Note, although Eq. (1) takes a range of
factors into consideration, the estimation of d̂t is not accurate, as the RSSI values rt at location px vary and can be affected
by a large number of external factors, e.g. the people movement through the space, the layout of the walls and the materials
used in the environment.

Let us consider a general case: given two sets of sample RSSI values Rx and Ry, collected when the handover between
two adjacent access points ax and ay happens, we denote r ix ∈ Rx a sample RSSI value observed when a mobile device
is disassociating with ax and then immediately associating with ax’s topological adjacent AP ay; similarly, each r iy ∈ Ry
denotes a sample RSSI value observed when a device is disassociating with ay and then immediately associating with ax. As
there is only one observed RSSI value to the connected AP for the mobile device at any time, then other methods that rely
on concurrent RSSI measurements from multiple APs are not applicable (e.g. trilateration and scene analysis). To address
this problem, we propose the D-Log scheme to estimate dt from the RSSI records r ix ∈ Rx, not from rt directly. Specifically,
D-Log computes three other distances to interpolate dt : (1) the distance dm of mid-point of the overlapping coverage areas
between ax and ay; (2) the size, h of the handover area between ax and ay; (3) the offset dofst between the mobile device and
the handover boundary of ax. As the two RSSI observations at handover have a number of inputs identical (assuming the
transmitting power of the APs is either known or their proportions are known), this differential scheme allows to reduce the
number of degrees of freedom influencing the distance determination. This indirect estimation enables D-Log to obtain a
large number of distinct estimates for dm, h and dofst , respectively, because there are a large number of r ix ∈ Rx in the log. As
r ix ∈ Rx was collected independently in the log, the estimates from them are thus independent to each other. Then, from the



Y. Ren et al. / Pervasive and Mobile Computing 37 (2017) 94–114 99

aspect of probability theory, these observations can be used to estimate dm, h and dofst , respectively. Take dm as an example,

µ̂(dm) = E(dm|rx) = E(d̂im) =
1
n

n
i=1

dim, (2)

where dim is the estimated distance of dm based on a logged RSSI value r ix, and n is the number of log records. Moreover, this
estimator has large practical application, as large datasets of RSSI logs are common and useful for a number of applications.
Thus, the final interpolated dt is accurate, and this will be detailed in the following sections.

3.2. D-Log algorithm

Here, we propose the basic D-Log algorithm to estimate the location of a mobile device within the coverage area of an
AP. The D-Log algorithm performs the localization using the following four steps:
• Step 1: Estimation of the distance dm for the mid-point pm of the overlapping coverage areas of two adjacent APs, ax and

ay. Given a set of the RSSI values r ix ∈ Rx and r iy ∈ Ry, obtained when the handover happens between ax and ay, we
define that

d̂m = E(d̂im) =
1
n

n
i=1

d̂im =
1
n

n
i=1

d̂ix − d̂iy + D

2
, (3)

where n denotes the number of sample RSSI values in Rx and Ry, D is the known distance between ax and ay, and d̂ix and
d̂iy are the estimate distance from r ix and r iy by using Eq. (1), representing the distance from where the handover occurs
to ax and ay, respectively.

• Step 2: Estimation of the size of the handover area of two adjacent APs:

ĥ = E(ĥi) =
1
n

n
i=1

ĥi
=

1
n

n
i=1

(d̂ix + d̂iy − D). (4)

• Step 3: Estimation of the offset between the mobile device at pt and the handover boundary of the access point ax.

d̂ofst = E(d̂iofst) =
1
n

n
i=1

d̂iofst =
1
n

n
i=1

(d̂ix −
˙̂dt), (5)

where ˙̂dt denotes the estimate distance from pt to AP ax by Eq. (1).
• Step 4: Calculation of the distance of the mobile device at pt within the signal coverage area of ax.

d̂t = d̂m +
ĥ
2

− d̂ofst . (6)

Note, Eq. (6) differentiates the estimate of d̂t from each r ix and r iy via Eqs. (3), (4), and (5) from Step 1, 2 and 3. Thus, the
D-Log algorithm can provide accurate localization of a mobile device within the coverage area of ax. Once the distance to
the mid point and the interpolation of RSSI values of ax are determined, they can be applied to locate the mobile device at
any distance from the serving AP as long as they are within the range. In addition, Fig. 2 shows an illustration of dm, h and
dofst in D-Log algorithm. Specifically, Fig. 2(a) shows these parameters when the Wi-Fi AP coverage shape is considered as
circles theoretically, while Fig. 2(b) shows them when the coverage shape is irregular in practice.

3.3. Weighted D-Log algorithm

The WiFi logs can be used to determine the distribution of the RSSI values when the handover happen between two
adjacent APs ax and ay. Fig. 3 shows the distribution of these RSSI values collected in a real-world WiFi infrastructure in a
large shopping mall in Australia (detailed in Section 4), and it is observed that they do not follow a uniform distribution.
Highly frequent observations of the RSSI (here, around 2000 RSSI observations with r = −70 dB) bear higher impact on the
final D-Log estimate than the less frequent ones (e.g. the 400 observations with r = −90 dB). Commercial WiFi networks
optimized for coverage often set −70 dB as a threshold value for received signal strength [37]. Following this, we propose
a weighted D-Log algorithm by taking the RSSI sample frequency into consideration. Thus, we define the weighted version
of the simple expectation location estimator (in Eq. (2)) as:

µ̂(dm) = E(dm|rx) = E(d̂im) =
1

u
i
c ix

u
i=1

c ixd
i
m, (7)

where c ix is the frequency of r ix, u denotes the number of unique r ix, and
u

i c
i
x = n.
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(a) Theoretically circular shaped coverage. (b) Practically irregular-shaped coverage.

Fig. 2. Illustration of dm , h and dofst in D-Log algorithm with both theoretically circular shaped and practically irregular shaped coverage of several Wi-Fi
APs. Here, the irregular shaped Wi-Fi AP coverage is obtained by following the study of wireless performance and coverage from Cisco Meraki [36].

Fig. 3. Distribution of RSSI values when handover happen between two adjacent APs in a real-world WiFi log, discussed in Section 4.

Therefore, the corresponding weighted versions of d̂m, ĥ, d̂ofst and d̂t are defined as:

d̂′

m = E(d̂im) =

u
i=1

wi
x(d̂

i
x − d̂iy + D)

2
, (8)

ĥ′
= E(ĥi) =

u
i=1

wi
x(d̂

i
x + d̂iy − D), (9)

d̂′

ofst = E(d̂iofst) =

u
i=1

wi
x(d̂

i
x −

˙̂dt), (10)

d̂′

t = d̂′

m +
ĥ′

2
− d̂′

ofst , (11)

where wi
x =

cix
cix
, and c ix denotes the frequency of sample r ix.

3.4. Complexity analysis

One advantage of the proposedD-Log scheme is its low computational complexity. The complexity of theD-Log algorithm
is O(n), where n denotes the average number of log records per AP; the complexity of the weighted D-Log algorithm is O(u),
where u denotes the number of unique RSSI values per AP. This indicates that D-Log scheme is efficient and only depends on
the local log records for neighbouring APs, which enables the processing of large volume of records in parallel. In contrast,
the complexity of the other RSSI based localization methods are often much larger than D-Log. For example, the complexity
of machine learning based scene analysis (fingerprinting) models, is the same as that of the deployed machine learning
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(a) The distribution. (b) The (ECDF) CDF.

Fig. 4. The distribution and (ECDF) CDF of ε and the reference Gaussian distribution. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

methods, e.g., the complexity of SVM-based localization method is O(max(na, a) ·min(na, a)2) [38], where n is the number
of training records, and a is the number of APs.

3.5. Performance analysis

In this section, we provide a theoretical analysis of the performance of the unweighted D-Log algorithm.
The distance from where each r ix is observed to ax can be estimated with Eq. (1), although there is an error ε caused by

systematic and stochastic factors. For access point ax, we define the estimation from r ix as

d̂ix = dix + εi
x, (12)

where d̂ix is the distance estimation from r ix with Eq. (1), dix is the real distance, and εi
x is the error for this estimation. Then,

for access point ay, we obtain

d̂iy = diy + εi
y. (13)

We further assume that the estimation error ε from each sample RSSI value is independent and identically distributed
(i.i.d.), and we adopt the Gaussian distribution for theoretical analysis. This is motivated from the experimental results.
Specifically, Fig. 4(a) shows the distribution of ε in our controlled experiment, which is detailed in Section 4. The dashed
blue line depicts the observation empirical distribution of ε in the experiment, and the solid black line depicts the reference
Gaussian distribution with the mean and standard deviation of ε. Fig. 4(b) shows the Empirical distribution function (ECDF)
of ε (the dashed blue line) and the Cumulative Distribution Function (CDF) of the reference Gaussian distribution. It is
observed that the reference Gaussian distribution fits the observation distribution of ε (with D = 0.0558, p-value = 0.5609
in Kolmogorov–Smirnov test), and it is thus a suitable model for the following theoretical analysis.

Consequently, the Probability Density Function (PDF) of ε is:

p(ε) ∼ N(µε, σ
2
ε ). (14)

As stated in Eq. (2), we measure d̂ by applying the sample mean as the location estimator, and the distance on each
observed RSSI can be considered as an observation. In the first step of D-Log algorithm, for the calculation of d̂m, according
to Eqs. (3) and (14), we obtain

d̂m = E(dim) =
1
n

n
i=1

d̂ix − d̂iy + D

2
=

1
2
(dx − dy + D) +

1
2n

n
i=1

(εi
x − εi

y), (15)

where dx and dy are the real distances of the handover boundary for ax and ay, respectively. Similarly,

ĥ = E(ĥi) = (dx + dy − D) +
1
n

n
i=1

(εi
x + εi

y). (16)
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(a) The distribution of εd̂t with various n. (b) The trend of the standard error σd̂t with various n.

Fig. 5. The impact of n on εd̂t and σd̂t .

For the estimation of the offset between the mobile device at pt and the handover boundary of the access point ax,
according to Eqs. (5) and (14), we obtain

d̂ofst = E(d̂iofst) =
1
n

n
i=1

(d̂ix −
˙̂dt) = (dx − dt) +

1
n

n
i=1

(εi
x − εt), (17)

where dt is the real distance between the test point pt to ax, and εt is the error when calculating ˙̂dt .
Consequently, in the last step of D-Log, according to Eqs. (6), (15)–(17) and (14), we obtain:

d̂t = d̂m +
ĥ
2

− d̂ofst = dt +
1
2n

n
i=1

(εi
x − εi

y) +
1
n

n
i=1

(εi
x + εi

y) −
1
n

n
i=1

(εi
x − εt). (18)

Thus, according to Eqs. (18) and (14), we obtain the 100(1−α)% confidence interval CI(d̂t) for the estimation of d̂t , which
has been widely used to indicate the reliability of an estimation [39],

CI(d̂t) = dt ± z α
2


5σ 2

ε

n
, (19)

where z α
2
is a standard normal variate which exceeded with a probability of α

2 . Therefore, the standard error of d̂t is:

σd̂t =


5σ 2

ε

n
, (20)

where n denotes the sample size.

Theorem 1. The standard error σd̂t of D-Log scheme is bounded to be no more than

5σ 2

ε , with equality if and only if n = 1.

Proof. As the sample size n ≥ 1, based on Eq. (20), we obtain:

σd̂t ≤


5σ 2

ε , (21)

where the equality is satisfied when n = 1.

Fig. 5 shows the distribution of D-Log’s localization error, εd̂t , and the trend of σd̂t , with various n values in our real-world
indoor experiment environment, which is detailed in Section 4. Specifically, where n = 1, σd̂t meets the worst case with
the value of 11.9, as there is only 1 row of RSSI logs available. However, when more logs are available as shown in Fig. 5(b),
σd̂t starts to decrease as n increases. It indicates that (1) as n increases, σd̂t decreases; (2) D-Log has a floor level, which is
influenced by the localization environment.
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Table 2
Aggregate statistics of the WiFi log collected in a real-world
large indoor retail environment.

Number of user devices: 94,396

Number of AP association: 480,924
Number of visits: 183,745
Number of WiFi APs: 35

Average of AP association per AP: 13,741

Table 3
Most common manufacturers of used mobile devices.

Manufacturer # Manufacturer # Manufacturer #

Apple 66921 Unidentified 187 Xiaomi 22
Samsung 10587 Huawei 114 Toshiba 16
Generic (Android) 9 018 Amazon 106 ZTE 13
HTC 1861 Sony 90 Fujitsu 12
RIM 1284 Microsoft 82 Opera 11
SonyEricsson 697 Asus 53 KDDI 11
Nokia 585 Pantech 41 NEC 9
Google 401 Sharp 35 Alcatel 8
LG 347 DoCoMo 32 HP 7
Motorola 240 Acer 26 Lenovo 7

4. Data

In this section, we present the data used for the evaluation of the performance of the proposed D-Log scheme. We
evaluate the performance of the D-Log scheme in two environments: a controlled environment and a real-world large
indoor environment. The complexity of the two environments is different, and so is the evaluation setup. While in the
simulated environment, the mobile devices used in the training and testing set of the controlled environment are identical
and therefore the variability of the used WiFi is controlled, this is not the case in the real-world large indoor environment.

4.1. Experiment data

Here, we describe the experiment data from the two experimental environments: the controlled environment and the
real-world large indoor environment.

For the controlled environment, we set up an experimental WLAN with 4 access points in a university meeting room
(dimension: 7 m by 5 m). We have partitioned the room into 35 (1 m × 1 m) square grids, and used 16 of them as the test
locations. These test locations were located along walls and in locations not occupied by furniture. Then, we recorded the
RSSI values during handover of the carried mobile device (a smartphone) from one test AP to another. These recordings
supply the training RSSI logs for D-Log scheme. For testing purposes, we collected around 6000 sample RSSI records (about
360 per location) from all detected APs, which will be used to evaluate the performance of D-Log scheme and the compared
state-of-the-art localization methods.

Additionally, we have conducted real-world experiments in a large inner-city shoppingmall in Sydney, Australia, covered
by 67 WiFi APs across 90,000 square metres. We used three levels of the mall to conduct our experiments, in an area
of around 35,000 square metres covered by 35 WiFi APs. The WiFi log were collected from September 2012 to October
2013, and were stored in an external system. It contains around half a million AP access records from around 100,000
mobile devices. Specifically, the log includes the WiFi access point associated with the user’s mobile device sampled at
every 5 min, and the respective RSSI value for each association. These data are used as training data for the D-Log scheme
with some preprocessing that is detailed in Section 4.2. Table 2 shows the statistics of the log. Note, all user identifiable
information (registration details andWiFi MAC addresses) were replaced by a hash key in a non-reversible way. To examine
the localization performance in this real industry environment, we selected 43 test locations across the three floors of the
mall, and collected around 4000 sample RSSI records (around 100 per location) from all detected APs. Fig. 6 shows the
floor maps and the test locations. Specifically, we collected 10 test locations on the 1st floor, 15 on the 2nd floor, and 18
on the 3rd floor. Moreover, note this real-world RSSI log contains much complexities, which may influence all RSSI based
localization methods, e.g. the variance mobile devices/antenna/Wi-Fi chipsets. There are 694 different mobile models from
53 manufacturers in our collected WiFi logs, and Tables 3 and 4 show the most common manufacturers and models of the
used devices in the log, respectively.

4.2. Pre-processing the WiFi AP log

The real-world industry WiFi log we used was sampled at 5 min frequency for each user visit, and for each device, only
the RSSI values for current connected AP were logged. Table 5 shows a sample of the log for a specific user.
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(a) Level 1. (b) Level 2. (c) Level 3.

Fig. 6. The floor maps in the mall where the experiments are conducted. The red dots represent theWi-Fi APs, and the blue stars denote the test locations
where ground-truth RSSI information were collected. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 4
Most common models of used mobile devices.

Model # Model # Model #

iPhone (Apple) 54 873 Galaxy Nexus (Samsung) 420 BlackBerry 9780 (RIM) 177
iPad (Apple) 7 523 GT-I9305 (Samsung) 414 Desire HD (HTC) 173
iPod Touch (Apple) 4 525 GT-I9000 (Samsung) 407 Desire (HTC) 159
Android 4.1 (Generic) 4 173 GT-N7000 (Samsung) 358 PJ83100 (HTC) 145
GT-I9300 (Samsung) 2 791 Fennec (Generic) 291 LT26i (SonyEricsson) 142
GT-I9100 (Samsung) 2 602 BlackBerry Bold Touch 9900 (RIM) 261 BlackBerry 9800 (RIM) 139
Android (Generic) 1 989 Nexus 4 (Google) 231 Nexus S (Google) 130
Android 4.0 (Generic) 1 801 GT-S5830 (Samsung) 220 BlackBerry 9700 (RIM) 127
GT-N7100 (Samsung) 849 GT-I9305T (Samsung) 214 A510 (HTC) 126
Android 2.3 (Generic) 452 Unidentified (Generic) 199 S710E (HTC) 124

Table 5
Examples of the WiFi log for user E154GCHIJDESPLMX5KFJC.

Hashed MAC address WiFi AP RSSI Association time Disassociation time Duration (s)

E154GCHIJDESPLMX5KFJC AP 1 −76 2013-02-04 14:16:24 2013-02-04 14:21:24 300
E154GCHIJDESPLMX5KFJC AP3 −72 2013-02-04 14:21:24 2013-02-04 14:26:24 300
E154GCHIJDESPLMX5KFJC AP7 −75 2013-02-04 14:26:24 2013-02-04 14:31:24 300
· · · · · · · · · · · · · · · · · ·

This infrequent sampling rate from single RSSI sourcemakes it infeasible to apply existing localizationmethods, including
trilateration, scene analysis, proximity analysis and device freemethod. This is because all of these existingmethods require
RSSI traces frommultiple sources with frequent continuous sampling. So, doing localization based on this sort of data is not
trivial. We conducted some data pre-precessing as follows: (1) We carry two mobile devices (one IOS iPhone 4 and one
Android Samsung S4) to the mall to record the RSSI values when a handover happens between neighbouring APs, and treat
these RSSI values as the handover boundaries of corresponding APs; then (2) for each AP, we extract all the RSSI values that
are less than those identified handover boundaries from the real-world WiFi log, so as to estimate the distribution of the
RSSI valueswhen handovers happen. Finally, these extracted subset of RSSI values are used as training samples for the D-Log
scheme.

5. Experiment results

In this section, we present the experimental configuration and the performance of the proposed D-Log scheme in terms
of localization accuracy achieved by D-Log. Note, this localization relates to the determination of the distance of the mobile
device from the AP and therefore the reported error indicate the width of the band in which the mobile device is located.
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5.1. Experiment baselines

To examine the performance of D-Log scheme thoroughly, we compare the proposed D-Log scheme with two state-
of-the-art RSSI-based localization methods: scene analysis methods, and Path Loss model [1,2]. There are two reasons
we choose these two baselines: (1) By comparing with scene analysis, we demonstrate how closely the D-Log scheme
performs comparing to the state-of-the-art, because scene analysis is one of themost accurate andmost popular RSSI-based
localization methods; (2) the path loss model is selected to perform a fair comparison because it also makes an estimate
of the radius of the receiver like the D-Log scheme. For the scene analysis methods, we choose two algorithms: SVM-based
method [40] and the Bayesian Network-based method [30], given that these two are among the state-of-the-art learning
techniques applied for fingerprint-based indoor localization.

5.2. Experimental configuration

5.2.1. Evaluation metrics
The experiments were conducted on a PC running the Windows 7 Operating System with 8 GB RAM and Intel Core i7

CPU, and we conducted a 10-fold cross validation and report the results. Note that We deployed the well-known LibSVM1

package to perform the SVM-based method, and Weka (Data mining Software in Java2) to perform the Bayesian Network-
based method; For the proposed D-Log scheme and the state-of-the-art Path Loss model, we implemented them in Java.

Following literature [31], we apply the mean precision P(T ) and the mean absolute error (ε, localization accuracy) as
the measurement metric:

P(T ) =
|Tc |

|T |
, (22)

ε =


|dt − d̂t |
|T |

, (23)

where T is the test set, |Tc | denotes the number of test locations that are correctly assigned to its true location, |T | denotes
the size of T , including both correctly assigned and incorrectly assigned test locations, dt is the true distance, and the d̂t is
the estimated distance. For D-Log and Path Loss model, while calculating |Tc |, if dt − σε < d̂t < dt + σε , d̂t is considered as
the true location, otherwise false location. For SVM-based method [40] and the Bayesian Network-based method [30], they
output the labels of each test location. While calculating ε, if the output label is the real label of the test location, ε for this
test location is 0, otherwise the difference between the true distance dt and the distance from the AP to the output label
location, which is d̂t .

5.2.2. Parameter estimation
Like other localization methods, there are parameters in the proposed D-Log scheme, which are the parameters in the

path loss model as shown in Eq. (1). Some of these parameters are known (e.g. the transmitter output power), or can be
measured by site surveying process (e.g. path loss exponent e), but some others are hard to measure or measure accurately
in practice. For example, in the investigatedmall, a large variety of different brands andmodels of receivers (mobile phones)
are involved, which makes it infeasible to measure the receiver-side related parameters; the presence of obstructions and
people movement is changing frequently, which makes it hard to accurately measure other parameters, e.g. the path loss
exponent e and the standard deviation of shadow fading s [2].

Thus, similar to other localization methods again, some data mining techniques can be applied to estimate these
parameters. For example, Durgin et al. applied linear regression to estimate the path loss exponent e and the reference path
loss PL at 1 m transmitter–receiver separation by using pairwise RSSI measurements and log distances [1]. Recently, cross
validation has been widely used to estimate parameters of indoor localization models, e.g. kernel-based indoor localization
algorithms [41], machine learning based algorithms [42], and powerline positioning algorithms [43]. Following this, we
deploy cross validation to estimate the parameters of D-Log scheme by using pairwise RSSImeasurements and log distances.

Specifically, becausewe used the collected experimental data to both estimate the parameters of themodels and evaluate
them, we deployed a nested cross validation to ensure the final model evaluation is unbiased [44]. Note that, there are two
disjoint datasets in D-Log scheme, the RSSI logs, and the pairwise RSSI records and distances collected at test locations. We
call the RSSI logs the training set, and divide the pairwise RSSI records and distances collected at test locations into another
two disjoint subsets: the validation set and the test set. Therefore, the training set, the validation set and the test set are
independent to each other. Consequently, the learnt parameters will not overfit the data, and the final localization results
are unbiased [44,45].

1 https://www.csie.ntu.edu.tw/~cjlin/libsvm.
2 http://www.cs.waikato.ac.nz/ml/weka/.

https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
http://www.cs.waikato.ac.nz/ml/weka/
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Table 6
Comparison of localization precision in controlled environment. Note, weighted D-Log, D-Log and path lossmodel used logs of single-AP traces; SVM-based
method and Bayesian Network-Based Method used the RSSI records from multiple APs.

Weighted D-Log D-Log SVM-based Bayesian network-based Path loss

P(T ) 61.3% 60.1% 69.1% 66.9% 32.9%
ε (m) 0.93 1.01 0.91 1.03 1.82

Although theoretically the nested cross validation strategy can search and estimate the parameters in anyway, it is
practically helpful to obtain the ranges of these parameters as accurate as possible. To estimate the ranges of these
parameters accurately and to not disturb the investigated mall’s daily business (running 7 days), we set up a shopping mall
like simulation environment in the RMIT Indoor Positioning Lab. Specifically, we set up a Wi-Fi network in the simulation
environment with the same configurations of that in the investigation mall, e.g. the wireless networking standard 802.11n
(2.4 GHz) and the model of access points; and we used three different phones (one IOS iPhone 4, one Android Samsung
S4 and one HTC ONE) with a Java program installed to measure the receiver-side related parameters. Then, an expert, one
author of this paper, measured the ranges of all parameters, which are used to determine the possible candidate values for
each parameter. The detailed procedure of the deployed nested cross validation strategy is shown in Algorithm 1.

1 randomly divide the pairwise RSSI records and distances collected at test locations into k equal sized subsets;
2 for each subset do // outer loop
3 use this subset as test set, and the rest k − 1 subsets as validation set;
4 for each candidate value of the parameters in the measured ranges do // inner loop
5 use this candidate parameter to build D-Log model on the training RSSI Logs;
6 validate the model on the validation set and calculate localization error for each pair of RSSI records and

distances;
7 average the localization error of all pairs to get εvalidation on the validation set;
8 end
9 select parameters that minimize εvalidation;

10 build model with the learnt parameters, and calculate P(T ) and ε on the test set;
11 end
12 average P(T ) and ε on all test set as the final result;

Algorithm 1: Nested cross validation
Note that, the training set, the validation set and the test are disjoint to each other. The deployed nested cross validation

includes two loops: inner loop and outer loop. The inner loop is designed to estimate the parameters, which is a loop of a
variant leave-one-out cross validation in D-Log scheme due to the following two factors: (1) the training set is always the
same and is always disjoint with the validation set and the test set; (2) εvalidation is obtained by repeating and averaging the
calculation of localization error on each pair of RSSI records and distances in the validation set with current parameters. The
outer loop is used to evaluate the performance of the model, which is a standard k-fold cross validation, and we set k = 10
in this study.

5.3. Controlled environment

Here, we present the experiment results in the controlled environment, including the localization accuracy and the
impact of sample size.

5.3.1. Localization accuracy
Table 6 shows the results of localization precision P(T ) and ε in the controlled environment. It is obtained that, for P(T ),

the chi-squared test shows that there is no statistical significant difference (with chi-squared = 0.6735, p-value = 0.7141)
between D-Log, SVM-based method, and Bayesian Network-based method. This indicates that the D-Log scheme performs
well in comparison to the high-cost high-complexity scene analysis methods, SVM-based method and Bayesian Network-
based method. Furthermore, the D-Log scheme performs significantly better than the path loss model. More importantly,
D-Log scheme achieves similar performance to SVM-based method, Bayesian Network-based method in terms of ε. The
weighted D-Log algorithm achieves a localization error of 0.93 m, which is only slightly higher than that of the SVM-based
method (0.91 m); at the same time, it outperforms both Bayesian Network-based method (1.03 m) and the Path Loss model
(1.82 m). Overall, D-Log scheme achieves comparable localization accuracy to the high-cost high-complexity localization
methods.

5.3.2. Impact of sample size
D-Log scheme uses the RSSI values measured during handover between two neighbouring APs, so it is important to

examine the impact of the size of these sample RSSI values. Fig. 7 shows the performance of the D-Log scheme over the
number of RSSI values per AP in terms of both localization precision P(T ) and error ε. It is observed that, as the size of
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Fig. 7. The impact of sample size in the controlled environment.

Table 7
Single-floor localization performance in the real-world mall environment. Note, weighted D-Log, D-Log and path loss model used logs of single-AP traces;
SVM-based method and Bayesian Network-Based Method used the RSSI records from multiple APs.

Floor Metric Weighted D-Log D-Log SVM-based Bayesian network-based Path loss

1st P(T ) 92.3% 92.3% 96.1% 91.0% 10.3%
ε (m) 1.53 1.53 0.44 1.46 7.74

2nd P(T ) 81.6% 81.6% 89.5% 81.6% 21.1%
ε (m) 2.93 2.93 1.54 4.09 8.98

3rd P(T ) 74.3% 74.3% 84.4% 77.9% 44.9%
ε (m) 4.07 4.07 3.38 6.24 8.14

training RSSI values increases, P(T ) consistently increases and ε consistently decreases. This is as what we have analysed
in Eq. (20) in Section 3.5, because the confidence interval of D-Log’s estimation is proportional to the size of the sample
observations. When only several sample observations are available, the performance is inferior, but improves and stabilizes
when the sample size is greater than 10 observations in the controlled environment.

5.4. Large real-world environment

Here, we evaluate the proposed D-Log scheme in a real-world large indoor retail environment, an inner-city shopping
mall in Sydney, Australia, by using the anonymized real-worldWiFi log of an opt-in freeWiFi network operated by the mall
owner. Note that this real-world mall environment is different from the environment of the department meeting room in
the controlled environment, especially in terms of environment complexity, which may affect the values of RSSI readings,
including brands/models of mobile devices, antenna models, Wi-Fi chipsets [46], and people movement [47] etc.

5.4.1. Localization accuracy
Table 7 shows the localization accuracy in both P(T ) and ε within specific single floor. Here, all compared algorithms

assume the training set is restricted to the data collected on the same floor as the test location, an approaches replicated
from a similar experimental environment [48]. For P(T ), it is observed that D-log scheme performs comparatively to SVM-
based method and Bayesian Network-based method across all three tested floors, and the chi-squared test results confirm
that there is no significant difference in their performance: the 1st floor (chi-squared = 0.1508, p-value = 0.9274), the
2nd floor (chi-squared = 0.4939, p-value = 0.7812), the 3rd floor (chi-squared = 0.6645, p-value = 0.7173). For ε,
when the complexity of the test location increases from the 1st floor to the 3 rd floor, D-Log scheme starts outperforming
the Bayesian Network-based method. This indicates that in the complex environment, some scene analysis methods will be
limited to the capability of the deployed dataminingmethod. In contrast, D-Log exhibits strong robustness in these complex
environments.

Table 8 shows the results of P(T ) and ε acrossmultiple floors. To illustrate the performance of algorithms in this scenario,
following [48], we remove the floor information by projecting the training points collected on different floors to a single
plane, and execute all the compared algorithms. Again, the D-Log scheme significantly outperforms the Path Loss model
and Bayesian network-based method, and performs comparably well to the SVM-based method.

Overall, the D-Log scheme performs comparatively to the state-of-the-art localization algorithms while utilizing less
resources and being computationally less complex. In addition, we observe that in both single-floor and multiple-floor
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Table 8
Multi-floor localization performance in the real-world mall environment. Note, weighted D-Log, D-Log and path loss model used logs of single-AP traces;
SVM-based method and Bayesian Network-based method used the RSSI records from multiple APs.

Weighted D-Log D-Log SVM-based Bayesian network-based Path loss

P(T ) 81.1% 81.1% 84.3% 82.3% 28.4%
ε (m) 3.07 3.07 2.89 4.3 8.34

(a) Impact on P(T ). (b) Impact on ε.

Fig. 8. The impact of sampling rate in the real-world mall environment.

environments, weighted D-Log algorithm performs equivalently to the D-Log algorithm. This is due to the large size of
the WiFi log, enabling the two methods to converge in performance.

5.4.2. Impact of sampling rate
As analysed in Section 3.5, D-Log scheme can provide accurate localization accuracy by utilizing large RSSI logs, and it

is independent of the sampling rate when logging the WiFi RSSI traces. Fig. 8 shows the sample size and the P(T ) and ε
performance of D-Log algorithm when the sampling rate of our real-world WiFi logs varies from 5 min to 3 h. The sample
size is presented as the fraction of the sampling rate at the default 5 min. While the sampling rate drops from 5 min to 3 h,
P(T ) drops from 81.1% to 75.0%, and ε increases from 3.07 to 3.78 m. In other words, while the sampling rate drops 18
times, there is no corresponding reduction in P(T ) and ε. This indicates that the sampling rate of the WiFi logs has little
impact on the performance of D-Log scheme.

The small decrease of localization accuracy when sampling rate drops is caused by the drop of corresponding sample
sizes. Specifically, when sampling rate varies from 5 min to 3 h, the size of the corresponding RSSI samples drops by 75.4%.
A detailed discussion of the impact of sample size in this real-world environment is discussed in the following section.

5.4.3. Impact of sample size in real-world environment
In the real-world environment, the collected Wi-Fi logs capture heterogeneous mobile devices, thus impacting on

localization. We therefore examine the impact of this noisy training sample on the performance of the D-Log scheme. Fig. 9
shows the P(T ) and ε performance of D-Log in function of the training sample proportion used in the D-Log scheme, where
each result in the figure is executed 10 times and then averaged.Weobserve that P(T ) increases proportionallywith number
of training samples, while ε decreases, which is consistent with the findings from the controlled environment in Section 5.3.
Specifically, the first several samples can largely boost the performance of the D-Log algorithm, andmakes it outperform the
classic path lossmodel; the elbow-point is achieved at around 2% of training samples, which is around 250 training samples.
This indicates that in large complex environments, D-Log scheme is also robust to the noises of the training data, and can
achieve accuracy comparable with competing methods with a limited number of training samples. Recall that the accuracy
of the positioning relates to the determination of the distance of the mobile device from the AP, not to an exact point in 2D
space.

5.4.4. Impact of handover RSSI
To accurately estimate the distance between amobile device and the servicing AP, D-Log scheme requires the RSSI values

when handover happens between adjacent APs in the WiFi network. However, in some existing logs the RSSI values may
be collected at very coarse frequency, e.g. the 5 min sampling interval in the WiFi log we experimented with. To test the
applicability of such a coarsely sampled log, we have collected the accurate RSSI values at exact handover moments as a
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Fig. 9. The impact of sample size in the real-world environment.

Fig. 10. The impact of possible handover RSSI values.

baseline (see Section 4.2), and compared it to the subset of records estimated to have happened at, or close to, the handover.
Here, we discuss the impact of the uncertainty of the handover identification on the calibration of the D-Log scheme. The
baseline D-Log accuracy achieved based on the pre-processed input is compared to the following three methods:

• Average: uses the average of RSSI values of each AP in the log as the handover threshold;
• Fixed −70 dB: applies a fixed value of −70 dB as the handover threshold. This RSSI value is commonly suggested by

commercial WiFi network installation manuals, e.g. Cisco [37];
• Least RSSI: for this method, it is assumed that the potential handovers happened when the disassociation time of ax is

the same as the association time of ay, which is ax’s adjacent AP in theWiFi network (recall, that our logs have a sampling
frequency of 5min). Then, a limited fraction of the least of these RSSI values is used to select records assumed to relate to
handover RSSIs. Fig. 10 shows the performance of this method as a function of the fraction of least RSSI values. Initially,
when only a small proportion (nomore than 30%) of the least RSSI values are selected, the performance increases steeply;
beyond 30%, the performance deteriorates.

Table 9 shows the performance of thesemethods in terms of P(T ) and ε. We observe that: (1) the D-Log schemewith the
proposed pre-processing steps in Section 4.2 achieves the best performance; (2) D-Log schemewith possible handover RSSIs,
including Average, Fixed−70 dB [37] and 30% of least RSSI, outperforms significantly the path lossmodel. This indicates that
even when accurate handover RSSIs are not available, D-Log scheme still outperforms the state-of-the-art path loss model.
Furthermore, with minimal environment fingerprinting that is substantially simpler than fingerprinting required by other
methods, D-Log is able to achieve very good performance.
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Table 9
Comparison of possible handover RSSI values.

Pre-processing Average Fixed −70 dB [37] 30% of least RSSIs Path loss

P(T ) 81.1% 61.9% 59.5% 63.1% 28.4%
ε (m) 3.07 4.21 4.41 4.23 8.34

5.5. Discussion

The proposed D-Log scheme fulfils the five requirements introduced in the introduction of the paper:

1. non-intrusive: D-Log scheme works on the logs of discrete single-AP RSSI traces collected on the AP side, and does not
need any information related with the client mobile devices, e.g. no need to install apps, or turning-on of phone sensors;

2. generic: as long as there is an overlap between the signal coverage areas of two adjacent APs, a valid localization can
be performed. Note this is generally a priority in WiFi network design. Similarly, the transmitting power of all APs is
typically standard and identical for large-scale deployments and can be found in manufacturer’s manuals [37];

3. light-weight: the proposed D-Log scheme is composed of simple computational components with only basic
computational requirements;

4. effective: as long as a mobile device connects to theWiFi network, its RSSI value can be identified. Thus, D-Log can make
a valid estimate of the radius to the connected AP;

5. accurate: the accuracy of the D-Log scheme is comparable to other state-of-the-art RSSI-based localization methods as
shownby our analysis in Section 3.5, with values sufficient for applications requiring an estimate of the immediate spatial
context of the user.

One limitation of the D-Log scheme is that it builds on the Path Lossmodel which requires certain parameters of theWiFi
network to be known, as shown in Eq. (1). These parameters are known or can be measured by site surveying process, or
can be learnt by using cross validation as shown in Section 5.2.2.

Due to the above discussed characteristics, D-Log can be applied in a range of applications, e.g. fine-grained spatio-
temporal analysis, spatial data management and indoor behaviour analysis [8]. For example, Fig. 11 shows how D-Log
scheme can help when only discrete single AP-traces are available. Specifically, the figure on the left shows the D-Log’s
positioning of two particular mobile devices (the two purple stars). Namely, for each mobile device, the red line denotes
the mean of the distribution of the estimated distance between the mobile device and its serving AP, and the pink region
corresponds to the standard deviation around the estimated distance. Note that theoretically both the red line and the
corresponding pink region are circular rings, but in practice this region’s geometry may not resemble a circle due to some
reasons, e.g. the varying signal strength distribution. The path loss model can also position the device in a similar way,
but with much worse accuracy than that of D-Log, which is theoretically analysed in Section 3.5. The application of D-
Log is highlighted in inset (right), showing localization improvement (the dark cyan line and the corresponding light cyan
region) over simple service area positioning approximated by a Voronoi polygon [49] (thick blue line) and adjusted Voronoi
regions (orange line), each centred on a single AP, that encompass all the points that are closest to that AP and accessible
to the visitors based on the floorplan layout data [50]. Specifically, take the test mobile device near the bottom as an
example. The corresponding adjusted Voronoi region covers around 319 m2, and D-Log positions it in a circular region
of approximately 57 m2. By overlapping the D-Log positioning results with the adjusted Voronoi region, the localization of
the device is improved to amore accurate region of approximately 33m2 as shown in Fig. 11 (right). The computational cost
of determining this enhanced region is only linearly proportional to the number of locations considered.

Finally, like other RSSI based localization methods, the layouts of the environment or the configurations of APs affect the
proposed D-Log scheme. If they change, new AP logs need to be collected before positioning. However, the layout does not
change frequently, hence data collection and model re-training will occur only as required.

6. Conclusions

In this paper, we investigated the following problem: How to perform accurate indoor localization using large-scale logs of
discrete single-AP RSSI traces with low sampling rate?Wehave provided a novelmeans of post-hoc localization scheme, which
is based on WiFi logs only, named the D-Log scheme, and proposed two algorithms: the D-Log algorithm and the weighted
D-Log algorithm, with D-Log focusing on accuracy and weighted D-Log focusing on efficiency. While D-Log does not allow
for the exact computation of the coordinates of the user’s position, our contribution is to enhance the position estimation
of post-hoc localization based on logs of single-AP traces with infrequent sampling rates. D-Log emerges as a novel means
of localization enhancement which is simple and allows for improved estimation of the spatial context of the device in an
indoor environment. In addition, high absolute accuracy is not always necessary. Approaches enabling contextual reasoning
based on topological relationships of objects with approximate boundaries, such as the egg-yolk model [51,52] can be used
to improve the estimate of the spatial context in which a user is active. We suggest that, by analysing spatial relations of
vague regions [53], we can improve our estimates of spatial indoor behaviour of users and thus improve our estimates and
predictions of indoor information needs [54,5]. Coupledwith detailed knowledge of the environmental layout, D-Log enables
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Fig. 11. Illustration of the aim of D-Log (left), and how D-Log can help in reasoning about the tracked device location in spatial data management (right).
The band around the ring indicates the accuracy of the D-Log positioning. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

a substantially improved estimation of the likely space in which a user may be located. Together with other signal about the
users behaviour (movement history, web browsing logs), D-Log enables sophisticated reasoning about the users’ location.
Accurate estimates of the indoor context (e.g., proximity to a specific shopping mall) are critical for the improvement of
indoor services and have great economical potential in the near future. In the future, we plan to combine D-Log scheme
with trilateration to get better localization performance.
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