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a  b  s  t  r  a  c  t

Variables  subject  to  an order  restriction,  for instance  Y ≤ X,  have  a  bivariate  distribution
over  a non-rectangular  joint  domain  that  entails  a non-null  and potentially  large  structural
relation even  if the  variables  show  no  association  (in  the  sense  that  particular  ranges  of
values of  X  do  not  co-occur  with  particular  ranges  of  values  of  Y). Order  restrictions  affect  a
number  of  scientometric  indices  (including  the h index  and  its  variants)  that  are  routinely
subjected  to  correlational  analyses  to assess  whether  they  provide  redundant  information,
but these  correlations  are  contaminated  by  the  structural  relation.  This  paper  proposes
an alternative  definition  of  association  between  variables  subject  to  an  order  restriction
that  eliminates  their  structural  relation  and  reverts  to the  conventional  definition  when
applied  to variables  that  are  not  subject  to  order  restrictions.  This  alternative  definition  is
illustrated  in  a number  of  theoretical  cases  and  it is also  applied  to  empirical  data  involving
scientometric  indices  subject  to an  order  restriction.  A  test  statistic  is  also  derived  which
allows  testing  for the  significance  of  an  association  between  variables  subject  to  an  order
restriction.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many variants of Hirsch’s (2005) h index and many alternative indices of a researcher’s impact have been proposed
whose relative merits have been evaluated using correlational analyses. For instance, Bornmann, Mutz, Hug, & Daniel
(2011) reviewed papers reporting correlations between the h index and 37 of its variants in search for evidence that might
indicate whether these variants provide added information not carried by the h index itself. The founding assumption
of their study was that “a high correlation between the h index and its variants would indicate that the h index vari-
ants hardly provide added information to the h index” (Bornmann et al., 2011, p. 346). Also in the same vein, Schreiber,
Malesios, and Psarakis (2012) reported the results of an exploratory factor analysis involving the h index, 17 of its vari-

ants, and other bibliometric indicators. In both of these studies, correlations were used as indicators of the extent to which
variables are associated and not as measures of the strength of a (presumed or established) linear relation between the
variables.
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The use of correlation as an indicator of strength of association is widespread for assessing the extent to which several
ariables carry similar information, as is clear in the studies of Bornmann et al. (2011) or Schreiber et al. (2012).  But some of
he variables involved in these studies have characteristics that spuriously inflate correlations and can make variables that
re stochastically independent appear to have some association. Specifically, the relation between the h index and some of
ts variants (denoted h’ here, to use a single symbol to refer to any of these variants) is subject to an order restriction. For
nstance, the order restriction 0 ≤ h′ ≤ h holds when h′ is the second or any higher component of the multidimensional h
ndex of García-Pérez (2009) and the order restriction h ≤ h′ < h + 1 holds when h′ is the fractional h index of Ruane and Tol
2008).

Note that the order restrictions just mentioned are structural (e.g., the value of Y cannot exceed the value of X for theoretical
easons) rather than simply empirical (e.g., when the value of Y does not happen to exceed the value of X in this particular
ample). The methods presented in this paper apply to variables subject to structural order restrictions (or, for short, order
estrictions), not to variables that just happen to show an empirical order relation in the sample of concern. Rosenberg (2011)
eviewed variants of the h index (and alternatives to it) and stated the order restrictions that govern their relationships. Order
estrictions are also found in many other fields and affect, for instance, variables that have a joint multinomial distribution
uch as successive scores in answer-until-correct procedures (García-Pérez, 1990; Parks & Yonelinas, 2009; Kellen & Klauer,
011) or variables that relate to time such as age at diagnosis and years since diagnosis (Zebrack & Chesler, 2001), time
ince the death of a tree and time from death to fall (Storaunet & Rolstad, 2002), age and duration of smoking (Bain et al.,
004), or age and years since menopause (Rossouw et al., 2007). All variables subject to order restrictions have the additional
haracteristic that they have a lower bound (which also lies usually at zero); the methods presented in this paper apply to
ariables bounded low although the lower bound does not need to be zero.

Order restrictions limit the domain of the joint distribution of variables, which is no longer the Cartesian product of the
omain of each variable. This characteristic introduces a structural relation (and a non-null correlation) that can be very high
y conventional measures even when the variables involved show no association in the sense that a researcher actually
ants to assess, namely, whether particular ranges of values of X co-occur with particular ranges of values of Y within its
omain. Although this issue will be addressed in depth in subsequent sections of this paper, the consequences of using

 conventional measure of correlation with variables subject to an order restriction should be noted. Consider Bornmann
t al.’s (2011) study. They found (see their Fig. 1) that most of the h-index variants have correlations in excess of 0.8 with
, that a good number of them have correlations in excess of 0.9, and that only two variants have correlations with h that
re sufficiently low so as to consider that they actually “make a non-redundant contribution to the h index” (Bornmann
t al., 2011, p. 346). Interestingly, the strength of the correlations reported by Bornmann et al. goes hand in hand with the
trength of the structural relations imposed by the underlying order restrictions (which are described by Rosenberg, 2011).
hese range from totally absent (when no order restriction exists and the product-moment correlation actually measures
he strength of empirical association) through mild (when an order restriction enforces a non-rectangular but non-slanted
oint domain, as will be shown in Fig. 1) to strong (when an order restriction enforces a non-rectangular and highly slanted
oint domain, as will be shown in Fig. 3). In the latter two cases, the absence of data in regions of a putative rectangular
omain is incorrectly quantified by the product-moment correlation as evidence of empirical association, not as a structural
eature of the order restriction. In these cases, the association between the variables must be measured with consideration
f the particular shape of their joint domain. Areas of the joint domain that are structurally deprived of data should not
puriously inflate measures of the empirical (functional)  association between the variables, which is solely indicated by how
ata are distributed over the joint domain. The methods presented in this paper assess this functional association.

Assessment of the association between variables subject to an order restriction thus requires an alternative approach that
eparates true association from the uninteresting structural relation enforced by the order restriction. This paper presents

 procedure that accomplishes this goal. A test statistic is also derived which allows checking for a significant association
nce the structural relation has been removed. The procedure is illustrated with empirical data.

. Failure of conventional definitions and measures when order restrictions exist

Two random variables X and Y are defined to be stochastically independent if and only if their joint density fXY equals the
roduct of their unconditional (marginal) densities fX and fY, that is, if fXY(x, y) = fX(x) fY(y). A consequence of this definition

s that the correlation between X and Y is null for stochastically independent variables whose joint distribution has domain
X × DY, where DX and DY are the domains of X and Y. The correlation between X and Y is thus often used as an index
f association. In some cases (e.g., the bivariate normal distribution), the correlation � is also one of the parameters of
he distribution, but a specific parameter reflecting the correlation between variables is often not present and, hence, the
orrelation must be computed from the specific joint distribution of the variables. This is true of many bivariate distributions,
nd it is also true for the joint distribution of variables subject to order restrictions.

Order restrictions create singular problems for the assessment of stochastic independence and the interpretation of
orrelation coefficients. Structural relations arise in these cases because the domain of the joint distribution of such variables

s a non-rectangular region of DX × DY: The joint density of X and Y cannot equal the product of the densities of X and Y and
t is instead structurally null within some region of DX × DY. Then, the correlation between X and Y is mostly determined by
his structural relation and it is sometimes only minimally affected by the peculiarities of the joint distribution of X and Y
ithin the restricted domain, whose analysis would reveal whether or not the variables are associated. Variables subject to
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T

0

Variable Y
0

T

Variable X

(a) ρXY = 0.5

T/2

0

-T/2

Transformed variable Y* 0

T

Variable X

(b) ρXY* = 0

Fig. 1. (a) Variables subject to an order restriction and with a uniform joint distribution, yielding a structural correlation of 0.5 despite the lack of any real

association (i.e., the distribution of Y is uniform at all values of X and only the range of Y varies with X as a consequence of the order restriction). Projection
planes show the marginal distribution of each variable. (b) Transformation that reshapes the joint domain so that the structural correlation is removed and
the  computed correlation is 0.

an order restriction generally have a lower bound (e.g., all of the variables mentioned in the Introduction have a lower bound
at 0) and some of them also have a finite upper bound, but the presence of finite or infinite upper bounds is inconsequential
for our purposes here.

To illustrate the problem that order restrictions cause for assessments of stochastic independence, consider two vari-
ables that are subject to the order restriction Y ≤ X. To simplify the presentation, and without loss of generality, also consider
that X is bounded on [0,T] so that the domain of the joint distribution of X and Y is the region of [0,T] × [0,T] below the
diagonal (i.e., the joint density is structurally null above the diagonal). The lower bound could certainly differ from 0 with-
out affecting our argument, and the upper bound T could be arbitrarily large and could even be removed also without
affecting our argument. Consider also that X and Y have triangular marginal densities fX(x) = 2x/T2 and fY(y) = 2(T  − y)/T2,
with fY|X(y|x) = 1/x  so that the joint probability density is fXY(x, y) = 2/T2 and, thus, it is uniform over the joint domain (see
Fig. 1a). These variables do not have any association beyond that implied by their structural relation: Their joint distribu-
tion is uniform. Yet, fXY(x, y) /= fX(x)fY(y), implying a lack of stochastic independence by the conventional definition. Simple
computations show that �X ≡ E(X) = 2T/3, �Y ≡ E(Y) = T/3, �11 ≡ E(XY) = T2/4, �2

X ≡ var(X) = T2/18, �2
Y ≡ var(Y) = T2/18, and

�XY ≡ cov(X, Y) = T2/36. Thus, �XY ≡ corr(X, Y) = �XY/�X �Y = 0.5, which is defined as the structural correlation under the order
restriction, that is, the correlation that two variables displaying no association within the domain of their joint distri-
bution will have as a result of this particular order restriction. It is also apparent from the triangular shape of the joint
domain in Fig. 1a that correlation coefficients under alternative joint distributions for X and Y will hardly ever be negative
or substantially smaller than 0.5. These characteristics cannot be used to interpret conventional correlation as a measure
of association in these cases because the range of possible correlation coefficients varies with the type of order restriction
(see Fig. 4).

A related problem is that conventional significance tests for the correlation coefficient cannot distinguish structural
correlation from actual association. Thus, these tests will almost always reject the null hypothesis on the basis of a structural
relation that is known beforehand and, thus, uninteresting. Alternative definitions and measures of association are thus
needed. These definitions should also reduce to the conventional definitions for variables not subject to order restrictions,
and they should also lend themselves to significance tests.

3. An alternative definition of stochastic independence under order restrictions

Let X and Y be random variables with distributions on [0,∞)  and subject to a general order restriction of the type
ginf(x) ≤ Y ≤ gsup(x), for arbitrary functions ginf and gsup satisfying ginf ≤ gsup. The simple order restriction in Fig. 1a implies
ginf(x) = 0 and gsup(x) = x, and this expression can also accommodate the absence of order restrictions if ginf and gsup are both
independent of X.

A definition of stochastic independence between variables subject to order restrictions must bypass the property fXY(x,
y) = fX(x) fY(y), which is never attainable for the reasons stated before. The underlying property fY|X(y|x) = fY(y) of stochastically
independent variables is also not attainable under order restrictions because the conditional distributions are bounded on
[ginf(x), gsup(x)] whereas the unconditional distribution is bounded on [0,∞).  A final property of (unrestricted) independent
variables that is convenient for use with variables subject to an order restriction is E(Y|X) = E(Y). With unrestricted variables,
this property implies that E(Y|X) as a function of X describes a horizontal line, which is the reference line for assessments
of stochastic independence with unrestricted variables. In these circumstances, positive (negative) association implies that

E(Y|X) tends to increase (decrease) with X, although not necessarily linearly.

Under an order restriction, the shape of the joint domain of X and Y is not rectangular. Yet, the preceding property
can be adapted to set a suitable reference line (not necessarily straight) for the definition of stochastic independence with
restricted variables and for distinguishing positive from negative association. Specifically, consider the line describing how
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Fig. 2. Variables subject to an order restriction in the original domain (top row) and after the transformation that reshapes their joint domain (bottom
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ow).  Projection planes show the marginal distribution of each variable. (a) Positive association between the variables, whose magnitude is assessed in the
eshaped domain. (b) Negative association between the variables, whose magnitude and sign is assessed in the reshaped domain.

he midpoint of the range of Y changes as a function of X under the order restriction. This line is m(x) = (ginf(x) + gsup(x))/2,
hich partitions the joint domain into upper and lower halves of equal area. Then, define X and Y to be independent if E(Y|X)

s a function of X varies as m does. For the case in Fig. 1a, where m(x) = x/2, X and Y are independent because E(Y|X) = x/2 also.
Using correlation as a measure of stochastic independence (association) between X and Y under this definition requires

wo steps. First, reshape the domain by defining Y* = Y − m(x). With this transformation, the joint domain of X and Y* becomes
(gsup(x) − ginf(x))/2 ≤ Y* ≤ (gsup(x) − ginf(x))/2 and the transformation thus makes this joint domain bilaterally symmetric
bout Y* = 0 (see Fig. 1b). This transformation does not render a rectangular joint domain for X and Y* but it achieves the
ufficient goal of removing the structural relation by reshaping the joint domain to be bilaterally symmetric about Y* = 0.
n additional property of this transformation is that the reference line Y = m(x) in the original domain becomes Y* = 0 in the

ransformed domain, a horizontal line like that which holds for unrestricted variables. Once the joint domain is reshaped,
he second step consists of measuring the association between X and Y as the product-moment correlation between X and
*. With empirical data, this implies applying the transformation to obtain data for Y* from the original data in Y. For the
ase in Fig. 1, this yields �Y∗ = 0, �11∗ ≡ E(XY∗) = 0, �2

Y∗ = T2/24, �XY∗ = 0, and �XY∗ = 0. Given the uniform joint density of
 and Y in Fig. 1a, a null correlation seems more adequate as a measure of association between X and Y than the (structural)
orrelation of 0.5 in the original domain. And note that all of this reverts to the conventional approach in the absence of
rder restrictions: For variables bounded on [0,T], with T arbitrarily large in case the variables are unbounded high, lack of an
rder restriction implies ginf(x) = 0 and gsup(x) = T so that Y* = Y − T/2 and �XY∗ = �XY because only an inconsequential linear
ransformation of Y is involved.

To illustrate, Fig. 2 shows two additional examples involving different true associations between variables with a com-
on  structural relation determined by the order restriction Y ≤ X, with X also bounded on [0,T]. Hence, m(x) = x/2 again.

n both cases, X has the marginal triangular density fX(x) = 2x/T2. In Fig. 2a, fY|X(y|x) = 2y/x2 so that fXY(x, y) = 4y/xT2 and
Y(y) = −4yln(y/T)/T2. Thus, E(Y|X) = 2x/3, which increases with X faster than m does. The correlation between X and Y is

XY =
√

8/17 ≈ 0.686, slightly in excess of the structural correlation of 0.5. Instead, �XY∗ = 1/
√

19 ≈ 0.229. In Fig. 2b, on
2 2 2
he other hand, fY|X(y|x) = 2(x  − y)/x so that fXY(x, y) = 4(y  − x)/xT and fY(y) = 4(T  − y + yln(y/T))/T . Now E(Y|X) = x/3, which

ncreases with X slower than m does. Here, �XY =
√

2/11 ≈ 0.426, still positive and only slightly lower than the structural
orrelation of 0.5. Instead, �XY∗ = −1/

√
19 ≈ −0.229.
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Fig. 3. Variables subject to an alternative order restriction in the original domain (top row) and in the reshaped domain (bottom row). Projection planes
show  the marginal distribution of each variable. The structural correlation is positive and high in the original domain and the isolated correlation between
the  variables can only be assessed in the reshaped domain. (a) Positive association, (b) null association and (c) negative association.
The sign of the association between X and Y estimated through the correlation between X and Y* is perhaps better
understood on consideration of the order restriction illustrated in Fig. 3, where ginf(x) = 4x/5 and gsup(x) = (4x  + T)/5 so that
m(x) = 4x/5 + T/10. Order restrictions such that the lower and upper bounds of Y both vary with X also affect some h index
variants, as discussed in the Introduction. As seen in the top panels of Fig. 3, the shape of the joint domain makes any possible
correlation between X and Y measured in the original domain essentially positive and very high. Yet, the form of the joint den-
sity of X and Y within this narrowly slanted domain may actually imply positive, null, or negative associations that are only
apparent in the reshaped domain (bottom panels of Fig. 3). The marginal distribution of X is uniform and given by fX(x) = 1/T
in the three sample cases of Fig. 3, which only differ as to the form of the conditional distribution of Y. In Fig. 3a, fY|X(y|x) has
a triangular distribution with a = ginf(x) = 4x/5, b = gsup(x) = (4x  + T)/5, and c = x (see Appendix A). Then, E(Y|X) = 13x/15 + T/15,
implying a positive association because E(Y|X) increases with X faster than m does. In Fig. 3b, fY|X(y|x) = 5/T, a uniform distribu-
tion for which E(Y|X) = 4x/5 + T/10 = m(x), thus implying no association. Finally, in Fig. 3c, fY|X(y|x) has a triangular distribution
with a = ginf(x) = 4x/5, b = gsup(x) = (4x  + T)/5, and c = 3x/5 + T/5. Then, E(Y|X) = 11x/15 + 2T/15 increases with X slower than m
does and implies a negative association.

To further document the consequences of structural relations on conventional measures of association and how our
procedure handles these cases, simulation studies were carried out to explore the range of values attainable by �XY∗ in
comparison to those of �XY . Samples of 500 paired observations in X and Y were drawn from each of 1000 different joint
distributions all of which were subject to the order restriction Y ≤ X. True association was again manipulated by altering
the way in which the conditional distribution of Y varies with X. Without loss of generality, X was  bounded on [0,T]
with T = 20. In one set of simulations, X had the triangular density fX(x) = 2x/T2; in another set, X had the uniform den-
sity fX(x) = 1/T.  In both sets of simulations Y had a conditional distribution on [0,X] given by a scaled beta density with
parameters v and w that varied randomly across replications such that v and w were independent from one another and
uniformly distributed on [0.5,10]. Pseudo-random variates from these distributions were drawn using NAG subroutines
(Numerical Algorithms Group, 1999). For each sample, correlation coefficients rxy and rxy* were computed and a scatter
plot of the resultant values is shown in Fig. 4a for the triangular distribution of X and in Fig. 4b for the uniform distri-
bution of X. A somewhat tight but not deterministic relation can be observed between rxy and rxy* and, interestingly, rxy*
covers adequately the range [−1,1] whereas rxy is always positive and in excess of 0.2 (Fig. 4a) or 0.3 (Fig. 4b). Positive
values for rxy arise always from the order restriction Y ≤ X, even though X and Y were indeed negatively associated in many
cases.

In another simulation, order restrictions had the form in Fig. 3 with conditional distributions for Y given by two-sided
power distributions (van Dorp and Kotz, 2002; see Appendix A) that yielded true associations that varied across replications
from very strong and negative to very strong and positive. In this case (results not shown), r also covered adequately the
xy*
range [−1,1] whereas rxy was invariably greater than 0.965.
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n  the simulation, each sample of size 500.

. A significance test for the null hypothesis H0 : �XY∗ = 0

Measuring the association between variables subject to an order restriction is only the first step toward establishing
 significant association. A number of statistics are available for testing the null hypothesis H0 : �XY = 0 with unrestricted
ariables and these have been shown to be robust to violations of bivariate normality (e.g., Edgell & Noon, 1984; Hayes, 1996;
owalski, 1972; Kraemer, 1980; Subrahmaniam & Gajjar, 1980; van den Brink, 1988; Zimmerman, Zumbo, & Williams, 2003).
et, with variables subject to an order restriction and in the XY* space defined above, the accuracy of these test statistics is
ncertain because of the bounded and non-rectangular domain.

Simulations were thus conducted to investigate the validity of the conventional statistic

R = rxy∗
√

n − 2√
1 − r2

xy∗

(1)

sed in the domain of X and Y*. In these simulations, X was  again bounded on [0,T] with T = 20. Two  pairs of conditions
ere considered. In the first pair, the order restriction Y ≤ X in Fig. 1 was used; in the second pair, the order restriction

x/5 ≤ Y ≤ (4x  + T)/5 in Fig. 3 was used (see Fig. 5a). Thus, in the reshaped domain, X was always bounded on [0,T] whereas
* was bounded on [−X/2,X/2] in the first pair and on [−T/10,T/10] in the second pair (see Fig. 5b). Note that the argument
nd the validity of the simulations hold for arbitrarily large T (even if it goes to infinity). The two conditions within each pair
iffered only in that the marginal density of X was either a triangular distribution with a = 0, b = T, and c = T, or a triangular
istribution with a = 0, b = T, and c = T/2 (see Fig. 5c). The conditional distribution of Y was  always triangular with a = 0, b = x,
nd c = x/2 for the first pair of conditions and with a = 4x/5, b = (4x  + T)/5, and c = (8x  + T)/10 for the second pair (see Fig. 5d).
n each condition, 50,000 samples of n paired observations were drawn from the applicable joint distribution of X and Y,

ith n ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}. For each sample, data in Y were first transformed to render data in Y*,
hen the statistic in Eq. (1) was computed, and the proportion of rejections across the 50,000 samples was  determined for
wo-sided tests with  ̨ ∈ {0.01, 0.05, 0.10}. Fig. 5e shows the distribution of the test statistic R across the 50,000 samples with

 = 200 in each of the four simulation conditions, along with the asymptotic t distribution with n − 2 degrees of freedom.
ig. 5f shows the empirical size of the test as a function of sample size in each simulation condition.

Clearly, the conventional statistic in Eq. (1) is overly inaccurate to test H0 : �XY∗ = 0 when the order restriction renders a
on-rectangular joint domain in XY* space (left half of Fig. 5). In these cases, the statistic can yield conservative or liberal tests
ccording to the form of the joint distribution. In contrast, when the order restriction renders a rectangular joint domain
n XY* space (right half of Fig. 3), the conventional statistic is still accurate, providing further evidence of its robustness to
ounded domains and non-normal distributions.

In search for a dependable test statistic, we used the delta method to obtain an asymptotically normal distribution for
xy∗ while making no assumptions other than �XY∗ = 0. The derivation is in Appendix B, which shows that the mean of the

istribution of rxy∗ is zero and its variance is

�2
r = �2

X�2
Y∗ + �2

Y∗ �2
X − 2�2

X�2
Y∗ + 6�X�Y∗ �11 − 2�X�12 − 2�Y∗ �21 + �22 − �2

11

n�2
X�2

Y∗
, (2)
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Fig. 5. Simulation results on the accuracy of the conventional test statistic in Eq. (1) under four conditions: two types of order restriction crossed with two
forms of marginal distribution for X. (a) Order restriction in the joint XY domain. (b) Reshaped joint domain. (c) Marginal distribution of X. (d) Conditional
distribution of Y in the original domain. (e) Empirical sampling distribution of the test statistic for n = 200 (histogram, based on 50,000 replications) and
theoretical t distribution with n − 2 degrees of freedom (continuous curve). (f) Accuracy of the test as a function of sample size at nominal test sizes  ̨ ∈ {0.01,
0.05, 0.10} (red, green, and blue strands). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the
article.)
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Fig. 6. Simulation results on the accuracy of the proposed test statistic in Eq. (5) under the same conditions as in Fig. 5. Only the reshaped domain is plotted
in  (a) for reference; the original domain, the marginal distributions of X, and the conditional distributions of Y remain as illustrated in Fig. 5. (b) Empirical
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ampling distribution of the test statistic for n = 200 (histogram, also based on 50,000 replications) and theoretical t distribution with n − 2 degrees of
reedom (continuous curve). (c) Accuracy of the test as a function of sample size, using the same conventions as in Fig. 5. Note that the test statistic is
ccurate also when the joint domain in XY* space does not have a rectangular shape.

where �jk = E(XjY∗k). We  then repeated the simulation but now using

∨
R = rxy∗

�r
(3)

s a test statistic, where �r was computed using the known distributions of X and Y*.Use of
∨
R in Eq. (3) yielded accurate tests

egardless of the shape of the XY* domain (results not shown). However, the form of the distributions of X and Y will be
nknown in practical applications and, then, the information needed to compute �r will not be available. We thus considered
stimating �2

r from the data through

s2
r =

X̄2s2
y∗ + Ȳ∗2s2

x − 2X̄2Ȳ∗2 + 6X̄Ȳ∗�̂11 − 2X̄ �̂12 − 2Ȳ∗�̂21 + �̂22 − �̂2
11

(n − 2)s2
x s2

y∗
, (4)

here �jk = 1
n

n∑
i=1

Xj
i
Y∗k

i
, and then tested the null hypothesis with the modified statistic

∨
R = rXY∗

sr
(5)

he factor n − 2 in the denominator of Eq. (4) is an approximation derived from extensive simulations which also showed
hat the test statistic in Eq. (5) seems to have a t distribution with n − 2 degrees of freedom. Fig. 6 shows results of application
f this test statistic in a replication of the simulation study whose results were reported in Fig. 5. Clearly, the test statistic in
q. (5) is accurate and insensitive to the shape of the joint domain in XY* space.
. Empirical illustration

Three empirical applications of the procedure just described are used to illustrate it in the context of assessing potentially
edundant information provided by variants of the h index. As discussed in the Introduction, there is concern as to whether
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variants of the h index provide additional information not included in the h index itself, and correlational methods are
typically used to investigate this issue (e.g., Bornmann et al., 2011; Schreiber et al., 2012). Because such variants, extensions,
or alternatives are often subject to order restrictions with respect to the h index, these analyses are contaminated by structural
relations.

Our first illustration assesses the strength of association between the conventional h index and a variant denoted h+
1 by

Ruane and Tol (2008),  which represents a fractional increase over h. Thus, h ≤ h+
1 < h + 1, yielding a joint domain analogous

to that illustrated in Fig. 3 with ginf(x) = x and gsup(x) = x + 1 under the general form of the order restriction. Ruane and Tol
(2008) reported a Spearman rank correlation of 0.92 between h and h+

1 , which is unsurprisingly high given the narrow and
positively slanted domain of their joint distribution. Also, h is integer-valued by definition and, thus, a high and positive
rank correlation is also expected because the fractional increase that h+

1 entails cannot essentially alter the ranking: h+
1 only

potentially unties cases that are tied in h. The product-moment correlation between h and h+
1 for data reported in Table 1 of

Ruane and Tol (2008) is 0.987; with the procedure described here, the correlation is instead −0.388 (
∨
R = −0.842, p = 0.427,

two-sided). Because the reshaped domain is rectangular under this order restriction, the conventional statistic in Eq. (1)
would also have been appropriate, which yields an analogous result: R = −1.115, with a two-sided p = 0.302. Removal of the
strong structural relation between h and h+

1 thus reveals that these indices have a weak negative association for these data:
The higher is h, the smaller is the fractional increase that h+

1 brings. But the association is not significant and, hence, h+
1

provides unique information.
In our second illustration, the strength of association was re-assessed between the three first components of the multidi-

mensional h index, using data reported by García-Pérez (2009).  The first component, h1, is the conventional h index and the
two other components, h2 and h3, are analogous h indices computed out the tail of the citation curve. These components are
subject to the order restriction 0 ≤ hi+1 ≤ hi, yielding a joint domain analogous to that in Fig. 1 with ginf(x) = 0 and gsup(x) = x
under the general form of the order restriction. Raw data from 204 cases and tabulated scatter plots of the relations between
the three components were given in Fig. 2 of García-Pérez (2009), for which product-moment correlations were reported to
be 0.862 (h1 and h2), 0.862 (h2 and h3), and 0.780 (h1 and h3), which were deemed naturally high and positive given the order

restriction. A re-analysis with the procedure described here renders correlations of −0.137 (h1 and h2;
∨
R = −1.634, p = 0.104,

two-sided), 0.407 (h2 and h3;
∨
R = 3.576, p < 0.001, two-sided), and −0.543 (h1 and h3;

∨
R = −3.168, p = 0.002, two-sided).

Thus, when the structural relation is eliminated, associations between components are smaller than initially claimed, or
negative rather than positive. Of interest are the negative correlations between h1 and h2 and between h1 and h3. What
this means is that as h1 increases, h2 and, particularly, h3 increase at a slower rate than the order restriction allows. These
negative correlations and the ensuing interpretations do more justice to the characteristics of the data (see García-Pérez,
2009, his Fig. 2) than the original but flawed positive correlations and the interpretation that h2 and h3 tend to be higher as
h1 increases (which is a tautology given the order restriction).

The third illustration additionally addresses the issue of how association should be measured when correlations need
to be computed for a set of variables only some of which are affected by order restrictions, as in the studies of Bornmann
et al. (2011) or Schreiber et al. (2012).  The answer should be obvious: The association between variables not affected by
order restrictions should be measured conventionally, whereas that between variables affected by order restrictions should
be measured with the procedure described here (which may  require the use of different functions ginf and gsup for each
particular pair). Consider the two-sided extension of the h index developed by García-Pérez (2012),  a multidimensional
extension in which the scalar h (denoted h0 in the two-sided index) is flanked by k positive-indexed components analogous
to those that make up the multidimensional extension of García-Pérez (2009) and also by k negative-indexed components
analogously computed up the top of the citation curve. Fig. 7 shows scatter plots of the components of the two-sided index
(k = 4) computed for the sample of 80 researchers in the study of García-Pérez (2012).  Regions structurally deprived of data
due to order restrictions are grayed out in panels involving h0 and in panels pairing components on the same side (both
negative- or positive-indexed); no order restriction holds for components across sides (i.e., one negative- and the other
positive-indexed). The latter type of panel in Fig. 7 displays the value of the conventional product-moment correlation in an
inset and the pattern of these values reveals that association decreases with the distance between components (i.e., h−1 and
h1 are more strongly associated than h−4 and h4); the former type of panel displays in an inset the value of the inadequate
product-moment correlation (top) and the value of the corrected correlation (bottom) computed as described in this paper.
Because the order restriction implies a positive structural relation, only the corrected measures of association can identify
associations that are actually null, negative, or weakly positive.

As an additional illustration of the interpretation of the measure of association proposed in this paper, consider the
scatter of data around the reference line in each panel of Fig. 7 and the pattern of correlations between h0 and components
on the positive side of the two-sided index (lower part of the fifth column in Fig. 7). Note that the inadequate conventional
correlation is naturally always relatively high and positive, ranging from 0.787 (correlation between h0 and h1) to 0.636
(correlation between h0 and h4). Yet, within the restricted domain (white region in each panel), data points lie around the
reference line of null association in the case of h0 and h1 (in agreement with a corrected correlation of 0.165) but they
progressively fall further below the reference line in the panels pairing h0 with h2, h3, and h4, in agreement with corrected

correlations that are negative and increasingly higher (i.e., as the X variable increases, the Y variable increases more slowly
than the order restriction allows). Analogous considerations apply across the remaining panels of Fig. 7, but note that the
role of the X and Y variables are reversed in the panels whose vertical axis is labeled from h−3 to h0 (panels in the top left
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Fig. 7. Scatter plots showing empirical relations between all pairs of components of the two-sided h index of García-Pérez (2012),  with component indices
ranging from −4 to 4 (component indexed 0 is the conventional h) and using data (circles in each panel; n = 80) from that study. Grayed-out regions in
some panels reflect areas structurally deprived of data due to order restrictions; in those cases, the reference line m(x) is also displayed and note that the
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part of Fig. 7). What this means is that the variable along the vertical axis is regarded as the X variable whereas that along
the horizontal axis is regarded as the Y variable so that the order restriction satisfies the general form ginf(x) ≤ Y ≤ gsup(x)
implicit in our procedure.

6. Conclusion

Assessment of the association between variants of the h index (or other scientometric indices) is hampered because these
variables are affected by order restrictions (see Rosenberg, 2011) that largely determine the value of conventional indices of
association. The procedure described here solves this problem and essentially involves a symmetrization of the joint domain
by transforming Y into Y* so that the transformed joint domain is symmetrical about Y* = 0, with the explicit definition that
�XY∗ = 0 reflects stochastic independence (i.e., absence of association) between X and Y besides their structural relation.
These definitions revert to the usual definitions of stochastic independence and correlation in cases that no order restriction
exists. Variables subject to an order restriction typically have a lower bound on their domain, and the procedure described
here is applicable whether the upper bound is finite or infinite because the Y variable will in both cases be bounded low and
high. This procedure works for restrictions of the general form ginf(x) ≤ Y ≤ gsup(x), involving arbitrary functions satisfying
ginf ≤ gsup. This requires that X and Y variables are adequately designated so that this form of order restriction holds and that
the transformation is applied to the actual Y variable regardless of how the data may  eventually be plotted, as illustrated in
Fig. 7.

Examples have been given in which the true association between sample scientometric indices subject to order restric-
tions was uncovered through removal of their structural relation. In these cases, what appeared to be high and positive
associations according to conventional analyses turned into negative, null, or positive associations when the positive struc-
tural relation was removed. Simulation results reported in Section 3 show that the conventional correlation rxy is generally
much higher than the corrected correlation rxy∗ that measures the true association between variables subject to the order
restrictions that govern scientometric indices, all of which are of the type ginf(x) ≤ Y ≤ gsup(x) (see Rosenberg, 2011). Although
removal of a structural relation does not imply that the true association will not be still high and positive occasionally, correla-
tion analyses will be more dependable if structural relations are removed before conclusions are raised about the redundancy
of alternative scientometric indices. The conclusions of Bornmann et al. (2011) and Schreiber et al. (2012) regarding associ-
ations between scientometric indices should thus be understood as reflecting mostly structural relations for pairs of indices
affected by an order restriction and reflecting true associations for pairs not affected by order restrictions. A more accurate
picture of the actual redundancy of information provided by indices affected by order restrictions can only be obtained when
structural relations are removed and true association is measured with the procedure described here.

Appendix A. Triangular and two-sided power distributions

The two-sided power (TSP) distribution of van Dorp and Kotz (2002) for a bounded variable on [a, b] is defined as

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 1;

n

b − a

(
x − a

m − a

)n−1
if a ≤ x ≤ m;

n

b − a

(
b − x

b − m

)n−1

if m < x ≤ b;

0 if x > b.

(A1)

The conventional triangular distribution of a random variable bounded on [a, b] and given by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x < 1
2(x − a)

(b − a)(c − a)
if a ≤ x ≤ c

2(b − x)
(b − a)(b − c)

if c < x ≤ b

0 if x > b

(A2)

is straightforwardly seen to be a TSP distribution with n = 2 and m = c.

roles of X and Y are reversed in panels whose vertical axis is labeled from h−3 to h0 (panels at the top left). Insets show the magnitude of the conventional
product-moment correlation (the only value displayed in cases not affected by order restrictions, or the top value in cases affected by them) and the
corrected magnitude (bottom value in panels displaying two  values).
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ppendix B. Distribution of rxy by application of the delta method

Let X and Y be random variables with an arbitrary joint distribution with moments �jk = E(XjYk) and correlation �. Also
et (Xi, Yi) with 1 ≤ i ≤ n be a set of n paired observations in X and Y. Let

⎡
⎢⎢⎢⎢⎢⎢⎣

mX

mY

mX2

mY2

mXY

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1
n

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
Xi∑
Yi∑
X2

i∑
Y2

i∑
XiYi

⎤
⎥⎥⎥⎥⎥⎥⎦

(B1)

o that s2
X = mX2 − m2

X , s2
Y = mY2 − m2

Y , and sXY = mXY − mXmY . By the central limit theorem,

√
n

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

mX

mY

mX2

mY2

mXY

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

�10

�01

�20

�02

�11

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

(B2)

as asymptotically a multivariate normal distribution with zero mean and covariance matrix

 ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

var (X) cov (X, Y) cov
(

X, X2
)

cov
(

X, Y2
)

cov (X, XY)

cov (Y, X) var (Y) cov
(

Y, X2
)

cov
(

Y, Y2
)

cov (Y, XY)

cov
(

X2, X
)

cov
(

X2, Y
)

var
(

X2
)

cov
(

X2, Y2
)

cov
(

X2, XY
)

cov
(

Y2, X
)

cov
(

Y2, Y
)

cov
(

Y2, X2
)

var
(

Y2
)

cov
(

Y2, XY
)

cov (XY, X) cov (XY, Y) cov
(

XY, Y2
)

cov
(

XY, Y2
)

var (XY)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B3)

o obtain the distribution of (s2
X, s2

Y , sXY )
T
, define g : R

5 → R
3 such that g

⎛
⎜⎜⎝

mX

mY

mX2

mY2

mXY

⎞
⎟⎟⎠ =

(
mX2 − m2

X
mY2 − m2

Y
mXY − mXmY

)
. The Jacobian of

his transformation is ġ

⎛
⎜⎜⎝

mX

mY

mX2

mY2

mXY

⎞
⎟⎟⎠ =

[−2mX 0 1 0 0
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]
. Then,
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X
s2

Y
sXY
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(
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has asymptotically a mul-

ivariate normal distribution with zero mean and covariance matrix
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⎜⎜⎜
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⎜⎜⎜
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Now let h(a, b, c) = c/
√

ab so that h(s2
X, s2

Y , sXY ) = rxy. The Jacobian of the transformation h : R
3 → R  is ḣ

(
a
b
c

)
=

⎡
⎢⎢⎢⎣

−c

2
√

a3b−c

2
√

ab3
1√
ab

⎤
⎥⎥⎥⎦

so that A = ḣ

(
�2

X
�2

Y
�XY

)
=

⎡
⎢⎢⎢⎣

−�

2�2
X−�

2�2
Y

1
�X�Y

⎤
⎥⎥⎥⎦. Then,

√
n(rxy − �) is asymptotically normally distributed with mean 0 and variance �2 = AT

�*A. Assuming � = 0, the variance of this distribution can easily be shown to be

�2 = �2
X�2

Y + �2
Y �2

X − 2�2
X�2

Y + 6�X�Y �11 − 2�X�12 − 2�Y �21 + �22 − �2
11

�2
X�2

Y

(B5)

so that rxy is asymptotically normally distributed with zero mean and variance �2
r = �2/n.
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