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Abstract

Co-authorship among scientists represents a prototype of a social network. By mapping the graph containing all rele-
vant publications of members in an international collaboration network: COLLNET, we infer the structural mechanisms
that govern the topology of this social system. The structure of the network affects the information available to individuals,
and their opportunities to collaborate. The structure of the network also affects the overall flow of information, and the
nature of the scientific community. We present a number of measures of both the macro- (whole-network) and micro-
(actor-centered) structure of collaboration, and apply these to COLLNET. We find that this scientific community displays
many aspects of a ‘‘small-world,’’ and is somewhat vulnerable to disruption should major figures become inactive. We also
find inequality in the roles played by individuals in the network. The inequalities, however, do not create a closed and iso-
lated ‘‘core’’ or elite.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

In most areas of academic science, collaboration in research and publication is very common. A good deal of
evidence suggests that cooperation among researchers is increasing in a wide range of fields from mathematics
to neuroscience (http://www.oakland.edu/enp/trivia.html; Braun, Glanzel, & Schubert, 2001). Collaboration
may be seen as a process in which knowledge flows among scientists (Calero, van Leeuven, & Tijssen, 2005),
and individual scientists gain access to new ‘‘capital.’’ As networks of collaboration increase in size, scientists
may be gaining access to information both directly (from the individuals with whom they collaborate) and
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indirectly (through the collaborators of their collaborators). The structure of the larger network may affect the
work done by an individual scientist in ways that are not apparent to them. The structure of the whole network
of collaboration may also affect scientific productivity. Some network structures may promote diverse and cre-
ative work; other network structures may create separation and retard creativity. Otte and Rousseau (2002)
showed that social network analysis (SNA) can be used successfully in the information sciences, as well as in
studies of collaboration in science.

In this paper we will examine the structure of a network of collaboration among a number of researchers
from diverse fields of study who shares an interest in the problem of scientific collaboration (the COLLNET
network). We will examine this network as a ‘‘social network.’’ Social networks are the people or groups con-
nected by some relations. The people or groups are called ‘‘nodes’’ (also called vertices or actors according to
different disciplines), and the relations (or connections) ‘‘links’’ (edges, or ties). In this article, we’ll use the
terms node, actor, author, and vertex interchangeably. The terms link, tie, edge, and co-authorship are also
used interchangeably. We will examine the social relation of collaboration among the researchers by examin-
ing their ‘‘affiliation’’ network, in which actors are ‘‘connected’’ by co-authorship of publications.

Many co-authorship networks have been studied (Batagelj & Mrvar, 2000; Beaver & Rosen, 1978; Egghe,
Rousseau, & Van Hooydonk, 2000; Glänzel & Schubert, 2004; Kretschmer, 2004; Kretschmer & Aguillo,
2005; Price, 1963; Wagner, 2005) to investigate the patterns, motivation, and the structure of scientific collab-
oration. There are some organizations take the co-authorship research as their goal. Besides the immediate
interest for scientometrics and informetrics, co-authorship networks are of interest for understanding the
topological structures governing the features of large networks, in general (Barabasi et al., 2002; Newman,
2001a, 2001b, 2001c). Especially in recent years, prompted by two parallel developments of emergence of large
databases on the topology of various real networks and increased computing power, scientists have used co-
authorship networks to understand the processes generating network topology (e.g. Watts & Strogatz, 1998).
Network theory has become one of the most visible pieces of the body of knowledge that can be applied to the
description, analysis, and understanding of many complex systems, spanning biological and sociological
components.

Our interest in the structure of networks of collaboration among researchers focuses on how the topology
(or structure) of networks may promote or inhibit creativity and cumulative knowledge in fields of inquiry that
cross disciplinary boundaries. We will conduct our inquiry about the structure of the COLLNET network at
two levels: a macro- (whole-network) level that focuses on the extent and robustness of connection; and, a
micro- (individual-centered) level that focuses on patterns of inequality and stratification that may divide sci-
entists. Micro- approaches provide many measures to evaluate the varying importance of the different scien-
tists in a network according to one criterion or another. These measures have proved of great value in the
analysis and understanding of the roles played by scientists in cooperation networks.

2. Theoretical perspectives

A network, also called graph, is a pair G = (V,E) consisting of two sets: a set of nodes V = {1,2, . . . ,N}, and
a set of lines E = {e1,e2, . . . ,eL} between pairs of nodes. If the line between two nodes is non-directional, then
the network is called undirected; otherwise, the network is called directed. A network is usually represented by a
graph, where nodes are drawn as small points, undirected lines are drawn as edges and directed lines as arcs
connecting the corresponding two nodes. Cooperation networks are undirected networks, where nodes repre-
sent the scientists and the links represent the cooperation relationship of collaboration on joint publication.

The pattern of cooperation that is represented in a graph can be examined from a macro- (network-
centered) or from a micro- (actor-centered) perspective. The macro-structure of a graph informs us about
the likely performance of the social structure that arises out of the physics of its connections; the actors
embedded in the network may well be completely unaware of this structure. For example, networks in which
most actors have connections at short distances to all others are likely to display rapid diffusion – even if the
actors embedded in it are no more likely than those in a less dense network to pass along information. The
micro-structure of a graph informs us about the differential constraints and opportunities facing individual
actors that shape their social behavior. For example, an actor who has many more connections than another
may be more influential and have higher social status.
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2.1. Macro-level structure

Many aspects of the macro-behavior of networks are thought to follow from their structure. The ability to
respond quickly to stimuli, the rate and completeness of diffusion, the ability to identify and construct novel
solutions to some new problems, and the institutionalization of cooperation among actors are all affected by
the patterns of connections among the actors. There are many ways of characterizing the patterns of connec-
tions among nodes in a network. We will focus four key elements of networks: ‘‘small-worlds,’’ ‘‘scale-free’’
degree distributions, clustering (or transitivity), and robustness.

2.1.1. Mean geodesic distance (‘‘small-worlds’’)

‘‘Small-worlds’’ are the extent to which most pairs of nodes in most networks are connected by short paths.
As defined formally by Watts and Strogatz (1998), and informally by Milgram (1967), many social networks
may display structures where most individuals are at very few ‘‘degrees of distance’’ from one another. Short
distances between actors allow for the rapid diffusion of new ideas and influences among members of the com-
munity, and might be regarded as a desirable property of networks of scientific collaboration.

Consider an undirected network, and let us define l to be the mean geodesic (i.e., shortest) distance between
nodes pairs in a network:
l ¼ 1
1
2
NðN þ 1Þ

X
iPj

dij ð1Þ
where dij is the geodesic distance from node i to node j; N is the total number of nodes in the connected
component.

Where distances are great, it may take a long time for information to diffuse across a population. And, net-
works with short path distances may also be less subject to disruption, and hence more stable and reliable.

2.1.2. ‘‘Scale-free’’ degree distribution

The desirability of short path lengths would suggest that every actor should be connected directly to every
other. In large networks, however, such a pattern would be highly impractical; actors can maintain only so
many ties (here, they can only produce some finite number of papers). It is possible to have, on the average,
short paths in large networks if some actors are ‘‘hubs’’ who connect groups or clusters. These ‘‘hubs’’ have
many more ties than other actors, and function to connect or ‘‘broker’’ connections among nodes that would
have otherwise been unable to reach one another. As networks increase in size, there may develop multiple
levels of ‘‘hubs,’’ and hence an exponential (or ‘‘scale-free’’) distribution of actor degree; a very small number
of actors have very many ties, larger numbers of actors have smaller numbers of ties.

The mean nodal degree is the average degree of all nodes in that network.
�k ¼
PN

i¼1ki

N
ð2Þ
ki is the degree of node i, and N the total number of nodes in a network. We define p(k) to be the fraction of
nodes in the network that have degree k. Equivalently, p(k) is the probability that a random chosen node in a
network has degree k. Rapoport (1957) may be the first theorists who stress the importance of the degree dis-
tribution in the networks. A host of real networks (Albert, Hawoong, & Barabasi, 1999; Liljeros, Edling,
Amaral, Stanley, & Aberg, 2001; Price, 1965; Redner, 1998) which have been studied show an important char-
acteristic: power-law distribution which is related to their degree distribution.
pðkÞ � k�c ð3Þ

Networks with power-law distributions are often referred to as ‘‘scale-free’’ networks. The term ‘‘scale-

free’’ refers to any functional form f(x) that remains unchanged to within a multiplicative factor under a
rescaling of the independent variable. In the function (3), independent variable is k, p(ak) � a�ck�c � k�c

and hence we call it as scale-free network (Newman, 2003).
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2.1.3. Clustering (transitivity)

Short distances among actors in a collaboration network provide fast access to diverse resources. However,
successful collaboration also depends on sharing deep specialist knowledge. Peer review and critical feedback
from others who are intellectually ‘‘close’’ to collaborators is also needed. That is, successful collaboration in
science must be embedded in tightly connected and self-conscious intellectual communities – at the same time
that the collaborators reach out to new and diverse parts of the scientific community.

In scientific collaboration networks then, we should observe tendency for actors to form local clusters with
people with whom they share common interests. In the language of social networks, a colleague of a colleague
is likely to be regarded as a colleague. The collegial relation is ‘‘transitive.’’ To the extent that the relations
among scientists display a tendency towards transitivity, collaboration networks are likely to be characterized
by local clusters of individuals who are tied to most of the others. This tendency to cluster is quantified by the
‘‘clustering coefficient’’ (Albert & Barabasi, 2002) which may also be interpreted as the average density of the
ego-neighborhoods of actors in a network. The extent which each actor in a network is ‘‘embedded’’ in a local
cluster may be indexed as:
Ci ¼
2Ei

kiðki � 1Þ ð4Þ
Ci is the ratio between the number Ei of edges that actually exist between the neighbors of a selected node i,
and the total number ki(ki � 1)/2 of possible edges between these neighbors. The clustering coefficient of the
graph, which is a measure of the network’s potential modularity, is the average over all vertices:
C ¼ 1

N

XN

i�1

Ci ð5Þ
The range of C is 0 6 C 6 1.

2.1.4. Robustness
Small clusters of collaboration may be quite enduring, if most actors have ties to most other actors. As

networks grow, and as they develop levels of ‘‘hubs,’’ however, sustained ‘‘community’’ may become more
difficult to maintain. The loss of a central ‘‘hub’’ may substantially disrupt the closeness of actors in scale-free
networks; it is particularly true in purely ‘‘hierarchical’’ networks.

To sustain collaboration in larger networks with exponential degree distributions, it is important that there
be some redundancy of ties between local clusters and more central hubs. Should one ‘‘leader’’ and ‘‘broker’’
become unavailable, a robust network of collaboration requires that local clusters be able to remain connected
to distant actors by way of ties to other hubs.

The vulnerability of a collaboration network to disruption, or its robustness, can be examined empirically,
by seeing how much disconnection results from the removal of the hubs. If the removal of a small number of
leaders results in the network ‘‘falling apart’’ into disconnected component, the network lacks robustness. The
ability to sustain network ties in scientific work is important to the cumulative development of deep specialist
knowledge; just as connection to diverse and distant scientists may be important to creativity.

2.2. Micro-level structure: stratification

While each node has its own distinctive contribution to the whole network, it is not an easy thing to mea-
sure it effectively and directly. We applied a variety of centrality measures (degree, closeness, betweenness cen-
trality) to investigate different contribution of nodes in this network, which are important to understanding
power, stratification, ranking, and inequality in social structures (Wasserman & Faust, 1994). We also exam-
ine the extent to which there is a single or multiple ‘‘cores’’ or ‘‘elites.’’

2.2.1. Degree centrality

Generally, nodes with higher degree or more connections, in a sense, are more central to the structure and
tend to have a greater capacity to influence others. This capacity may result in status distinction, and ‘‘elite’’



L.-c. Yin et al. / Information Processing and Management 42 (2006) 1599–1613 1603
status. Cooperation networks are undirected network. When an author involved in the cooperation, he or she
either be the ‘‘source’’ of information, or ‘‘sinks’’ or ‘‘receiver’’ of information. It is usually a measure of how
influential (as ‘‘source’’) or prestigious (as ‘‘receiver’’) the node may be.

2.2.2. Closeness centrality

A more sophisticated centrality measure is closeness (Freeman, 1979) which emphasizes the distance of a
node to all others in the network by focusing on the geodesic distance from each node to all others. Closeness
can be regarded as a measure of how long it will take information to spread from a given node to others in the
network. Degree has a shortcoming because it only takes into account the immediate links that a node has,
rather than links to all others. One node might be tied to a large number of others, but those others might
be rather disconnected from the network as a whole. In a case like this, the node could be quite central,
but only in a local neighborhood. Degree centrality, then, identifies actors who are locally influential (and
may be globally influential, as well). Closeness centrality focuses on the extensivity of influence over the entire
network.

Let CLi be the closeness of node i, dij has the same meaning as in function (1)
CLi ¼
XN

j¼1

1

dij
ð6Þ
In this case the closeness is the sum of the reciprocated distances so that infinite distances contribute a value of
zero (Borgatti, Everett, & Freeman, 2002).

2.2.3. Betweenness centrality

Another important class of centrality measures is the class of betweenness measures. Betweenness is a mea-
sure of the extent to which a node lies on the paths between others which can evaluate individual’s ability to
control the flow of knowledge between most others. The simplest and most widely used betweenness measure
is that of Freeman (1977, 1979), which also be referred to as geodesic betweenness. Let Bi be the betweenness
of node i; gjik be the all geodesics linking node j and node k which pass through node i; gjk be the all geodesics
linking node j and node k .The betweenness of node i is as follows (Borgatti et al., 2002):
Bi ¼
X
j;k 6¼i

gjik

gjk
ð7Þ
In collaboration networks, actors with high ‘‘betweenness’’ are the brokers and connectors who bring oth-
ers together. Being between means that an actor has the ability to control the flow of knowledge between most
others. Individuals with high betweenness are the pivots in the network knowledge flowing. The nodes with
highest betweenness also result in the largest increase in typical distance between others when they are
removed. So, we can see high betweenness nodes are crucial for the formation of small-world effect.

2.2.4. K-core

Individual actors may have high centrality, but if these actors are not closely connected to one another, they do
not form a single ‘‘elite’’ or ‘‘stratum.’’ Some exponential networks may display multiple factions or elites that are
only loosely connected – a ‘‘pluralist’’ structure. Other collaboration networks, though, may display a unitary
and tightly bounded ‘‘core.’’ The notion of K-core is introduced by Seidman (1983). The K-core of a network
is a sub-structure in which each member has ties to at least K other members. By varying the value of K, we
can see whether a network displays a single or multiple cores, and how tightly linked the members of cores
are. Nodes in the core with larger values of K correspond to vertices that are more tightly linked, and form groups
in more central positions in the network’s structure. The core of maximum order is also called the main core.
There exists an efficient algorithm for determining the cores in software Netdraw (Borgatti, 2002).

We denote the neighborhood of node v 2 V by N(v):
NðvÞ ¼ fu 2 V : ðv : uÞ 2 Eg ð8Þ
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And the rooted neighborhood of node v 2 V by N+(v):
Fig. 1.
NþðvÞ ¼ NðvÞ [ fvg ð9Þ
3. The structure of the COLLNET network

COLLNET (abbreviation of collaboration network) is an affiliation network. It is a global interdisciplinary
research network, founded in 2000. The focus of this organization is to examine the phenomena of collabo-
ration in science; its effect on production, innovation and quality, and the benefits and outcomes accruing to
individuals, collaboration in e-science. This group is made up of 64 members from 20 countries of all conti-
nents in 2003 (the date of the data reported here). The members intended to cooperate on both theoretical and
applied aspects on the topic ‘‘Collaboration in Science and in Technology.’’ Kretschmer et al. collected all pos-
sible data about the cooperation of COLLNET members which are the basic data of our present work. There
are 223 bibliographic multi-authored publications (including books, articles in peer reviewed journals,
contributions in monographs, articles in conference proceedings or manuscripts) what reflect at least two
COLLNET members’ collaboration relationship. More details of the COLLNET can get in the Webpage:
www.collnet.de. For the 64 members of COLLNET, until 2003, there still are 16 members who have cooper-
ated with nobody else in COLLNET. In our study, because we pay more attention to the structure of the
cooperation network and knowledge flowing through this network, they are excluded from our analysis.
So, in our database, there are 48 members who at least cooperate with one COLLNET member.

Fig. 1 is the cooperation graph of the COLLNET members. There are total 48 nodes and 63 links in the
network. By removing six smaller isolate components from the graph G we get the truncated COLLNET
collaboration graph G 0 in which all nodes can keep touch with every others through one or more paths. G 0

contains 32 nodes and 49 edges. A glimpse to Fig. 1, we can get an implicit view that some nodes play an
important role in the network, while others are peripheral. But what extend do they affect the network,
and what role do the others play in the network is blurred. To make the question clearer is our main goal
in this paper.

3.1. Macro-structure: connection

3.1.1. ‘‘Small-worlds’’

The definition (1) of the mean geodesic distance l is problematic in networks that have more than one com-
ponent (i.e. un-connected sub-graphs). In such cases, there exist node pairs that have no connecting path. Con-
ventionally one assigns infinite geodesic distance to such pairs, but then the value of l also becomes infinite. To
avoid this problem one usually we define l to be the mean geodesic distance between all pairs that have a con-
necting path. Pairs that fall in two different components are excluded from the average (Newman, 2003).
The cooperation graph of COLLNET network (Kretschmer & Aguillo, 2004) (a series of bold lines is the diameter of the network).

http://www.collnet.de
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We apply the approach described by Newman to calculate the average geodesic distance to our study. The l

of our graph is 3.020. The appropriate phrase for COLLNET, then, is perhaps ‘‘three degrees of separation,’’
for the typical distance between pairs of COLLNET members. For some other databases of collaboration that
have been studied, such as MEDLINE, Los Alamos e-Print Archive, SPIRES, and NCSTRL where contain
more than 10,000 nodes, the average distances are no more than 10 (Newman, 2001a, 2001b). To get another
notion of the distance of a network, we might think about diameter. The diameter of a network is the largest
geodesic distance in the (connected) network. The diameter of a network tells us how ‘‘big’’ it is. In our net-
work, the reachable biggest component’s diameter is 6. One example of this diameter can be seen as the bold
line in Fig. 1. The diameter of Medline, Los Alamos e-Print Archive, SPIRES, and NCSTRL is 24, 18 (mean
value of the four database), 19, and 31 respectively. Considering the small scale of our network, both of the
average geodesic distance and the diameter of the COLLNET show less connection than we might expect (for
a network of its size).

There are two possible reasons for the relatively long distances of our network. On the one hand, geograph-
ical distance may retard cooperation between COLLNET members. The COLLNET members come from
more than 20 countries and regions where they spend large part of their time in. To communicate with each
other face by face is rather expensive. On the other hand, the fields of study of many COLLNET participants
do not have strong traditions of collaborative production. For biomedicine, high-energy physics, and astro-
physics, collaboration among scientists is a necessary condition. Large numbers of persons are involved in
gene mapping for the Human Genome Project, or are involved in running modern accelerators for elementary
particle detection, or are involved in exploration cosmos abstruseness with complex, delicate facilities. In
informetrics or scientometrics, the most common location of COLLNET researchers, solitary authors have
long been a common circumstance.

3.1.2. Clustering

A common property of social networks is that cliques form, representing circles of friends or acquaintances
in which every member knows every other. This tendency towards ‘‘clustering’’ or ‘‘transitivity’’ of relations
tends to create patterns of small but densely connected separate clusters. When local clustering is combined
with the integrating effects of ‘‘hubs’’ (apparent from the exponential degree distribution), we have ‘‘small-
worlds’’ in which most scientists collaborate primarily in dense local clusters; but these clusters are at very
short distances from one another.

For the COLLNET network as a whole, the clustering coefficient is the average of all individual Ci’s. The
result is: average cluster coefficient is C = 0.643. That is to say, on the average, the collaborators of any one
node have a high probability of being collaborators with one another. This clustering is higher than most of
cooperation networks (Medline: 0.066; Los Alamos e-Print Archive: 0.380; SPIRES: 0.726; NCSTRL: 0.496)
(Newman, 2001a, 2001b, 2001c).

Function (4) is the most general method to calculate the clustering coefficient. However, for disconnected
graphs, it can be somewhat misleading. For example, in Fig. 1, both group 1 including 9, 13, 15, 40 and group
2 including 14, 22, 23, 25 clustering is very high. According to function (4), the clustering coefficient of these
eight nodes is 1. But this does not capture, well, the separation of the two groupings. An alternative approach
is shown as function (10).
C0i ¼
Ei

MaxDeg
Ci ð10Þ
MaxDeg is the maximum degree of nodes in a network. The value of C 0 of our network is 0.097 which is lower
than C. For a small closed cooperation group, in general, the C is high. In order to grasp more detail of the
network, other indicator should be included, such as weight of cooperation.

3.1.3. Average degree and degree distribution

The average degree of the nodes in a network can reflect the compact-ness of the network. The higher
the average degree, the tighter the network. The average degree of nodes in our network is 2.625, which
means that the cooperation between COLLNET members is sparse. This is the same as Kretschmer’s result
(Kretschmer, 2004). The average degree also reflects the total number of people with whom a scientist wrote
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publications. The average number of collaborators of COLLNET members is lower than that of the purely
theoretical disciplines (3.87 in high-energy theory, 3.59 in computer science), much less in the wholly or partly
experimental ones (18.1 in biomedicine, 15.1 in astrophysics) (Newman, 2001a, 2001b, 2001c). This result is
easy to understand; the subject matter of COLLNET is rather narrow, and the network is very young
(founded in 2000).

The range and variability of degree can be quite important, because it describes whether the population
is homogeneous or heterogeneous in structural positions. One could examine whether the variability is high
or low relative to the typical scores by calculating the coefficient of variation (standard deviation divided
by mean, times 100) for degree. By the rules of thumb that are often used to evaluate coefficients of varia-
tion, the current values: 82, is rather high. Clearly, the population is rather diverse in this regard (Hanneman,
2004).

Heterogeneity of degree means a few nodes have a large quantity of connections, but a big part of the nodes
only have few connections. This is shown in Fig. 2, which displays the degree distribution p(k) – the proba-
bility that k nodes connect to a certain node. Fig. 2 is the degree distribution of COLLNET cooperation
(in logarithms to the base of 10). Graphing on the double-log scale reveals the extent to which the degree dis-
tribution is exponential (or ‘‘scale-free’’). We note that the fit of the exponential model (R2 = 0.9134) is quite
good. We can also see that, although the COLLNET is not a big network, it shows an interesting scale-free
characteristic: p(k) � k�c, where c = 1.37. That is, the exponential has a modest slope; while there is an expo-
nential distribution, the ‘‘steepness’’ of the inequalities is not great.

The presence of an exponential degree distribution suggests that the individual scholars in the network
are more closely connected than would be expected by a process of random collaboration. Instead, it suggests
that there may be ‘‘preferential attachment’’ in which actors who have previously collaborated are more likely
to be parts of new collaborations than those who have not previously collaborated. To the degree that
this occurs, previously distant actors are brought together into new collaborations by way of central ‘‘hub’’
actors.

3.1.4. Robustness of the network

Some networks display a surprising degree of robustness: although key components regularly malfunction,
local failures rarely lead to the loss of the global material-carrying ability of the network. However, error
tolerance is not shared by all systems: it is displayed only by a class of inhomogeneously wired scale-free net-
works (Albert, Jeongand, & Barabasi, 2000). Such networks display an unexpected degree of robustness, the
ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However,
error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to
the selection and removal of a few nodes that play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of communication network. According to the
Fig. 2. Degree distribution of COLLNET.



L.-c. Yin et al. / Information Processing and Management 42 (2006) 1599–1613 1607
feature of such kind of network, there are also some papers studying the different defensive strategies aimed at
various attack strategies (Eubank et al., 2004; Liljeros, Edling, Stanley, Åberg, & Amaral, 2003).

In networks of scientific collaboration, cumulative knowledge and a sense of community identity (and the
emergence of new ‘‘fields’’ of study) may depend on the robustness of collaboration. In some ‘‘schools,’’
the death or departure of a key researcher may disconnect the flow of cooperation, and result in the collapse
of the collaboration network. Other networks (particularly those with less hierarchical structures) are more
‘‘robust’’ in the face of the loss of central ‘‘hubs’’ or leading figures.

Though our network is not large-scale network, there exist some nodes which play important roles in main-
taining the structure of the network. To test robustness, we remove some of them in order to see if collabo-
ration breaks down. First, we used KEYPLAY (a program for identifying an optimal set of nodes in a
network) to identify an optimal set of key nodes for deletion with the hope of crippling the network. With
the selection of the criteria for fragmentation of the network into disconnected components, the result comes
out: nodes 14, 22, 25 are the most influential nodes for the integration of the COLLNET network. After
removing three nodes and all connection related to them, we draw the remaining network collapses into eight
partitions (see Fig. 3).

The loss of three ‘‘hubs’’ in the COLLNET network results in considerable fragmentation; this suggests
that the community is somewhat fragile, and dependent on central figures to maintain connection across
the entire graph. Removal of additional, less ‘‘central’’ nodes, however, does not result in a complete collapse
of collaboration. Fig. 4 shows the structure that remains after random deletion half of all actors.

Under the random removing of nodes, until more than 50% nodes are removed, the graph collapses into six
pieces. In other words, a connected cluster of nodes that spans the COLLNET survives even for quite large
fractions of crashed nodes. COLLNET thus displays many of the characteristics of a ‘‘scale-free’’ network,
and also a pattern of fairly robust connection that maintains connection among distant actors, even in the
absence of ‘‘key’’ individual participants.

3.2. Individual level analysis: stratification

Within any structure of collaboration, some individuals are more influential and visible than others as a
result of their position in the network. Individuals in ‘‘central’’ positions in the network may also form an
‘‘elite’’ of a sort if they are connected to one another. The presence of ‘‘elites’’ may limit collaboration across
Fig. 3. Main-COLLNET after removing the nodes 22, 14, 25.

Fig. 4. Graph after random deletion of more than 50% of all nodes.
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the network if members of the elite form and ‘‘exclusionary’’ ‘‘status community.’’ So, the existence of small
worlds and hubs – which may be so useful to efficient communication and creativity – may also generate pat-
terns of inequality that are inconsistent with democratic participation and open communication.

Using measures of centrality, we are able to identify actors in the COLLNET network who occupy more
‘‘influential’’ positions. Table 1 shows these results.

3.2.1. Degree centrality

We can see that node 22 has links to one third of all nodes in graph G 0. Nodes 22, 14, and 25 are similar in
cooperating with more than one fifth of the members in G 0; nodes 43, 20, 46, 41, 37, 31, 26, 39 (can be seen in
Fig. 1) cooperate with only one other author. Nodes in the first set have a higher potential to exert influence or
be influenced (though it might matter to whom they connected, this measure does not take that into account);
nodes in the latter set have lower potential to exert influence or be influenced; nodes in the ‘‘middle’’ will be
influenced or influence others if they are connected to the ‘‘right’’ other nodes, otherwise, they might have very
little influence or difficult to influence others.

3.2.2. Closeness centrality

For closeness centrality, node 22 is the closest or most central actor according to length of all geodesic dis-
tance from it to all others (the disconnected distances are excluded). Two other nodes (14, 25), however, are
nearly as close. Through the results of closeness centrality we can see the distance from a node to the whole
graph will be shortened greatly if it has the ‘‘right’’ neighbors. Nodes 45, 24, 7, and 28 have the same degree 4,
but their closeness is quite different just because nodes 7, 28 have more ‘‘central’’ neighbors than that of the
other two nodes.

3.2.3. Betweenness centrality

Betweenness centrality indexes if a node has a favored position by falling on the geodesic paths between
other pairs of actors in the network. That means the more nodes depend on a given node to make the shortest
connections with other nodes, the more power this node has. In our network, still node 22 appears to have
more power than others by this measure. Clearly, there is a structural advantage for node 22 to perceive that
it is different from others. And this result is not surprising, because author 22 is the chairman of this organi-
zation. Still we can see the ordering of nodes according to betweenness centrality changed from that according
to the degrees. All aspects of power are not distributed in the same way.

We can see from Table 1 that node 22 is the genuine dominator (or ‘‘star’’) in our network. On each cen-
trality dimension, this actor occupies the first place. If actor 22 and all the connections to it are deleted, we
found nearly all the indicators of G 0 changed sharply. Average Geodesic distance changed from 3.079–
3.642; cluster coefficient from 0.643 to 0.566; diameter from 6 to 8. That means the knowledge flowing was
set back deeply since the removing the node 22.
Table 1
Centrality of major nodes

Node ID Degree centrality Closeness centrality
(rank)

Betweenness centrality
(rank)

22 12 57 (1) 256.867 (1)
14 9 67 (2) 102.867 (4)
25 7 67 (2) 109.967 (2)
23 5 73 (3) 46.700 (9)
10 5 75 (5) 62.900 (7)
34 5 74 (4) 91.300 (5)
45 4 100 (17) 30.833 (10)
24 4 101 (18) 87.000 (6)
7 4 76 (6) 18.467 (13)

28 4 80 (8) 21.767 (12)
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Another thing we can find is that only one indicator cannot reflect the individual’s position in the structure
completely. Nodes with only some links can vary more in their behavior, depending on to whom they are
connected.

3.2.4. K-core

As we have seen, some actors are more central in COLLNET than others. We have also seen that the actors
who are central in one way are not necessarily central in another. To what extent, then, do the central actors
form a ‘‘core’’ of the network? Is there a single ‘‘elite’’ or multiple ‘‘elites’’? Examining the K-core structure
of the graph provides some insight. In Fig. 5, the ‘‘cores’’ of the network are shown, with progressively
wider circles showing the increasing inclusion of actors as the ‘‘tightness’’ of connection within the group is
relaxed.

We can see that the network displays two ‘‘core’’ sets (40, 9, 13, 15 and 23, 25, 14, 22). The former appears
to be an isolated ‘‘faction,’’ while the latter constitutes an ‘‘inner circle’’ of the main component of the graph.

In G, the main core is of order 3 (that is, actors have collaborations with at least three other members of the
core). Table 2 shows the distribution of number of authors in K-cores in G, and the distribution of number of
co-authors in cores for selected members of the main core and the secondary core, are given.

Table 2 shows clearly the isolation of one core (i.e. the one which includes actor 9). It also reveals that the
four ‘‘elite’’ members of the other core are very active in maintaining ties outside their group; the main ‘‘core’’
is not a ‘‘closed’’ community.

The authors belonging to the main core and some of their characteristics are presented in Table 3, where
deg is the average degree of all co-authors; core is the average core of all co-authors.
Fig. 5. K-core (the size of nodes depending on the core of each nodes; corresponding to white, darker, and darkest background are the 1,
2, and 3 core).

Table 2
Distribution of number of co-authors in cores

Core No of authors 22 23 14 25 9

3 8 3 3 3 3 3
2 20 9 1 6 3 0
1 20 0 1 0 1 0
Sum 48 12 5 9 7 3
Average core 1.75 2.25 2.4 2.33 2.28 3



Table 3
Authors and number of their co-authors in the main core, total number of co-authors, average core and average degree of all their
co-authors, and their collaborativenesss or emergingtiveness

Author Co-authors All co-authors core deg coll

22 3 12 2.25 4.17 1.33
23 3 5 2.4 6.4 1.25
25 3 7 2.28 5.43 1.316
14 3 9 2.33 4.56 1.288
9 3 3 3 3 1

26 0 1 1 1 1
31 0 1 2 4 0.5
39 1 1 3 1 0.33
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degðvÞ ¼
0; NðvÞ ¼ /

1
jNðvÞj

P
u2NðvÞ

degðuÞ; otherwise

8<
: ð11Þ

coreðvÞ ¼
0; NðvÞ ¼ /

1
jNðvÞj

P
u2NðvÞ

coreðuÞ; otherwise

8<
: ð12Þ
We can explore a scientist’s cooperation tendency when we think about the deg and the core, high values
imply that scientist is tend to collaborating with ‘‘central’’ authors. Therefore, measures of ‘‘collaborative-
ness’’ (Batagelj & Mrvar, 2000) and ‘‘mergingtiveness’’ would be very important to evaluate authors’ connec-
tive tendency. Quantity:
collðvÞ ¼ coreðvÞ
core

ð13Þ
The collaborativeness and ‘‘mergingtiveness’’ are the two terms based on the same approach coll(v), measure
the openness of author v towards other authors. If core(v) = 0, also coll(v) = 0.

When an author is in the main core, high value of coll stands for high tendency of that author v towards
‘‘peripheral’’ authors, which can measure the ‘‘collaborativeness’’ of that author. When an author is in the
peripheral core, low value of coll stands for high tendency of that author v towards ‘‘central’’ authors, which
can measure the ‘‘mergingtiveness’’ of that author. The ordering of most collaborative authors in G is nodes
22, 25, 14, 23, then 9 (13, 15, and 40). Node 22 lies on the top too. Further we study the ‘‘mergingtiveness’’ of
‘‘peripheral’’ authors whose degree all are 1. Only nodes 39 and 31’s situation are different from others nodes
(we list node 26 on behalf of these uniform nodes) because their neighbor’s degree is larger than 1. The highest
‘‘mergingtiveness’’ belongs to the node 39 what means it has more opportunity to merge into the main core
according to clustering characteristics of the social networks.

4. Conclusions and future applications

In this paper, we presented some possible approaches to analysis of networks and applied them to an affil-
iation network-COLLNET. Although COLLNET is not a large-scale network, the results are useful to pro-
vide an illustration of the main approaches to measuring structural characters, and identify nodes who are the
most important hub nodes and who have the most influence in the network.

It is interesting that the COLLNET is close to a scale-free network, and displays the clustering aspect of a
‘‘small-world’’ as well. Structure affects function. The COLLNET network suffers the vulnerability in that it
depends too much on few nodes who are crucial to the whole network for knowledge production or spreading.
Such as, nodes 22, 14, 25 are of the highest degree in network. At the same time they are the champions in
most other measures too. At the same time, there is a degree of robustness and institutionalization apparent
in this relatively young network – which may lead, in time, to defining a new field of study. The leading figures
do not form a ‘‘closed’’ elite, and the network as a whole is fairly robust against the loss of central figures.
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Another thing we want to point out is that in COLLNET network few nodes always locate at the top of
many measures of influential position. The network displays a ‘‘star’’ and an ‘‘elite’’ of actors in favored loca-
tions. The same forces that give ‘‘small-worlds’’ utility in collaboration networks (short path lengths and clus-
tering) also, necessarily, generate inequality or stratification. Such stratification, however, may either promote
or retard creativity and a sense of shared identity. Where highly active nodes form closed and isolated group-
ings (as in one case in COLLNET) they promote factionalization and specialization. Where the highly active
‘‘hub’’ nodes also connect to wider circles of participants, as in the main ‘‘core’’ of COLLNET, elites may
promote diversity, communication, and integration of the community.
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Appendix A

Explanation for Figs. 1, 3, 4 and 5
1
 Aguillo Isidro.

2
 Ahrweiler Petra

3
 Ambuja R.

4
 Bassecoulard Elise

5
 Basu Aparna

6
 Beaver Donald deB.

7
 Bhattacharya Sujit

8
 Bordons Maria

9
 Brandt Martina
10
 Davis Mari

11
 Egghe Leo

12
 Gomez Isabel

13
 Grosse Ulla

14
 Gupta Brij Mohan

15
 Hartmann Frank

16
 Havemann Frank.

17
 Hood William W.

18
 Jansz Margriet

19
 Karisiddappa

20
 Katz Sylvan

21
 Kharbanda Ved Prakash

22
 Kretschmer Hildrun

23
 Kundra Ramesh

24
 Leydesdorff Loet

25
 Liang Liming

26
 Liberman Sofı́a

27
 Liu Zeyuan

28
 Markusova Valentina

29
 Meyer Martin

30
 Okubo Yoshiko

31
 Osareh Farideh

32
 Raghavan Koti S.
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Appendix A (continued)
33
 Rao Ravichandra

34
 Rousseau Ronald

35
 Russell Jane

36
 Sangam Shivappa

37
 Scharnhorst Andrea

38
 Schulze Annedore

39
 Tomov Dimiter

40
 Voss Rainer

41
 Wagner Caroline

42
 Wagner-Döbler Roland

43
 Wang Yan

44
 Wenzel Vera

45
 Wilson Concepcion S.

46
 Wouters Paul

47
 Wu Yishan
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