Available online at www.sciencedirect.com

ScienceDirect I FA Palpi)r?és

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 50-1 (2017) 13474-13479

Conducting Online Lab Experiments with
Blockly

Daniel Galan* Ruben Heradio ** Luis de la Torre *
Sebastian Dormido * Francisco Esquembre ***

* Dept. of Computer Science and Automatic Control, Universidad
Nacional de Educacion a Distancia, Juan del Rosal 16, E-28040,
Madrid, Spain (e-mail: dgalan@dia.uned.es, ldelatorre@dia.uned.es,
sdormido@dia.uned.es).

** Dept. of Software Engineering and Computer Systems, Universidad
Nacional de Educacion a Distancia, Juan del Rosal 16, E-28040,
Madrid, Spain (e-mail: rheradio@issi.uned.es).

*** Dept. of Mathematics, Universidad de Murcia, Campus de
Espinardo, E-30071, Murcia, Spain (e-mail: fem@um.es).

Abstract: Laboratory experimentation plays an essential role in control education. To reduce
the high costs of maintaining apparatus in traditional labs and to support distance and blended
learning, online laboratories are used as a possible alternative to conventional hands-on labs.
In these labs it is often desirable to allow students to define their own experiments. This paper
presents the definition and implementation of a generic experimentation language for conducting
automatic experiments on existing online laboratories. The main objective is to use an online
lab, created independently, as a component in which users can perform experiments. To achieve
it, authors present the Experiment Application. It is composed by Blockly, to define and design
the experiments, and Google Chart, review and visualize the experiment results. This tool offers
benefits to students, teachers and, even, lab designers. For the moment, it can be used with any
existing lab or simulation created with the authoring tool Easy Java(script) Simulations. Since
there are repositories with hundreds of free available labs created with this tool, the potential
applicability of the described tool is considerable. To illustrate the utility of the Experiment
Application a very well-known system is used: the Simple Harmonic Oscillator system.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Experimentation Language; Experiments; Virtual Laboratories; Remote
Laboratories; Easy java(script) Simulations; JavaScript; Blockly.

asa gogical purposes on the internet, specially, in the field of
control engineering.

1. INTRODUCTION
The use of images or animations is highly recommended

in order to help users to understand more easily the
system under study. Current developments in interactivity
allows users to visualize the response of the system to
any external or internal change, Dormido et al. (2005);
Sénchez et al. (2002). These features, rich visual contents
and the possibility of an instantaneous visualization of
gate in a traditional hands-on laboratory, and (3) to make the system response make VRLs a h}lman—fme.ndly tool
a great number of simulations without any restriction, to l(_earn,.helpmg users to achieve practical experience into
Heradio et al. (2016). engineering control systems.

The use of virtual and remote laboratories (VRLs) for
control engineering has increased significantly given the
rise of distance, online and blended learning. The benefits
of VRLs are well known, including: (1) cost savings in
equipment, space and maintenance staff, (2) possibility to
study phenomena which would not be possible to investi-

Despite all these improvements, there are certain limita-
tions that have to be solved. Certain actions performed
during experimentation activities need to be accurate and
time controlled, something nearly impossible by just inter-
acting with the GUI (for example, pausing the evolution
of the lab at the exact moment an event occurs, changing
a static value of the model, compute the elapsed time be-
tween two actions). Some other actions add no educational
value to the students and take considerable time, such as
repeating a process tens of times with different parameter
values to evaluate the obtained results. In contrast, it

A laboratory is meant to offer experimentation possibil-
ities. Experimentation can be defined as the process of
extracting data from a system by exerting it, not only
through its inputs, but also through the model parameters.
Traditionally, users of VRLs were expected to perform ex-
periments by interacting with the applications’ graphical
user interface (GUI). For this reason, visualization and
interactivity are features of special importance for labo-
ratories used to teach control engineering, Heck (1999);
Esquembre (2004). The greatest proof of this statement
is the existence of hundreds of simulations used for peda-

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.2323

Daniel Galan et al. / IFAC PapersOnLine 50-1 (2017) 13474-13479

would be preferable to code the experiment by using a flex-
ible, intuitive and user-friendly experimentation language
to automatically run it. This way, the VRL is considered a
complete system and all variables, including the execution
of the experiment, are controllable and observable.

Authors’ main goal is to enrich existing VRLs with an
application to create and perform automated experiments.
Authors’ proposal aims to provide an online application
with which users are able to define and perform their own
experiments with any online VRL. In order to achieve
this objective, a new Application Programming Interface
(API), a set of functions which VRLs should conform to in
order to provide the desired experimentation capabilities,
has been designed.

Experiments are scripts coded with Blockly, Marron et al.
(2012), an easy and intuitive graphical programming lan-
guage, which is independent of the one in which the VRLs
are coded. Some of the existing modeling environments
(ACSL, EcosimPro, Dymola) include certain scripting fa-
cilities that enable the user to run experiments, Elmqvist
et al. (1998). As an example, Dymola’s manual states
that “..there is a script facility that makes it possible
to load model libraries, set parameters, set start values,
simulate, and plot variables by executing scripts”. Based
on the study of these modeling environments, authors have
added new capabilities to the general general specifications
obtained from the study of these environments to achieve
a more global fulfill specification that provides flexible
features.

To test the viability of the proposed experimentation ap-
plication, authors’ implementation uses JavaScript labs
developed with the modeling tool Easy Java(script) Simu-
lations (EjsS), designed to make the creation of computer
simulations easy and accessible to teachers. EjsS allows
saving time when creating VRLs because teachers do not
need to create them from scratch. Another important
feature about EjsS is that it is free. EjsS is part of the
Open Source Physics (OSP), which provides free online re-
source collections through the ComPADRE digital library,
supporting students and teachers. Among these resources,
users can find more than 500 applications created with
EjsS.

Despite the huge advantages and great utilities offered by
the two previous tools and resources (EjsS and the OSP
digital library, respectively), there was not a way to use
them to allow the creation of simulation experiments by
users. This limitation is not restricted to EjsS and the
OSP digital library. PhET simulations, Wieman et al.
(2008), also available to download for free, present the
same problem too.

The paper is organized as follows. Section II presents the
Experiment Application and its benefits. Section III dis-
cusses the implementation of the language and the blocks
needed to represent experiments. Section IV shows the ex-
perimentation language in practice. Finally, the conclusion
and some pointers to further works are described in Section

V.

13475

Virtual Lab

IRRRE]

ExApp GUI)

Logic record (725l every [T milliseconds

Loops
Math
o
Variables
Functions
» Laboratory

Parse JavaScript | Step Javas

Blockly

—wvz
-39

1.818 i

vz 3.636

N D
L\\/ <

0.0 0

1.0 15 20 25

GoogléﬁeCharts

Fig. 1. ExApp GUI (Blockly Code and Google Charts)
with a virtual lab modeling a bouncing ball

2. THE EXPERIMENT APPLICATION

The Experiment Application (ExApp) is composed of four
elements: (1) Blockly Editor to design the experiment,
(2) Google Charts visualization to review the experiment
results, (3) the API to share information between the VRL
and the experiment and (4) the experimentation language.
The first two elements (Blockly and Google Charts), which
comprise the application GUI (see Figure 1), are explained
in the following lines. The API and the experimentation
language, which are closely related, will be explained in
Section 3. As has been mentioned in the introduction, the
ExApp is entirely independent of the lab used. If the lab,
whether a virtual lab, a remote lab, an hybrid lab or a
simulation, implements the API proposed by the authors
the ExApp can be used.

The experiment designer is developed using Blockly. It is
a free and open source library that adds a visual code

13476

editor to web and Android apps. The Blockly editor uses
interlocking, graphical blocks to represent code concepts
like variables, logic expressions, loops, and more. It allows
users to apply programming principles without having to
worry about syntax or the laboratory structure. Blockly
is used in lots of learning applications as: Blockly Games
(a set of educational games that teach programming con-
cepts), MIT’s App Inventor (to create applications for
Android), Code.org (to teach introductory programming
to millions of students in their Hour of Code program),
Wonder Workshop (to control their Dot and Dash edu-
cational robots), the Open Roberta project (to program
Lego Mindstorms EV3 robots), or ScratchyCAD (a web
based parametric 3D modeling tool which allows users to
create 3D objects). Using Blockly to create experiments
for VRLs rather than other programming languages is a
valuable asset from the experience of the authors. As VRLs
can be used by any person, with or without programming
skills, Blockly is the easiest way to start creating small
algorithms to conduct experiments. Furthermore, this code
editor offers interesting features that favor the web use,
maintaining the power of traditional languages:

(1) Implemented with JavaScript.

(2) Support for many programmatic constructs including
variables, functions, arrays.

(3) Minimal type checking supported.

(4) Easy to extend with custom blocks.

(5) Localized into 50+ languages.

In the last stage of the experiment, the data analysis is
presented to the user using Google Charts, Zhu (2012).
This library is used to visualize data on a website. As
Blockly, it is free and open source. Google Charts provides
a large number of ready-to-use chart types. It is able to
represent from simple line charts to complex hierarchical
tree maps. It is highly customizable and supports dynamic
data and controls to create interactive dashboards. It
also offers functions to import and export data to other
formats, so it is possible to use them with R, Microsoft
Excel or other common analysis tools. It is a JavaScript
library so its incorporation to an online tool is simple and
clean.

2.1 Benefits from using FxApp

ExApp users can be distinguished in three groups accord-
ing to their role in a teaching experience: (1) lab designers,
(2) teachers and (3) students. Each of them benefits from
this tool in different ways.

Lab designers are in charge of creating the Lab. Usually
they have to create the model, the view, decide which
variables are going to be visualized in charts and add
some interactive elements to control the execution of the
lab by changing some variables or internal functions. If
designers use a tool that implements the API proposed
in this paper (EjsS at the moment), they will not need
to change anything in their lab implementation to use
ExApp. Furthermore, they will not need to create charts or
any interactive element to control the lab. As the ExApp
has access to every variable, the final user can decide
the way to work with the lab and the variables that are
important to show in the charts. The designer will focus
only in the model definition and its view. This means that

Daniel Galan et al. / IFAC PapersOnLine 50-1 (2017) 13474-13479

the designer will need less time to create the lab and the
experiences or assignments that can be proposed are not
limited in the design. As an example, in a bouncing ball
simulation, if the designer do not add a way to change
the gravity variable, students will not be able to study its
implication in the model.

Teachers have to define the lab experiences for the stu-
dents. If the lab is open and not restricted by the designer
pretensions, the teacher will have plenty of possibilities
and experiences to offer to the students. From simple
algorithms to discover the important variables of a system,
to create from zero the PID level controller of a water
tank. To deploy the ExApp and the lab on a web page is
as simple as preparing a HTML with the two elements.
Authors’ next step is to include the ExApp as a Moodle
plugin. In this way, the lab, the ExApp, the experiment
files and the results are manage by Moodle. The correction
of these type of interactive experiments using Blockly is as
easy as running the student file and evaluating the results
obtained. The time needed by teachers to explain how
to use the tool is extremely short comparing with other
simulation tools that allow the creation of experiment
scripts. About evaluating the assignments, teachers may
give value to whether the correct result is obtained as
well as how the student reached to that solution. Teachers
have the possibility to assess the experiments structure,
to study the algorithms used and to perform the students
experiments as many times as needed just with one click.
Even more, Blockly and other similar tools as Scratch are
currently being used in elementary schools. This means,
near future users will not need any extra explanation about
how to used it, because students will be familiar with these
tools.

Students are the final users of the lab and the ExApp.
Nowadays, Blockly is the first step to start learning pro-
gramming skills, so even students with no programming
knowledge will find ExApp an easy tool to code their
scripts. Blockly offers visualization features as highlight-
ing blocks which are executed at a certain time so it
is very easy to follow the execution flow of the exper-
iment and correct possible mistakes. For the same lab,
students can face different assignments depending on their
skills which promote, among others, imagination to solve
the assignments, learning interest, critical thinking, being
challenged and inquiry-base learning. Also, by scripting
the experiment, students avoid tedious or repetitive tasks
without any educational value. They are able to exchange
experiments with the teacher or other students, comparing
results and confronting different approaches. Visualizing,
collecting and assessing results is easier thanks to Google
Charts.

3. IMPLEMENTATION

To achieve the objective of controlling every aspect of
a VRL, an interface between the ExApp and the VRL
is needed. The API should then contain the following
elements:

(1) Elements to initialize and configure the ExApp.
(2) Elements to access variables.

(3) Elements to specify algorithms.

(4) Elements to control the execution of the lab.

Daniel Galan et al. / IFAC PapersOnLine 50-1 (2017) 13474-13479

(5) Elements to review the results.

These elements, how they conform the experimentation
language and how are implemented in the ExApp are
described in the following subsections.

3.1 Elements to initialize and configure the ExApp

An initialize process is needed to configure correctly the
ExApp and to link it to a lab. This means that ExApp has
to receive the object that contains the variables and the
lab functionality (In EjsS labs, the model variable). Once
the ExApp and the lab are linked, all variables from the
lab system are classified by type and prepared for their use
in the code. Optionally, an XML file can be configured to
show more or less Blockly blocks in order to create from
the most standard to the most complex algorithm. The
XML is configured with all the blocks by default.

3.2 FElements to access variables

The lab has to implement two functions to set and
get the variables of the model. EjsS labs, for exam-
ple, implements these functions using a JSON Object,
model.userUnserialize({variable,value}) to set and the
function model.userSerialize() to get the values of the
variables.

The experimentation language implement two blocks using
the two functions seen in Figure 2. The one on top will
show a message with value of the selected variable (t)
when executed and the one in the bottom will set the value
of the statement linked to it, in this case, it will set the
variable g with the value 3. Model variables will appear
in the variable chooser of the block automatically, as it is
possible to see in Figure 2.

print | get (B
set CRB 0 (8

t

Fi

vz

dt

coef_of_restitution
J48

radius

floor

Fig. 2. How to set and get variables from the lab

3.8 Elements to specify algorithms

Experiments not only require specific algorithms that use
the variables from the lab, but also, additional functions
and variables defined by users, so the API should allow
it. Thanks to the JavaScript features this is easy to
implement.

To do this, the experimentation language must provide dif-
ferent blocks to create standard algorithmic constructions
to allow users to write complex algorithms, if required.
Figure 3 shows declaration of a new function in the code,
how to call it and few blocks to create different types of
statements.

13477

» Logic ﬂ
Loops BTG T
- -1 |
| EED €53 (K3
Variables :‘ :‘
Functions
W sin * print | sum with:
Randomize 'o
v

Jabberwocky

Fig. 3. How to define and call a function using Blockly

3.4 Elements to control the execution of the lab

The API should implement different ways to control the
lab execution. If it is a lab whose evolution depends on
time, instructions to start, pause or stop the lab are
necessary. Also, more complex functions are needed, like
events (do something when a given condition is met). For
example, “run the simulation until the level of the tank is
greater than 10” or “run the simulation increasing the set
point by 50% when t = 10”. The lab should implement
the function model.addEVent(conditionCode, actionCode
) in order to allow these type of statements.

Figure 4 shows how the experimentation language imple-
ments this function to add events to the lab. First of all,
the lab is reset and then an event is added. The condition
is 3 minus the variable ¢ from the lab. And the action
consist in pausing the lab. After this, the lab is started.
When the variable ¢ gets to 3 the lab will pause.

reset the lab

| pause the lab

start the lab

Fig. 4. How to control the lab execution using Blockly
3.5 Elements to review the results

The API should provide functions to review and assess
obtained results from the experiment by comparing out-
put data with visual elements as plots or graphs. Google
Charts is the tool used to visualize data. Data are regis-
tered in tables with the values of the selected variable in
one column and the time variable of the model in another
column.

The experimentation language has three blocks to imple-
ment this functionality. Figure 5 shows , on the left, the
three of them and the obtained chart on the right. The
first block is to declare which model variable is going to
be recorded and the sample period for it. It is possible to
declare as many variables as needed. Once the recording
variables are declared, it is only precise to use the start
recording and the stop recording blocks to select the time
bands to track those variables. Once the experiment starts,
the chart will visualize the selected variables.

4. EXAMPLE OF USE

This section presents an example that shows the usefulness
of the ExApp and the advantages described throughout

13478

Fig. 5. How to review data with Blockly

the paper. The presented simulation, Simple Harmonic
Oscillator (see figure 6), was taken from the ComPADRE
Digital Library. While this simulation is a great tool by
itself, it is a bit limited in terms of visualization and
interaction with the model. With the ExApp, however,
a student can use the simulation to conduct as interesting
experiments as the ones showed in the following subsec-
tions.

4.1 Simple Harmonic Oscillator

‘time:U.UU
» i3

& k= X = |1.50

Fig. 6. Simulation of the Simple Harmonic Oscillator

The Simple Harmonic Oscillator Model illustrates the
motion in the horizontal dimension of a mass m situated
at the end of a spring of length [. The model assumes
that the reaction of the spring to a displacement dx from
the equilibrium point can be modeled using Hooke’s Law
(F(dz) = -k dx) where k is the spring constant. Thus,
applying Newton’s Second Law, it is obtained the following
equation:

o~k
a2 m

(z = 1) (1)

The system of coordinates has its x-axis along the spring
and the origin at the spring’s fixed end. The particle is
located at z and its displacement from equilibrium éz = z
- [is zero when z = .

The spring is initially stretched and the ball has zero
initial velocity. With the GUI is possible to change the
initial position of the ball, the spring constant value and
to play, pause and reset the simulation. Notice that using
the ExApp none of these features are necessary to interact
with the model.

4.2 Example 1:
system evolution

Visualizing wvariables involved in the

Identifying the important variables of the system is the
first step in every experiment. It is easy to understand,
seeing Equation 1, that the variables that determine the

Daniel Galan et al. / IFAC PapersOnLine 50-1 (2017) 13474-13479

system evolution are the velocity and the position of the
free end of the spring. But, what else could be done if the
system is unknown or the equation is not so simple. With
the ExApp is very easy to visualize the system variables so
with a quick glance is possible to see how variables evolve.
Figure 7 shows an experiment (left part) where all the
variables of the lab are visualized in a chart (right part)
for 5 seconds.

record E3E every [E[0) milliseconds reset the lab
record E7358 every B[milliseconds sSt_in !
start recording data
record fE8 every E['0) milliseconds)
- [
record [T every [} milliseconds | -[\QEI
record every [} miliseconds (recording data
ause the lab
record every milliseconds s
start the lab
3 —_—x
—x
¥
2 —m

—k

—_—

value

0.8 1.5 25 35 4.5
Time

Fig. 7. Example 1: Visualizing variables

4.8 Example 2: Study how the value of the spring constant
affects the velocity

Interacting with the model variables is easy using ExApp.
Thus, a good assignment would be to study the relation
between those variables to discover the equations that
model the system. ExApp allows users to vary one variable
and see the effect in another one using the events and
the chart. The experiment starts resetting the lab, and
setting the spring constant to 1. After that, three events
are added, two to change the spring constant to 10 at 2
seconds and another one to set it to 20 after 4 seconds.
Finally, the execution finishes after 6 seconds. Figure 8
shows the blocks used to create this experiment and the
chart with the results. It is easy to see the proportional
relation between the spring constant and the velocity
seeing the chart and the Hooke’s Law.

4.4 Erample 3: Study the relation between the mass and
the velocity of the oscillator

This example is similar to the Example 2 but the way
of solving it is different. Instead of creating events and
changing the desired variable, it is possible to run the
experiment several times with different initial conditions
and visualize the outputs overlapped in the chart. Figure
9 represent the code of one of the experiments, in this
case, the user should change the mass every time that
runs the experiment, in the first experiment was set to
1, in the second one to & and finally to 5. The chart shows
overlapped the velocity for every experiment. It is simple
to see that the frequencies of the oscillating velocities are

Daniel Galan et al. / IFAC PapersOnLine 50-1 (2017) 13474-13479

record §35 every [[E) miliseconds
reset the lab

start recording data

=@t 0

‘am =m S

E@o W

o om = [

[LI

o m wm |

i pause the lab
sEp recording data

2

2

start

=
H
L
=3

—_— VX

| aAWA
e

Fig. 8. Example 2: Relation between the spring constant
and the velocity

inversely proportional to the mass values by just looking
the chart and having in mind the Newton’s Second Law.

record (788 every ([} miliseconds
reset the lab

start recording data

S NS

| start the lab

5.0

25

00

-25

-5.0
0.0 0.4 08 12 1.6

Fig. 9. Example 3: Different velocity by changing the mass

5. CONCLUSION

The first version of this web application is ready to use. It
is possible to: access and modify all the variables from the
laboratory, create algorithms and functions, and control
the execution of the experiment. Additionally, users can
execute the experiment step by step or run the whole script
with a modifiable interval of time between code sentences.

13479

Authors are currently working in the implementation of
a Moodle plugin to use the tool easily. Once developed,
everyone who wants to use this tool in his/her lab will only
have to add the plugin to Moodle and select the desired
features of the tool to use in each EjsS lab (or any other
lab that implements the proposed API). From the authors
point of view, these type of plugins can change the way
of performing experiments, creating new experiences in
Learning Management Systems (LMS).

Authors are in the process of testing the initial design
creating different types of experiments of practical use
in teaching Automatic Control and Physics. In this way,
the assessment and tests of the tool are currently in
process with different groups of students. Early results
show that this implementation is both simple and flexible,
supplying users a great deal of control of the running
simulation. The combination of JavaScript and Blockly
has been crucial in making the proposed implementation
very fresh and clear. The way EjsS implements the VRLs
allows external applications to access easily all its variables
without any required modification in the lab applications
already developed. The benefits of this application are
studied in an example of implementation using the Simple
Harmonic Oscillator system.

In a more general context, authors believe the API pro-
posed in this work can effortlessly be adapted to different
lab implementations or to any future standard protocol.

REFERENCES

Dormido, S., Dormido-Canto, S., Dormido, R., Sanchez,
J., and Duro, N. (2005). The role of interactivity in
control learning. International Journal of Engineering
Education, 21(6), 1122.

Elmgqvist, H., Mattsson, S.E., and Otter, M. (1998). Mod-
elica: The new object-oriented modeling language. In
12th European Simulation Multiconference, Manchester,
UK.

Esquembre, F. (2004). Adding interactivity to existing
simulink models using easy java simulations. Computer
Physics Communication, 156, 199-204.

Heck, B.S. (1999). Future directions in control education
[guest editorial]. IEEE Control Systems, 19(5), 36-37.
Heradio, R., de la Torre, L., Galan, D., Cabrerizo, F.J.,
Herrera-Viedma, E., and Dormido, S. (2016). Virtual
and remote labs in education: A bibliometric analysis.

Computers & Education, 98, 14-38.

Marron, A., Weiss, G., and Wiener, G. (2012). A decentral-
ized approach for programming interactive applications
with javascript and blockly. In Proceedings of the 2nd
edition on Programming systems, languages and applica-
tions based on actors, agents, and decentralized control
abstractions, 59-70. ACM.

Sanchez, J., Morilla, F., Dormido, S., Aranda, J., and
Ruipérez, P. (2002). Virtual and remote control labs
using java: a qualitative approach. IEEE Control Sys-
tems, 22(2), 8-20.

Wieman, C.E., Adams, W.K., and Perkins, K.K. (2008).
Phet: Simulations that enhance learning. Science,
322(5902), 682—683.

Zhu, Y. (2012). Introducing google chart tools and google
maps api in data visualization courses. IEEE computer
graphics and applications, 32(6), 6.

