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a  b  s  t  r  a  c  t

Exponential  random  models  have  been  widely  adopted  as a general  probabilistic  framework  for  com-
plex  networks  and  recently  extended  to embrace  broader  statistical  settings  such  as  dynamic  networks,
valued  networks  or  two-mode  networks.  Our  aim  is  to provide  a  further  step  into  the  generalization  of
this class  of  models  by considering  sample  spaces  which  involve  both  families  of networks  and  nodal
properties  verifying  combinatorial  constraints.  We  propose  a class  of  probabilistic  models  for  the  joint
distribution  of nodal  properties  (demographic  and  behavioral  characteristics)  and  network  structures
(friendship  and  professional  partnership).  It results  in  a  general  and  flexible  modeling  framework  to
ayesian inference
CMC

account  for  homophily  in social  structures.  We  present  a Bayesian  estimation  method  based  on  the  full
characterization  of their  sample  spaces  by systems  of linear  constraints.  This  provides  an  exact  simula-
tion  scheme  to  sample  from  the  likelihood,  based  on linear  programming  techniques.  After  a  detailed
analysis  of the  proposed  statistical  methodology,  we  illustrate  our  approach  with  an  empirical  analysis
of  co-authorship  of  journal  articles  in  the  field  of neuroscience  between  2009  and  2013.

©  2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Homophily is a widely studied characteristics of social
etworks, which is often associated with different forms of human
elf-segmentation, in terms of demographic and behavioral char-
cteristics (Bell, 2014). It is typically defined as the tendency of
ndividuals to associate with similar others and has been ana-
yzed in a vast range of network studies (McPherson et al., 2001).
or instance, in the field of marketing, researchers are interested
n analyzing how demographic clusters purchase goods and ser-
ices which are similar by themselves. In the field of bibliometrics,
emographic and behavioral characteristics of co-authors are stud-

ed with the aim of analyzing the pattern of collaborations in a
iven scientific community (Teixeira da Silva, 2011; Haeussler and
auermann, 2013).
Dealing with homopily in terms of the association between
ndividual characteristics and connection patterns entails an epis-
emological concern, resulting from the direction of causality in the

∗ Corresponding author.
E-mail addresses: S.Nasini@ieseg.fr (S. Nasini), valbeniz@iese.edu

V. Martínez-de-Albéniz), tdehdari@gmail.com (T. Dehdarirad).

ttp://dx.doi.org/10.1016/j.socnet.2016.09.001
378-8733/© 2016 Elsevier B.V. All rights reserved.
observed nodal similarities. In fact, in the presence of homophily,
we could either assume individual properties to cause and affect
the appearance of a connection or to expect the latter to drive
and boost the appearance of similarity between connected nodes.
In practice, when combined with data, our concept of causality
must be cast in the language of probability and in particular in
the specification of random vectors (endogenous to the model) and
fixed parameters or covariates (exogenous to the model). From this
practical outlook, modeling the joint distribution of nodal prop-
erties (demographic and behavioral characteristics) and network
structures (friendship and professional partnership) allows endog-
enizing the underlying duality of network self-similarity to a large
extent. From a purely phenomenological viewpoint, a probabilis-
tic framework where both connections and nodal properties are
regarded as random vectors allows any causality statements to be
translated into information statements,  with no need for prede-
fined assumptions regarding the direction of causality (Chater et al.,
2006; Dawid et al., 2004). In fact, in the language of probability, the
very naive hypothesis that a link is affected by the nodal proper-

ties of its endpoints implies that P(link|nodal properties)  /= P(link),
which leads to P(link & nodal properties)  /= P(link) · P(nodal proper-
ties) and by Bayes’ rule yields that P(nodal properties|link)  /= P(nodal
properties). As a result, the existence of a connection between two

dx.doi.org/10.1016/j.socnet.2016.09.001
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2016.09.001&domain=pdf
mailto:S.Nasini@ieseg.fr
mailto:valbeniz@iese.edu
mailto:tdehdari@gmail.com
dx.doi.org/10.1016/j.socnet.2016.09.001
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odes changes the probability of observing given properties in
ts corresponding endpoints. Thus, despite being a suitable rep-
esentation of causes and effects, conditional probability entails
ymmetric arguments which invert the direction of causality. By
ontrast, the joint probability explicitly assumes statistical uncer-
ainty on both sides, which is the natural condition in many social
ettings.

Our aim is to design a joint distribution for the association
etween nodal properties and connection patterns by a fully
ndogenous definition of nodal similarities. With this approach, we
re able to capture social influence – cross-sectional dependencies
etween individual features are driven by their connection pat-
erns – and social selection – connections are driven by individual
eatures. Specifically, an exponential random model is proposed
o characterize this joint distribution (Lusher et al., 2012; Caimo
nd Friel, 2011; Robins et al., 2007), allowing for a direct inclusion
f both (i) nodal similarities as a collection of sufficient statistics,
nd (ii) constraints in the sample space of the so-defined multi-
imensional random variable. The latter represents an important
apability when the researcher is interested in controlling for the
resence of exogenous influences (number of connections, num-
er of nodes with specified properties, etc.), whose effect she/he
ishes to isolate from the rest of the model dependencies.

Exponential families possess good properties that typically sim-
lify the statistical inference of parameters. But as we explain in
ection 4, the inclusion of nodal similarities as sufficient statistics
or this joint distribution entails the impossibility of a complete
haracterization of the probability density (mass) function, due
o the intractability of the normalizing constant. This represents
ne of the strongest barriers to the numerical optimization of
he likelihood function and legitimates the use of approximation
pproaches – such as the Monte Carlo maximum likelihood of Geyer
nd Thompson (1992) and pseudo-likelihood estimation of Strauss
nd Ikeda (1990).

As suggested by Caimo and Friel (2011), this drawback can be
vercome by embedding the defined model into a Bayesian estima-
ion framework, which reformulate the estimation problem based
n the ability of simulating from the posterior distribution. We
uild on Murray et al. (2006), which proposed a MCMC  method
o simulate from this class of distributions, allowing a flexible esti-

ation of the effect of nodal similarity – which is the main scope of
his paper. As it will be accurately discussed in Section 4.2, this esti-

ation approach can be further exploited to accommodate sample
paces characterized by systems of linear constraints, based on the
imulation mechanism by Castro and Nasini (2015).

We illustrate our method through the analysis of co-authorship
f over a thousand journal articles between 2009 and 2013 in the
euroscience research community. The two reasons behind the
hoice of this empirical application are supported by (i) the rel-
vance of homophily in scientific collaborations (Teixeira da Silva,
011; Haeussler and Sauermann, 2013) and (ii) the growing inter-
st in this new line of applications of exponential random models
Goldenberg and Moore, 2005; Wimmer  and Lewis, 2010). The
ractical goal is to jointly study demographic and behavioral char-
cteristics of co-authors, along with their pattern of collaborations
n a given scientific community.2

Previous studies on co-authorship networks adopted a variety
f statistical approaches (Newman, 2003, 2004a), with the pur-
ose of identifying the structure of scientific partnerships and the

ole played by individual characteristics. The majority of these
ethodological contributions focus on modelling the structure of

cientific co-authorship, based on the projection of a two-mode

2 Co-authorship networks are designed to represent collaborations between
cholars, which are established based on observed joint publications.
ks 48 (2017) 202–212 203

network (author–paper network) into a one-mode structure of
co-authorship (author–author network), where links represent co-
authors, i.e., authors sharing common papers, as described by
Leydesdorff and Wagner (2008). We  use a similar approach in this
paper, by considering a set V of N authors with connection structure
E ⊆ V × V. We  denote by K a set of K categorical properties (in our
application, K = {genders, nationalities}) defined for each author in
V and assume the nodal similarities to reflect the overlap of authors’
categorical statuses, with respect to the properties in K.

As a result, the statistical application of the proposed prob-
abilistic framework provides substantial insights into the level
of homophily in co-authorship networks, in terms of specific
socio-demographic characteristics, while accounting for relevant
network features based on observed nodal properties. Specifically,
our approach is able to simultaneously generate the following sta-
tistical insights:

• estimate authors’ collaboration pattern based on their demographic
and behavioral properties;

• estimate authors’ demographic and behavioral properties based on
their pattern of connections.

In other words, the proposed modeling approach connects nodal
(individual) properties with network structure in a fully probabilis-
tic way, so that information flows in both directions and one can
be used to predict the other.

The rest of the paper is organized as follows. We  review the lit-
erature in Section 2. The data set is then introduced and described
in Section 3, along with the relevant descriptive statistics for
both individual properties and connection patterns. The model is
described in Section 4 and the estimation procedure discussed in
Section 5. The numerical results are presented in Section 6 and
suggest that the initial modeling decision concerning the direction
of the causal association plays an important role in the resulting
estimation. Section 7 concludes.

2. Literature review

Homophily, as the tendency of individuals to associate with
similar others, has been observed in a vast range of network stud-
ies (McPherson et al., 2001). In their seminal paper, Lazarsfeld
et al. (1954) discriminated between status homophily and value
homophily. The first one consists to the tendency of individuals
with similar social status characteristics to connect with each other.
By contrast, value homophily, refers to a more general similar-
ity between demographic and behavioral properties of connected
nodes.

Statistical approaches to account for the observed homophily in
social networks have been generally based on the ability to repro-
duce the observed correlations between nodal properties. In this
respect, two well-established streams of contributions should be
mentioned within the network analytics literature: (i) a vast class
of models for assortative mixing (Newman, 2003), with particular
attention to the analysis of degree assortativity (Newman, 2004a;
Buccafurri et al., 2015), and assortative patterns based on exoge-
nous properties (Pelechrinis and Wei, 2016); (ii) spatially-based
models to relate attributes of connected individuals (Winsborough
et al., 1963; Carley, 1986; Robins et al., 2001).

In the first stream of literature, the design of the network forma-
tion is based on nodal similarities with respect to either exogenous
nodal quantities, or to endogenous network properties at the nodal

level (such as nodal centrality indexes). In the second stream of
literature individual attributes are modeled as a result of a net-
work influence process, where the network structure is taken as
exogenous.
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Table 1
The total number of publications and the stratified sample size, 2009–2013.

Year # publications (%) Stratified sample size

2009 28,819 (18.81%) 199
2010 30,154(19.69%) 208
2011 31,030 (20.26%) 214
2012 31,265 (20.41%) 218
2013 31,914 (20.83%) 221

ure report the dendrogram of the community detection algorithm.5

The aim was  to analyze the overlap between membership in the

3 In particular, 5261 (91.80%) authors have been directly classified, while 124
(2.16%) unclassified names have been assigned manually by contacting them. The
gender of 346 (6.04%) authors remained unspecified. They correspond to 53 (5%)
papers, which have been eliminated from the sample, resulting in a data set com-
prising 1007 (95%) of the 1060 papers. These 1007 papers were used as our data set
for  further analysis.
Fig. 1. Community structure of the first largest component w

In either cases, exponential random models have been used as
mportant tools for the statistical inference on both sides of this
nderlying duality, as detailed in Goldenberg et al. (2010). Indeed,
hey have so far provided a flexible way to deal with network
eatures, such as propensities for homophily, mutuality, and triad
losure, through choice of sufficient statistics (Robins et al., 2007;
orris et al., 2008). In recent years, they have been extended to

mbrace more complex settings, such as the ones associated with
alued networks (Krivitsky, 2012), dynamic networks (Hanneke
t al., 2010; Desmarais and Cranmer, 2012), two-mode networks
Wang et al., 2009).

A further extension of exponential random models is the one
roposed in this paper, where individual properties and network
tructures are included in a joint sample space, as discussed in
ection 4. From the best of our knowledge, only two recent con-
ributions have undertaken a systematic analysis into this class of
oint models: a working paper from Fellows and Handcock (2012)

 who proposed a likelihood-based inference to approximate the
oint distribution – and a recently appeared paper from Thiemichen
t al. (2016) – who design a multilevel model with nodal random
ffects to account for heterogeneity in the network local properties.

As already mentioned in Section 1, a major drawback when
ealing with this class of models is the intractability of the nor-
alizing constant for most of the model specifications (Caimo and

riel, 2011). This represents one of the strongest barriers to the
umerical optimization of the likelihood function and legitimates
he use of approximation approaches – such as the Monte Carlo

aximum likelihood of Geyer and Thompson (1992) and pseudo-
ikelihood estimation of Strauss and Ikeda (1990). As suggested by

øller et al. (2006), this drawback can be overcome by embedding
he defined model into a Bayesian estimation framework, which
eformulate the estimation problem based on the ability of simu-
ating from the posterior distribution. This algorithmic approach,
nown as the auxiliary variable method in its original formulation,
as been substantially improved by Murray et al. (2006), allowing a
ore efficient convergence to the limit posterior distribution. This

atter algorithmic procedure is adopted in described in Section 5
nd combined with the simulation mechanism by Castro and Nasini
2015).

. The co-authorship data set

The data set used in the study is composed of the scientific pub-
ications indexed in the Web  of Science (WOS) database between

009 and 2013 in the field of Neuroscience. It has been extracted
rom the WOS  in May  2014 by conducting a search using the field of
ubject category (WC). As a result, a collection of 153,182 research
apers was retrieved in the first step. Then, we conducted stratified
Total 153,182 1060

random sampling to re-sample from the retrieved set of papers. The
sample size was  determined with a 3% sampling error and 95% of
level of confidence. Table 1 shows the total number of publications
and the stratified sample size per year in the studied field. Accord-
ingly, 1060 papers in neuroscience were randomly downloaded
from the WOS.

Authors have been assigned to a nationality – based on the coun-
try of the institution where the author is affiliated –, and to genders
– based on a filtering procedure of their first names.3 Finally, after
eliminating those papers whose gender and nationality was unclear
(53 of them, 5%), our data set comprised 1007 (95%) of 1060 papers.
These 1007 papers were used as our data set for further analysis,
corresponding to 5385 authors.

We project the author–paper network into a one-mode
author–author network of co-authorship. In other words, a network
structure of scientific collaboration between authors was generated
by connecting those authors whose names jointly appear in one or
more of the 1007 articles.4 The resulting one-mode networks com-
prises 207 disconnected components. The size and density of the
three largest components are reported in Table 2.

Figs. 1–3 show the network plots of the three largest com-
ponents of the author–author network, associated with nodal
characteristics of gender and nationality. The right plots in each fig-
4 Note that other approaches are possible. For instance, a paper–paper network
(articles sharing authors) can be obtained where two papers are connected if and
only if they share at least a common author.

5 Co-authorship communities have been detected using a hierarchical clustering
approach (Clauset et al., 2004).
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Table  2
Number of connected components and densities of the author–author bipartite network.

First largest Second largest Third largest Total

One-mode author–author network 55 (0.34) 53 (0.17) 35 (0.36) 5385 (0.001)
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Fig. 2. Community structure of the second largest component w

elected communities and authors’ demographic characteristics
gender, nationality).

We  observe a quite accurate matching between nationality and
embership of the detected communities (graphically illustrated

y different colors). However, connected nodes do not seem to
ollow any assortative or dissortative pattern with respect to their
enders. This facts will be confirmed in the probabilistic analysis of
ection 6.

. Modeling framework

In our modelling framework, a social structure is parsimoniously
efined as a set V of N individuals, each of which characterized by a
pecified vector of K features, and a collection of pairwise relations
mong individuals E ⊆ V × V. Features and relationships are taken
s categorical and static in this paper, although these assumptions
an be easily relaxed, see Nasini and Martínez-de-Albéniz (2015).

e denote by K a set of K categorical properties (in our applica-
ion, K = {genders, nationalities}), defined for each author in V, and
y Yk a categorical variable with mk categories. Across the N individ-
als its observation is specified in terms of an N × mk binary matrix

k ∈ Yk, where Yk ⊆ {0, 1}N×mk is the set of all possible realizations

f Yk (we use the notation yk

j,i
∈ {0, 1}, i.e., whether node i has level

 of attributes k). Similarly, let Z be the adjacency matrix of a ran-
om network with N nodes and Z ⊆ {0, 1}N×N the set of its possible
ealizations.

Fig. 3. Community structure of the third largest component with no
odal genders (blue for men, pink for women) and nationalities.

Definition 1 (Exponential family of distributions). Let X be a ran-
dom vector taking values in X, and x a possible realization. In the
exponential family of distributions the conditional probability of
x ∈ X  takes the following form:

P(x|�) ∝ q�(x) := h(x) exp(T(x)T�) (1)

where � is a vector of natural parameters of the distribution, which
can usually take any value in the reals, T(x) is a vector of sufficient
statistics, h(x) is an underlying measure on the sample space X  and
the symbol ∝ denotes proportionality.

In the specific case where the sample space under consider-
ation is a family of networks, the defined modeling framework
is best known as exponential random graph model, as previously
introduced in Section 2. As discussed in the next subsection, this
class of models is able to accommodate a large variety of homophily
specifications, based on the defined causal and probabilistic asso-
ciation between individual properties and connection structure.

4.1. The duality between exogenous properties

As already mentioned, a social structure has been described

based on the distinction between two  levels of characterizations:
the individual features (demographic and behavioral properties),
defined in the space Y,  and the connection pattern (friendship or
professional partnership), defined in the space Z.

dal genders (blue for men, pink for women) and nationalities.



2 etworks 48 (2017) 202–212

t
t
o
fi
T
u
t
n

e
i
n
(
i
r

P

w
a
p
c
i
s
e
a

t
t
p
v
e
w

P

w
s
v
e
z
t
v
t
o
n

4
n

o
s

Y
a
i

o
n

06 S. Nasini et al. / Social N

In Section 1, we mentioned the epistemological dilemma about
he direction of the causal association between individual proper-
ies and connection patterns. Such a duality can be translated into
ur statistical modeling by the propagation of the information from
xed (exogenous) covariates to uncertain (endogenous) variables.
he causal interpretation would result in assuming either individ-
al properties to cause the appearance of a connection or to expect
he latter to cause the appearance of similarity between connected
odes.

In the first case, nodal characteristics are statistically treated as
xogenous properties (covariates and explanatory variables), while
nference is made on the probability distribution of pairwise con-
ections – this is coherent with the classical regression analysis
Hair et al., 2006). Based on the previously defined exponential fam-
ly of distributions, the inclusion of exogenous individual properties
esults in an ERGM with assortativity measures:

(z|ˇ, �, y(0)) ∝
{

exp
[

ˇTB(z) + �TG(y(0), z)
]

if z ∈ Z
0 otherwise

(2)

here y(0) is the observed vector of individual properties, B(z) is
 vector of sufficient statistics which accounts for combinatorial
roperties of the network structure z (such as the clustering coeffi-
ient, the assortativity coefficient, the average path length, etc.), but
ndependent of nodal exogenous properties, G(y(0), z) is a vector of
ufficient statistics which internalizes the interaction between the
xplanatory nodal characteristics y(0) and connection variables z, ˇ
nd � are corresponding vector of parameters.

By contrast, in the case the connection pattern is regarded
o induce individual properties, interpersonal ties are statistically
reated as exogenous information, while inference is made on the
robability distribution of individual properties. Based on the pre-
iously defined exponential family of distribution, the inclusion of
xogenous connections results in a multivariate regression model
ith network dependency between individual observations:

(y|˛, �, z(0)) ∝
{

h(y) exp
[
˛TA(y) + �TG(y, z(0))

]
if y ∈ Y

0 otherwise
(3)

here z(0) is the observed network structure, A(y) is a vector of
ufficient statistics which accounts for properties of the categorical
ariables y (such as the number of nodes per each level of each cat-
gorical variable, number of associated categories, etc.) only, G(y,
(0)) is a vector of sufficient statistics which internalizes the interac-
ion between nodal characteristics y and the exogenous connection
ariables z(0),  ̨ and � are corresponding vector of parameters. Note
hat, in this view, individual features are not independent of each
ther and, in particular the model’s cross-sectional structure inter-
alizes social influence across individuals in a static setting.

.2. A joint model for endogenous individual properties and
etwork structures

We  consider here sample spaces which involve both families
f networks and nodal properties verifying linear constraints. We
tart by defining the sample space under consideration as X  = Z ×
1 × . . . × YK ⊆ {0, 1}N×N+

∑K

k=1
mk – the set of network structures

mong N individuals, taking K categorical properties, as illustrated

n Fig. 4.

In the exponential family of distributions, the joint probability
f individual properties and network patterns can be defined as the
atural extension of (2) and (3) when everything is regarded to be
Fig. 4. Sample space.

endogenous:

P(x|˛, ˇ, �) ∝
{

exp
[

˛TA(y) + ˇTB(z) + �TG(y, z)
]

if x ∈ X
0 otherwise

(4)

where A(y), B(x) and G(y, z) are defined as in (2) and (3).
The specification of the sample space X  can incorporate both

network and nodal properties, in accordance with our modeling
assumptions and our need to control specified combinatorial prop-
erties (Castro and Nasini, 2015). In other words, P(x|˛, ˇ, �) = 0 if x
does not satisfy a set of feasibility constraints. As illustration, three
possible sample spaces can be constructed by exogenously fixing
the degree sequence, the number of edges and the size of each
categorical level. They are specified in term of the solution sets
of systems of linear constraints. Note that intersections of these
sets give rise to hybrid sample spaces with complex combinatorial
structures. Formally, the three examples can be written as follows:

Fixed degree sequence

∣∣∣∣∣∣∣∣∣∣

mk∑
k=1

yk
h,r = 1 k = 1. . .K, r = 1. . .n

n∑
r=1

zrs = ds r ∈ V

Fixed number of edges

∣∣∣∣∣∣∣∣∣

mk∑
h=1

yk
h,r = 1 k = 1. . .K, r = 1. . .n∑

(r, s) ∈ V×V
zrs = d

Fixed categorical levels

∣∣∣∣∣∣∣∣∣∣

mk∑
h=1

yk
h,r = 1 k = 1. . .K, r = 1. . .n

m∑
r=1

yk
h,r = fk k = 1. . .K,

An exact method to sample from X  will be discussed in the next
section based on the simulation mechanism by Castro and Nasini
(2015).

5. Estimation method

As noted by Murray et al. (2006) and by Caimo and Friel (2011),
the intractability of the normalizing constants of most random
network models entails a “double intractability” of the posterior
distribution when the model is embedded in a Bayesian framework.
This is also true for model (4). MCMC  algorithms are often used
to draw samples from distributions with intractable normaliza-
tion constants. However, they do not apply to a doubly-intractable

constant.

Consider the kernel of the probability function (4) and let x(0) ∈
X  be the observed data set – the co-authorship network structure
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(0), the nodal genders y(0),1, the nodal nationalities y(0),2. Given a
rior distribution �(˛, ˇ, �), apply the Bayes rule:

(˛, ˇ, � |x(0)) = P(x(0)|˛, ˇ, �)�(˛, ˇ, �)∫
˛,ˇ,�

P(x(0)|˛, ˇ, �)�(˛, ˇ, �) d  ̨ d  ̌ d�

Since both P(x(0)|˛, ˇ, �) and P(˛, ˇ, � |x(0)) can only be specified
nder proportionality conditions, Murray et al. (2006) proposed a
CMC  approach which overcomes the drawback to a large extent,

ased on the simulation of the joint distribution of the parameter
nd the sample spaces, conditioned to the observed data set x(0),
hat is to say, P(x, ˛, ˇ, � |x(0)). We  follow the same approach. Our
pplication of the Metropolis-Hastings method (Bolstad, 2009) to
imulate from such distribution is summarized in Algorithm 1.

lgorithm 1. Exchange algorithm of Murray et al. (2006).

1: Initialize (˛, ˇ, �)
2: repeat
3: Draw (˛′ , ˇ′ , � ′) from h(. |˛, ˇ, �)
4:  Draw x′ from Px(. |˛′ , ˇ′ , � ′)
5:  Accept (˛′ , ˇ′ , � ′) with probability

min
{

1, Px (x)
Px (x′) × P(x′ |˛,ˇ,�)P(x(0) |˛′,ˇ′,� ′)�(˛′,ˇ′,� ′)

P(x(0) |˛,ˇ,�)P(x′ |˛′,ˇ′,� ′)�(˛,ˇ,�)

}
6: Update (˛, ˇ, �)
7:  until Convergence

The distribution h() is used to simulate candidate points from
he posterior and it is here assumed to be symmetric; Px(x) is the
robability of generating the point x, whose expression is (7).

Note that in step 3 of Algorithm 1 a new value of the parameters
˛′, ˇ′, � ′) is randomly proposed and in step 4 a sample from X  is
imulated with probability given in (4).

Clearly, this is a computationally intensive procedure, whose
ain source of numerical effort is embedded in line 4. Since

(.|˛, ˇ, �) ∝ exp
[

˛TA(y) + ˇTB(z) + �TG(y, z)
]

, a point from the

ample space can be drawn by a Metropolis-Hasting approach.The
orresponding acceptance probability of passing from x = [y, z] to
′ = [y′, z′] is

A(x, x′) = min

{
1 ,

Px(x)
Px(x′)

×
exp
[
˛TA(y′) + ˇ

T
B(z′) + �TG(y′, z′)

]
exp
[
˛TA(y) + ˇ

T
B(z) + �TG(y, z)

]
}

(5)

hus, in the presence of combinatorial constraints in the sample
pace X, line 4 of Algorithm 1 entails the solution of a sequence of
inear programs. Castro and Nasini (2015) provide detailed anal-
sis of how to make this generating process more efficient by
xploiting the matrix structure of the associated linear program.
ore specifically, simulating from those sample spaces X  coincides
ith generating extreme points of algebraically defined polytopes.
astro and Nasini (2015) show that many systems of linear con-
traints characterizing families of complex networks are defined by
otally unimodular coefficient matrices, allowing the correct gener-
tion of conditional random networks by specialized interior-point
ethods. Namely, given a sample space X  = {x ∈ R

q : Dx = b, x ≥
}, where q is the dimension of X, D is a coefficient matrix and b a
ight-hand term, we can formulate the linear program:

min  cTx

s.t. Dx = b

x ≥ 0.
(6)
etting � and � the Lagrangian multipliers of Dx = b and x ≥ 0,
astro and Nasini (2015) prove that knowing the probability of the
ks 48 (2017) 202–212 207

objective gradient c, say Pc(c), the probability of the optimal point
in the sample space is

Px(x) =
∫ ∫

Pc(DT � − �)

∥∥∥∥∥∥
D

DT I

� X

∥∥∥∥∥∥d�d� (7)

where � and X are diagonal matrices made up with the components
of � and x, respectively.

This result is particularly important when estimating the natural
parameter of the defined exponential random model, as the ability
to correctly simulate from X  is required by some of the most applied
algorithms which deal with intractable normalizing constants Z(�).

6. Numerical results and analysis

In this section different specifications of the described class
of models are numerically analyzed, with the aim of assessing
their probabilistic properties under different statistical settings.
Let b = [b1 . . . bK] be the vector containing the number of observed
levels of individual properties in the data set and Y  = {y ∈
{0, 1}N×

∑K

k=1
mk :

∑mk
h=1

∑
r ∈ Vyk

h,r
= b} the corresponding sample

space of all individual profiles of N nodes verifying constant demo-
graphic aggregate quantities. Likewise, let d ∈ R  be the number
of observed connections in our data set and Z = {z ∈ {0, 1}N×N :∑

(r,s) ∈ Ezrs = d}.
The following conditional specification of models (2) and (3) are

taken into account:

P(y|z(0), b, �)

∝

⎧⎪⎨
⎪⎩

exp

⎡
⎣∑

k ∈ K
�k

∑
(r, s) ∈ V×V

z(0)
rs

(
mk∑
h=1

yk
h,ryk

h,s

)⎤
⎦ if y ∈ Y

0 otherwise
(8)

P(z|y(0), d, �)

∝

⎧⎪⎨
⎪⎩

exp

⎡
⎣∑

k ∈ K
�k

∑
(r, s) ∈ V×V

zrs

(
mk∑
h=1

y(0),k
h,r

y(0),k
h,s

)⎤
⎦ if z ∈ Z

0 otherwise
(9)

Beside, the specification of the joint model (4) is the following:

P(x|d, b, �)

∝

⎧⎪⎨
⎪⎩

exp

⎡
⎣∑

k ∈ K
�k

∑
(r, s) ∈ V×V

zrs

(
mk∑
h=1

yk
h,ryk

h,s

)⎤
⎦ if x ∈ X

0 otherwise
(10)

The notations y(0),k
j,i

and z(0)
is

refer to the realization of yk
j,i

∈ {0, 1}
and zis ∈ {0, 1} in the observed data.

The vector of sufficient statistics contains the association
between edges and the two nodal properties. The correspond-
ing natural parameters �k account for how strongly the observed
homophily deviates from full randomness (uniformity over X), for
k ∈ K.  Thus, in the case of uniform distribution within the sam-

ple space X, we should have �k = 0; hence any non-zero value
of the natural parameters entails a deviation from such inde-
pendence. Specifically, if �k = 0, (10) is reduced to the product
between the probability mass functions of K multinomial random
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Table 3
Average standard deviation (on the left part of each cell) and coefficient of variation
(on  the right side of each cell) of the posterior distributions for different combination
of  N and K, based on the model specification (8).

# Nodes # Attributes

K = 5 K = 10 K = 15

N = 50 0.134–0.947 0.144–1.343 0.149–1.358
N  = 100 0.068–0.814 0.072–1.419 0.074–1.370
N  = 150 0.022–0.127 0.043–0.804 0.044–1.008

Table 4
Average standard deviation (on the left part of each cell) and coefficient of variation
(on  the right side of each cell) of the posterior distributions for different combination
of  N and K, based on the model specification (9).

# Nodes # Attributes

K = 5 K = 10 K = 15

N = 50 0.538–2.236 0.588–2.612 0.621–2.816

m2 = 9 (nationalities). The sample space is defined as the Carte-
sian product between the set of N node undirected networks with
fixed number of edges and the set of all possible realization of

Table 5
Average standard deviation (on the left part of each cell) and coefficient of variation
08 S. Nasini et al. / Social N

ariables Multinom(1/N . . . 1/N, bk) and the Erdos-Renyi random
raph model with fixed number of edges d.

When a flat distribution is adopted as an improper prior proba-
ility for �1. . .�K, the following family of posterior distributions is
btained:

(� |x(0)) ∝ 1
Z(�)

exp

⎡
⎣∑

k ∈ K
�k

∑
(r, s) ∈ V×V

z(0)
rs

(
mk∑
h=1

y(0),k
h,r

y(0),k
h,s

)⎤
⎦ ,

(11)

here Z(�k) is the partition function of the selected likelihood (8),
9), and (10), which can be explicitly defined as

(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
y  ∈  Y

exp

[∑
k ∈  K

�k

∑
(r,  s)  ∈  V×V

z(0)
rs

(
mk∑
h=1

yk
h,ryk

h,s

)]
for model (8)

∑
z  ∈  Z

exp

[∑
k ∈  K

�k

∑
(r,  s)  ∈  V×V

zrs

(
mk∑
h=1

y(0),k
h,r

y(0),k
h,s

)]
for model (9)

∑
x ∈  X

exp

[∑
k ∈  K

�k

∑
(r,  s)  ∈  V×V

zrs

(
mk∑
h=1

yk
h,ryk

h,s

)]
for model (10)

(12)

Thus, the immediate effect of the specification of the conditional
nformation on the posterior distribution is entirely based on the
artition function that each specification provides. In particular,
hey only differ for the integration regions Y,  Z and X  = Y  × Z of
he sample spaces defined by the assumed conditional information.

hen the dimensionality of the sample space is large (as in the
ase of Y  × Z), this implies posterior distributions whose density
s mainly concentrated around small values (as the the partition
unction grows quickly with the homophily parameter �k).

The remaining parts of this section provide a detailed numer-
cal analysis of the three model specifications (8), (9), and (10). A
imulation exercise is carried out in Section 6.1 to study the sta-
istical properties of the obtained posterior distribution, when the
umber of nodes and nodal attributes vary. Subsection 6.2 applies
he described model specification (8), (9) and (10) to the second
argest component of the co-authorship network, introduced in
ection 3.

.1. Simulation exercise

A simulation exercise is carried out in this subsection to ana-
yze the behavior of the Bayesian posterior distribution when the
umber of individuals and nodal attributes vary. The variability of
he Bayesian posterior distribution is an important indicator of our
nowledge of the homophily parameter �k.

We consider �k = 1/K, for each k ∈ K,  as predefined natural
arameters of (8), (9) and (10).6 Each of the K attributes is supposed
o have three levels, so that the corresponding sample spaces are
ubsets of {0, 1}3K, {0, 1}N(N−1)/2 and {0, 1}3K+N(N−1)/2 for (8), (9) and
10) respectively. Three replicates of simulation are carried out for
ll combinations of N ∈ {50, 100, 150} and K ∈ {5, 10, 15}, resulting
n 27 different runs.

Tables 3–5 report the average standard deviation and coefficient

f variation of the model parameters’ Bayesian posterior distribu-
ion, for each of the nine combinations of N and K (averaged over
ll replicates), for (8), (9) and (10) respectively.

6 We choose 1/K  so that (i) similarity between nodes increases the likelihood of a
ink,  and (ii) similarity measures are scaled between 0 and 1 regardless of the value
f  K.
N  = 100 0.613–2.379 0.676–4.878 0.683–4.209
N  = 150 0.619–3.025 0.644–4.386 0.705–5.591

It can be seen that when the network structure is fixed, in model
specification (8), the increase in the number of nodes has a positive
effect in reducing the posterior variability of �k. We  can interpret
it, based on the increase in the number of terms added in the com-
putation of the partition function Z(�), so that when the number of
nodes grows large the posterior distribution concentrates around
small values. By contrast, when the network structure is random
and the nodal attributes are exogenous, in model specification (9),
larger networks are associated with less accurate estimation of
the homophily parameter �k. The same is true when the number
of nodal attributes is taken into account. In this case, a heuristic
interpretation is that the presence of a large amount of individual
properties might result in a mixed combination of their effects, and
a higher uncertainty in the single effect of each of them.

When the numerical results in Table 5 are taken into account,
two different behaviors of the model specification (10) can be
observed: (i) similar to (8), the increase in the number of nodes
has a positive effect in reducing the posterior variability; (ii) sim-
ilar to the model specification (9), the increase in the number of
attributes is associated with higher variability.

6.2. Empirical application to the co-authorship data set

To assess the ability of the defined probabilistic approaches to
analyze the underlying duality of homophily and network self-
similarity in the context of bibliometric analysis, we proposed an
empirical application of models (8), (9) and (10) to the second
largest component of the co-authorship network in the neuro-
science community, as shown in Figs. 1 and 2. The dimensions
are N = 54 (nodes), K = 2 (categorical properties), m1 = 2 (genders),
(on  the right side of each cell) of the posterior distributions for different combination
of  N and K, based on the model specification (10).

# Nodes # Attributes

K = 5 K = 10 K = 15

N = 50 0.139–0.737 0.139–1.431 0.141–1.848
N  = 100 0.091–0.255 0.086–1.503 0.098–1.690
N  = 150 0.016–0.094 0.041–0.797 0.042–0.860
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Fig. 5. Marginal posterior of (�1, �2), corresponding to the second largest component of the co-authorship data set, for model (8).
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Fig. 6. Marginal posterior of (�1, �2), corresponding to the sec

 categorical variables with 2 and 9 levels and fixed number of
ndividuals per level.

The three model specifications (8), (9) and (10) are compared:
he contour plot in Figs. 5–7 show the estimated marginal posterior
f (�1, �2), corresponding to the gender and the nationality effect,
or the second largest component of the co-authorship data set in
ection 3. These results have been obtained by a chain with 100,000
CMC  iterations.
Both conditional models and the joint model agree in a positive

xpected effect of the nationality – the posterior expectation of �2
s 0.53 for model (8), 1.49 for model (9) and 0.45 for model (10) –

s graphically reported in Figs. 5–7.

To interpret this result for each of the three models consider a
easible configuration of z and y. For model (8), consider two  pairs
f connected nodes, (r, s) and (r′, s′), i.e., zrs = zr′s′ = 1. Model (8)

Fig. 7. Marginal posterior of (�1, �2), corresponding to the second la
rgest component of the co-authorship data set, for model (9).

makes a statement about the likelihood of having r and s being sim-
ilar. Specifically, a change of nodal attributes from y2

h,r
= y2

h,r′ = 0,

y2
h,s

= y2
h,s′ = 1 (r is different from s and r′ from s′) to y2

h,r
= y2

h,s
= 1,

y2
h,r′ = y2

h,s′ = 0 (r and s are similar but r′, s′ are still different) results

in an increase of the likelihood by a factor e0.53 = 1.70, i.e., the prob-
ability of observing this new configuration is 70% higher. In other
words, it is 70% more likely to observe similarity than difference
between connected nodes, provided that the overall balance across
nationality occurrences within the network remains unchanged.
A similar interpretation is valid for model (9), where the nodal

attributes are fixed. Consider now two  pairs of nodes, one sim-
ilar and one different, one connected and another disconnected.
It is 343% more likely (e1.49 − 1 =3.43) to have the two similar
nodes connected, than the two  different nodes connected. The same

rgest component of the co-authorship data set, for model (10).
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Table 6
Expected proportions of edged for each combination of genders. The observed pro-
portions are reported within parenthesis.

Male Female Total

Male 0.40 (0.48) 0.46 (0.40) 0.86 (0.88)
Female – – 0.14 (0.12)
Total 0.60 (0.52)

a residual amount of local triangles are due to a purely structural
tendency for transitivity.

7 The assortativity coefficient is defined as the Pearson correlation between
Fig. 8. The values of gender similarities
∑m

h

easoning is valid for model (10). The parameter �2 is thus a strong
river of the likelihood between two given configurations of (y, z).

As far as the gender similarity is concerned, it can be noted a
uch larger variability on the posterior of �1, suggesting a lack of

nformation about the parameter, which translates into a higher
ncertainty of the predictive posterior.

After estimating the model parameter � , a sample of 10,000
lements from the posterior predictive distribution of X  has been
imulated and the nodal similarities have been computed for each
odel specification (8), (9) and (10). Figs. 8 and 9 show the observed

nd expected gender and nationality similarities for each of the
4 × 53/2 pairs of authors, respectively. On the one hand, Fig. 8
uggests that neither the conditional models (8) and (9) nor the
oint model (10) are able to predict gender similarities. On the
ther hand, Fig. 9 clearly illustrates the resemblance between the
bserved matching in nodal nationalities and the ones expected
nder the three estimated models (based on the predictive poste-
ior). Note however that the models cannot be compared directly,
ecause each makes different assumptions on which elements are
ncertain. For example, model (8) uses actual realizations of net-
ork links, and lets nodal attributes be uncertain. In contrast, model

9) uses actual nodal attributes and uncertain network structure.
odel (10) has uncertainty in both. As a result, model (10) will nat-

rally perform worst because it makes mistakes on nodes and links,
hile the others can only make mistakes on one of them. However,
odel (10) requires no exogenous information so it can be used for

ut-of-sample forecasting purposes.
Using the estimated model (10), Tables 6 and 7 report the

xpected proportions of edges associated with different combina-
ions of genders and nationalities respectively. Only few propor-

ions result to be consistently different – e.g., 12% of the observed
ollaborations in the second largest component are between schol-
rs from the USA and Spain, while the estimated percentage is 3.1%.
he estimated model seems to be able to effectively capture the
assortative mixing of the data, i.e., the association between nodal
properties and connections, along with the total amount of each
individual categories and network collaboration density.

In Fig. 10 a graphical comparison between the distribution
of estimated network properties and observed ones (red line)
is provided. We  focus on assortativity coefficient and clustering
coefficient.7 We  see that, despite not including any transitivity fac-
tor in our model specification, the predicted posterior generates
networks with a clustering coefficient similar to the real one and
in particular much higher than the clustering coefficient under a
Bernoulli model (which is equal to the density, 0.17 in this case, vs.
0.93 observed). From the viewpoint of the bibliometric interpreta-
tion, the network assortativity with respect to nationalities is able
to account for most of the observed level of clustering, so that only
degrees, for connected nodes. The local clustering coefficient is defined as the aver-
age  (over all nodes) of the number of edges of a given node’s neighborhood relative
to the total possible number of edges, e.g., if the neighborhood of i has di nodes, then

it  is equal to

∑n

j1 ,j2=1
zj1 j2

di (di−1)/2 .
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Fig. 9. The values of nationality similarities
∑mk

h=1
zrsyk

h,r
yk

h,s
, k = 2, for the 54 × 53/2 pairs of nodes.

Table 7
Expected proportions of edges for each combination of nationalities. The observed proportions are reported within parenthesis.

Italy USA Spain Sweden S. Africa Japan Serbia Russia UK

Italy 0.004 (0.004) 0.004 (0.000) 0.014 (0.017) 0.001 (0.025) 0.000 (0.008) 0.007 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
USA  0.260 (0.235) 0.120 (0.031) 0.012 (0.000) 0.006 (0.000) 0.060 (0.004) 0.005 (0.000) 0.000 (0.000) 0.005 (0.023)
Spain  0.267 (0.329) 0.020 (0.024) 0.010 (0.009) 0.111 (0.064) 0.010 (0.201) 0.000 (0.000) 0.010 (0.000)
Sweden  0.001 (0.017) 0.001 (0.006) 0.010 (0.000) 0.000 (0.001) 0.000 (0.008) 0.000 (0.000)
S.  Africa 0.001 (0.006) 0.002 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Japan  0.085 (0.140) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

a
o
a
s

Serbia  

Russia  

UK  

To summarize, for the second largest component of the co-

uthorship data set, the estimated results confirm the null effect
f the gender similarity on the author’s connections, along with

 positive effect of their nationalities. The estimated model
eems to properly fit the empirical observation, as suggested by

Fig. 10. Empirical distribution of the network assortativity (left plot) an
0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
0.000 (0.000) 0.000 (0.000)

0.000 (0.000)

Tables 6 and 7. The distribution of the assortativity coefficient

and the local clustering coefficient reveal a close matching to
the observed ones, suggesting the ability of the model to cap-
ture both individual and structural properties of the co-authorship
data.

d the local clustering (right plot) under the estimated joint model.
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. Conclusion

This paper presents an exponential random model for author’s
haracteristics and collaboration pattern in bibliometric networks,
hich allows to combine the analysis of multivariate data with the

tudy of assortative patterns of nodal similarities in networks. Our
odel is able to handle simultaneously uncertainty both in nodal

roperties and connections, and internalizes network homophily
ithout the need of knowing whether structure or connection
roperties are an input or an output (i.e., directional causality).
e  propose a Bayesian estimation framework and a specialized
CMC  algorithm to simulate from a “doubly intractable” posterior

istribution. We  show that the model accounts for relevant net-
ork features based only on the observed nodal properties: this
rovides a deeper understanding of the linkage between individ-
al and social properties and a substantial insight into the level of
omophily in co-authorship networks.

Our results suggest several lines of work for future research.
e could compare the model fit for different specifications of the

ample space X. We  could also study the inclusion of further nodal
roperties, such as age, principal keywords or number of received
itations. Finally, our approach was derived on a projection of

 dynamic two-mode network into a static one-mode network.
xtending our methods to dynamic two-mode networks might
eveal further insights on the interaction between nodal features
nd bipartite connections, e.g., author–paper links.
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