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Abstract-The storage requjrements for retrieval systems utili~ng inverted files are calculated assuming 
different storage modes. Various methods for compression of these large files are analyzed. Binary vectors 
compressed by run-length coding as well as lists of document numbers were found to be suitable. The 
problem of minimal storage requirements for the inverted file is solved for different assumptions about index 
term distributions. A representation combining run-length coded binary vectors with list of document 
numbers was found to be the most economical. Parameter values for this minimum storage form are 
calculated and specified in tables as well as displayed graphically. 

1. INTRODUCTION 

Many interactive data base management systems as well as most automated library systems must 
respond quickIy to user inquiries, This constraint presents substantial problems especially in the 
design of on-line systems accessing a large data base such as a library catalog file of the document 
tile in a retrospective document retrieval system. Various solutions to achieve reasonable 
response time have been suggested, ranging from the use of special technoIogy[l, 21 to tile 
structures tailored to a particular application [3]. 

A common approach to satisfying the above mentioned constraint is to generate from the 
original data an auxiliary file whose only function is to provide quick response to queries. 
Unfortunately, the storage requirements nearly double, since the redundant material in the 
auxiliary file almost duplicates the original data. The main distinction between the original and the 
auxiliary file is the di~erent structure imposed on the data. As noted by ~~ENAs[~] the 
organization of the auxiliary file “becomes another file problem in itself, possibly of the same 
magnitude as the data base itself”. 

In theory, it is possible to select the organization of the auxiliary file from the many possible 
methods described in the literature[S]. However, most systems use either the inverted file 
(TDMS, GIS) or the tree organization (II&S). Tree structured files are discussed by 
Sussenguth [6] and Stanfel [i’], while inverted files are described by GARDENAS [4,8] and KING [9]. A 
comparison of the efficiency of the two structures for document retrieval was made by 
EIN-DoR[IO]. From these discussions in the literature the fact emerges that an inverted file 
performs better than a tree structured auxiliary file, especially with respect to complex queries. 
For the subsequent discussion it is assumed that an inverted file is used as the tool for answering 
queries. 

2. METHODS FOR STORING INVERTED FILES 

Two alternate interpretations of inverted files are possible, resulting in two different storage 
forms and manipulation methods. The first interpretation envisages the file as a store of lists of 
document numbers [ 111. A Iist L(k) consists of all the document, or accession numbers of all the 
records in the data base which contain the kth index element. The number of different lists D is 
determined by the size of the index set, since each element k has one associated list L(k). If the 
database is comprised of N records, [ log, N bits are needed to represent one accession number. 
(r(x) denotes the smallest integer greater than x.) Problems arising from the distribution of index 
terms resulting in different list lengths have been discussed by Low~z[l2]. The inverted index is 
usually stored as a sequence of accession numbers and pointers associated with each index term 
indicating the beginning of each list. Figure I shows such an ~rangement. 

If it is assumed that there are a total of i entries in the inverted file, the storage requirements 
in bits may be calculated as, 
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Fig. 1. Inverted file interpreted as a store of lists. 

with the first term representing the storage for the accession numbers and the second term 
accounting for the pointers. 

Coordinate indexing provides the second interpretation for inverted files. Assume that all 
index terms are ordered according to some criteria and can thus be numbered sequentially. For 
each document in the collection it is possible to construct a Boolean vector with N components. 
The ith component is true if index term i is contained in the document, and false, otherwise. 
Boolean values may be represented by the digits zero and one, and thus have a convenient 
representation for computer processing. There are several advantages to using binary vectors [9] 
as the basis for an inverted file. Most machines allow easy manipulation of bit strings and logical 
operations on these strings can be performed normally by single machine instructions. The 
answering of queries thus is quite rapid and requires little programming effort. Furthermore, all 
vectors are of the same length and the pointers required in the list interpretation of an inverted 
file can be eliminated and may be replaced by address calculations. The storage requirements for 

an inverted index based on binary vectors is given by 

S”E(.TI,R = N * D. (2) 

In contrast to (I), the storage needed is independent of the number of index entries and is only a 
function of the number of documents N in the collection and the size D of the index set. The I 
non-zero entries in the index represent only a small fraction of the N * D bits required and thus 
most of the N * D bits are zero. Elimination or compression of the many zeros can reduce 
storage requirements. 

The approach by THIEL. and HEAPS[~ l] combines the list interpretation with the binary vector. 
If a few successively numbered records contain the same index term a bit map for these records 
is stored rather than the record numbers. Some storage overhead is introduced by the necessity 
for special codes indicating the storage mode used (binary vector/document numbers). The 
method is quite eflicient for clustered document collections or documents which have been 
preordered. For inverted files based on the binary vector another method of compressing the 
zeros, called run-length coding may be borrowed from picture compression. 

3. RUN-LENGTH CODING 

The idea of run-length coding is fairly simple. A string of consecutive zeros terminated by a 
one (called a run) is replaced hy the length of the run[ 131. The main area of application has been 
image compression[l4], but it has also been suggested for compression of bibliographic 
files[ IS, 251. Various attempts have been made to optimize the code for the length of a 
runll6,17]. For reasons of convenient computer manipulation a fixed number of bits b is often 
chosen to encode the length of a run. Assume that the average length of runs is r, then a value of 
b = [ log, r is the optimal assignment for b and produces minimum storage requ~ements. Thus, 
the only problem remaining in the choosing of b is the calculation of the average run length, 

r(n, k), of a binary vector with n components containg k ones. There are 
0 I: 

such vectors 

with n-k zeros and k ones. Assuming that each of these vectors occurs with the same 
probability, it is sufficient for the computation of r to determine the total number of runs, R(n, k), 
in all these vectors. The value of R may then be calculated as 
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r(n, k) = 
0 1 (n-k) 

r(n, k) 
(3) 

R(n, k) may be computed by the foI~owing arguments: 
Let S(n, k) be the set of ail vectors with n components, consisting of n - k zeros and k ones. 

An element of S is said to have property A if the bit in position n is a one. The set S(n, k) may be 
divided into two mutually exclusive subsets, S(n, k, A), containing all vectors with property A, 
and the complement S(n, k, A). The number of different vectors in each set are given by 

Assume that R(n - 1, k) is already known and R(n, k) is to be calculated. There are three 
possible cases of constructing a member of S(n, k) (see Fig. 2). 

S(411 

J 

Fig. 2. Construc~jon of S(5,Z). 

(1) Take the elements of S(n - 1, k, A ) and add a zero in position n. This increases the length 
of the runs but the number of runs remains the same. 

(2) Take the elements of S(n - 1, k, A) and add a zero in position n. The addit~oRa1 zero adds 
a run to each element in addition to the number of runs in S(n - 1, k, A), The set S(n - I, k - 1, 

n-2 
A)bas k_, 

C > 
elements and since one run is added per element the number of additional runs is 

n-2 
( > k-l ’ 

(3) The third case of constructing an element of S(n, k) is by taking an element of 
S(n - 1, k - 1) and adding a one in position n. The number of runs stay the same as in S(n - f, 
k - I), given by R(n - 1, k - I). 

A11 the elements of S{n, k) are covered by these three cases and thus the number of runs, 
R(n, k), is given by 

R(n,k)=R(n-1,k-l)+R(n-I,k)c (4) 

The last two terms are the contribution from cases 1 and 2, whereas the first is the contribution of 
case 3. This recursion formula has its start given by the following obvious values: 

R(j,j-l)=j 

R(j, 1) = 20’ - 1). (5) 

Standard mathematical procedures give, after considerable manipulation, the following solution 
to the recursion: 



R(n,k)= 

a result which may be verified by substituting (6) into (4). Using (3) and (6) the average run-length 
may be computed as 

r(n,k)=& (7) 

which in turn yields for the number of bits b(n, k) for encoding the runs 

The above result is optima1 only for a single binary vector with n components of which there are 
k ones, and is optimal only for those entire inverted files, where each term is used to index 
exactly the same number of documents. As this assumption is not very realistic, eqn (8) may not 
specify the optimal value for the inverted file as a whole. For optimization of the total storage the 
vectors associated with all the index terms should be considered, since the number of non-zero 
components in the vectors may vary widely. 

4. HYPERBOI~IC TERM DISTRIBUTIONS AND RUG-LENGTK CODING 

Various studies and experiments have been conducted to determine the empirical distribution 
of index terms, while many attempts have been made at resolving the question of the most 
optimal distribution for retrieval[l&211. As in other bibliometric areas[22], a distribution 
commoniy referred to as Zipf’s Law 1231, is known to fit most of the observed data for index term 
distributions. 

Zipf’s Law implies, that if the D index terms are ranked in order of decreasing frequency, 
then the frequency f of a term of rank r is given by 

j(r) = C/r. (9) 

The constant C, the only parameter in the distribution, may be computed using a standard series 
approximation, as 

I 
C = log, D + 0.271 

with I being the total number of entries in the index. The knowledge of the term distribution may 
be utilized to find the most economic storage mode for the entire index, since eqn (9) specifies the 
number of non-zero entries in the N-component binary vector associated with a term of rank r. If 
the index is stored as lists of document numbers, then (9) may be interpreted as the length of the 
lists. 

The choice of representation for the inverted file under the assumption of a hyperbolic 
distribution appears difficult. For terms of high frequency the binary vector seems to be more 
economical, especially if run-length coding is used for compression. On the other hand, document 
numbers appear more suitable for low frequency terms. An uncompressed bit vector need not be 
considered since even for the most frequent terms run-length coding is more economical. The 
frequency I( of the term, for which run-Iength coding and bit vector representation use the same 
amount of storage, can be determined by solving the equation 

N=(K+I)log, &, ( 1 (10) 

for K. However, this equation has no solution since the right side of eqn (IO) has a maximum at 

K = (N/e)- 1 with a value of (N/e log2). Therefore, uncompressed bit vectors can be 



Compression of large inverted files with hyperbolic term distribution 381 

eliminated, and only run-length coded bit vectors and document numbers remain for 

consideration. 
If it is assumed that a combination of the two representations is to be the most economical, 

then there must be a certain rank, say rO, at which run-length coded representation is changed to 
document numbers. The storage requirement for the entire index, assuming Zipf’s distribution for 
the index terms, can thus be expressed as, 

(11) 

with the first sum expressing the contribution from run-length coded vectors, while the second 
term results from the lists of document numbers. To determine the optimal value for S, it is 
sufficient to find the minimum of SC with respect to r,. Straightforward computations lead to the 
following equation for rO 

r. = ClogN _ 1 

( > 1+$ log? 

which has no analytical solution but may be solved numerically. Tables 1 and 2 show ro, for 
typical values of C and N, while Figs. 3 and 4 are graphic representations. 

The results show the expected behavior, that the rank r. at which the mode of representation is 
to be switched decreases as the document collection increases. The rank r. also increases when 
the Zipf constant C increases, since this implies normally a large vocabulary and more entries in 
the index. 

Having determined the optimal rank r. it is still necessary to find the number of bits to be used 
for representing a run. For computers with fixed word length it is easier to represent a run by a 
code of fixed length rather than by a variable length code. The advantage of fixed length codes 
over variable length codes is discussed in detail by SCHUEGRAF and HEAPS[%]. 

Minimization of wasted storage leads to the following formula for the number of bits b to be 
used for coding a run: 

i(” ) N 

b = r=I r 
+ 1 log*- 

(c/r.)+ 1 

2 (:+ 1) 

Table 1. Values for r,, b, R, as a function of Zipf’s constant C 

N = 100,000 N = l,OOO,OOO 

ZIPF C r, b R r. b R 

10,000 1773 8.43 0.707 1561 11.64 0.750 
30,000 5314 7.63 0.641 4673 10.85 0.695 
50,000 8855 7.26 0.603 7785 10.48 0.654 
80,000 14,165 6.92 0.537 12,454 10.14 0.602 

100,000 17,706 6.76 0.516 15,566 9.98 0.588 

Table 2. Values of r,, b, R, as a function of the number of 
documents N 

c = 10,000 c = 100,000 
N ro b R r, b R 

10,000 2069 5.23 0.642 - - - 
50,000 1852 7.46 0.686 - - 

100,000 1773 8.43 0.707 17;706 6.76 0.516 
500,000 1618 10.67 0.735 16,145 9.01 0.565 

l,OOO,OOO 1560 11.64 0.750 15,566 9.98 0.588 
lO,OOO,OOO 1398 14.88 0.780 13,937 13.21 0.675 
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Fig. 3. r, as a function of C. 

Fig. 4. r,, as a function of N. 

which may be expressed as 

b=J- 
log 2 1 

log* r, 

log;+ 
~+rD~C~[logrO-l]+C 

r0 + c . (log r, + 0.577) (12) 

Values for b are also contained in Tables 1 and 2, as functions of C and N, with Figs. 5 and 6 
showing the graphic representation. As anticipated, the code length for a run increases with the 
number of documents, but decreases with vocabulary growth as indicated by large values of C. 

Since the code length b must be an integer the values given in Tables 1 and 2 should be 
rounded to the next highest integer. However, practical considerations may force other values of 

b, because of the fixed character or word length of the computer to be used. For example, a choice 
of 8- or 1Zbits for the code length of a run would be quite suitable for computers with an 8-bit 
character representation, since all computers have special instructions for processing of 
characters. If this approach is chosen, storage space is sacrificed for convenient programming 
and easy processing. 

The advantage of the combined run-length coded binary vector and document number 
representation over the two other storage modes becomes apparent when the compression ratio 
R is calculated. The compression is defined as the ratio of the length of the compressed file to that 

1 b 
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Fig. 5. 6 as a function of C. 
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Fig. 6. b as a function of N. 

of the uncompressed file. Since the storage space occupied by the list representation is always 
less than that of uncompressed bit vectors, the former storage mode is used in the calculation of 
the compression. It is defined as 

with SLIST from eqn (1) and SC from eqn (ii). Neglecting the contribution from the pointers in (I) 
allows to compute R as a simple expression: 

R=l- (13) 

Tables 1 and 2 contain values for R which were calculated by rounding the proper values for b to 
the nearest integer and using eqn (13). Considerable savings in storage space, between 30 and 
40%, may be realized and are especially significant for inverted files containing many documents 
and a large vocabulary. 

5. CONCLUSION 

The analysis of storage methods for inverted files in the previous sections has produced two 
interesting results. It has been shown that under certain conditions a binary vector compressed 
by run-length coding will occupy less space than the corresponding list of document numbers. 
The conditions are satisfied if there are k non-zero entries in the n-component binary vector and 
the inequality 

(k + 1) F log, (A) < k f log, N 

holds. Unfortunately, real systems rarely exhibit the property that every index term has the same 
number of postings, so that the above conditions are almost never satisfied for an entire file. 

Recently, it was proposed to use equifrequent fragments rather than words as index elements 
for a retrieval system[24-26,291. In this case, the above conditions would be fuhilled and eqn (8) 
would specify the best choice for the code length of a run. The storage space for the entire 
inverted file would be optimized by choosing that particular value. 

Because most systems do not exhibit the equifrequency property, a more realistic assumption 
about index term distribution was made. A hyperbolic distribution, the Zipf Law, was adopted, 
since it is the one most often observed in real systems. Assuming that distribution, the problem of 
minimizing the storage space for the entire file was soked by a combination of run-length coded 
binary vectors and lists of document numbers. Some values of the two parameters controlling 
this representation were calculated and specified in two tables. A choice of these values will 
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result in a minimum value for the storage requirements. The relative insensitivity of the values 
for the storage space with respect to the parameters con&offing the index term distribution allows 
immediate appii~ation to practical systems. 

The implementation of a combined run-length coded vector and document number inverted 
fife appears not to be di~cult, since similar ideas have been already explored[9,11]. The 
combined approach promises considerable economic benefits, a very important fact, since very 
few other methods for the compression of general binary matrices exist. 

It has been shown1271, that even the use of unambiguous bit matrices for compression of large 
binary matrices is infeasible, although convenient retrieval algorithms based on this storage form 
exist [28]. As an alternative to the use of unambiguous bit matrices for the compression of binary 
matrices, such as inverted files, the feasibility of using multiple projections for compression is 
presently being investigated. Practical problems regarding retrieval and dynamic updating of 
inverted files in various storage modes are also being considered. 
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