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a  b  s  t  r  a  c  t

The  citation  distribution  of papers  of  selected  individual  authors  was  analyzed  using
five mathematical  functions:  power-law,  stretched  exponential,  logarithmic,  binomial  and
Langmuir-type.  The  former  two functions  have  previously  been  proposed  in the  literature
whereas  the  remaining  three  are novel  and  are  derived  following  the  concepts  of growth
kinetics  of crystals  in  the presence  of  additives  which  act  as  inhibitors  of  growth.  Analy-
sis of  the data  of citation  distribution  of papers  of  the  authors  revealed  that  the  value  of
the goodness-of-the-fit  parameter  R2 was  the  highest  for the  empirical  binomial  relation,  it
was  high  and  comparable  for stretched  exponential  and  Langmuir-type  functions,  relatively
low for  power  law  but  it was  the  lowest  for the  logarithmic  function.  In  the Langmuir-type
function  a parameter  K,  defined  as  Langmuir  constant,  characterizing  the  citation  behavior
of the  authors  has  been  identified.  Based  on the  Langmuir-type  function  an  expression  for
cumulative  citations  L relating  the  extrapolated  value  of  citations  l0 corresponding  to  rank
n =  0  for  an  author  and  his/her  constant  K and  the  number  N of  paper  receiving  citation  l  ≥ 1
is also  proposed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Investigation of distribution of authors, citations and publications is an active research area in informetrics (Egghe &
Waltman, 2011; Egghe, 2009, 2011, 2012; Guerrero-Bote, Zapico-Alonso, Espinosa-Calvo, Gomez-Crisostomo, & Moya-
Anegon, 2007; Kretschmer & Rousseau, 2001; Lancho-Barrantes, Guerrero-Bote, & Moya-Anegon, 2010; Leherrere & Sornette,
1998; Perc, 2010; Radicchi, Fortunado, & Castellano, 2008; Redner, 1998, 2005; Tsallis & de Albuquerque, 2000; Vieira &
Gomes, 2010; Wallace, Lariviere, & Gingras, 2009). Various laws (e.g. Lotka’s and Zipf’s laws) and functions have been
proposed in the literature to describe these informetric distributions and to explain the mechanism underlying their occur-
rence. Citation distributions, for example, have been studied using the following approaches: (1) theoretical studies involving
modeling of citation behavior using a preselected mathematical function to generate citations (Burrell, 2001, 2002; Egghe,
2009, 2012; Kretschmer & Rousseau, 2001; Nadarajah & Kotz, 2007), (2) empirical studies devoted to the analysis of a
dataset, constructed over a selected time window or a long period of time for a single discipline, speciality or journal, using
known mathematical functions (Bornmann & Daniel, 2009; Clauset, Shalizi, & Newman, 2009; Companario, 2010; Perc,

2010; Radicchi et al., 2008; Redner, 1998, 2005; Vieira & Gomes, 2010; Wallace et al., 2009), and (3) phenomenological
approach based on describing citation data using specific microscopic models (Barabasi & Albert, 1999; Gupta, Campanha,
& Schinaider, 2008; Naumis & Cocho, 2007; Price, 1965, 1976; Simkin & Roychowdhury., 2007; Tsallis & de Albuquerque,
2000; Wallace et al., 2009).

∗ Tel.: +48 81 5384 504; fax: +48 81 5384 731.
E-mail address: k.sangwal@pollub.pl

1751-1577/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.joi.2012.09.002

dx.doi.org/10.1016/j.joi.2012.09.002
http://www.sciencedirect.com/science/journal/17511577
http://www.elsevier.com/locate/joi
mailto:k.sangwal@pollub.pl
dx.doi.org/10.1016/j.joi.2012.09.002


1
c
2
P
f
T
c
r
(
m
d
c
d
d
p

a
H
d
a
h

o
i
c
m
o
s
Z
t
f

h
a
p
T
r
a
T
t
a

2

d

o

w
r
a
1
d

K. Sangwal / Journal of Informetrics 7 (2013) 36– 49 37

A power-law type of behavior of citation distribution was  suggested in the first empirical studies in the area (Naranan,
971; Price, 1965, 1976; Seglen, 1992), but it is now recognized that a single function such as power law is unable to describe
itatation distributions over the whole range of citations (Perc, 2010; Radicchi et al., 2008; Redner, 1998, 2005; van Raan,
001; Wallace et al., 2009). Redner (1998, 2005) examined the citation distributions of large data sets of articles published in
hysical Review and found that a power-law behavior dominates at high number of citations whereas a stretched exponential
unction provides a better fit at a small numer of citations. Based on the general, nonextensive thermostatistical formalism,
sallis and de Albuquerque (2000) proposed a new function, now known as Tsallis distribution function, to describe the
itation distribution in the entire citation range. Radicchi et al. (2008) used the lognormal distribution function, derived from
eorganization of the stretched exponential function, to fit data on 14 among more than 200 subject categories. Wallace et al.
2009) examined the citation distribution of papers published between 1900 and 2006 in natural sciences and engineering,

edicine and social sciences and found that stretched-exponential and Tsallis’s distribution functions fit the entire citation
ata satisfactorily. Vieira and Gomes (2010) analyzed the distribution of five-year citations of papers published in 2004 in
hemistry, biology and biochemistry, mathematics and physics using one- and two-parameter (double) exponential-Poisson
istributions and found that the double exponential-Poisson distribution describes the data well. Perc (2010) examined the
istributions of citations of individual papers published during 1970 and 2009 by researchers in Slovenia using Zipf’s plots,
ower law and lognormal distributions. It was found that the data follows power law at low and high values of citations.

Guerrero-Bote et al. (2007) and Lancho-Barrantes et al. (2010) studied Journal Impact Factor (JIF) rank-order distribution
nd found that the distributions of JIFs were fairy close to exponential, which could be fitted to a logarithmic function.
owever, these authors also encountered subject areas having shapes of their JIF rank-order distributions with more sharply
efined peaks and relatively long tails, something like icebergs. These authors suggested that icebergs (i.e. scientific areas)
re exporters of ideas because the knowledge generated within them is visible from other areas which then import it (iceberg
ypothesis).

A general feature of many informetric distributions is that the shape of the size-frequency distribution f and the shape
f the rank-frequency distribution g are interrelated (Egghe & Rousseau, 2006, 2012). When the size-frequency distribution
s a monotonically decreasing function, the corresponding rank-frequency distribution is convex in the entire range. In
ontrast to this, when the size-frequency distribution increases first and then steadily decreases, thus passing through a
aximum, the rank-frequency distribution is convex initially and concave at the end. The curvature of the concave part

f the rank-frequency distribution is related to the position of the maximum in the size-frequency distribution. These
ize- and rank-frequency distributions are explained by empirical functions other than those following from Lotka’s and
ipf’s laws (Companario, 2010; Egghe & Waltman, 2011; Mansilla, Köppen, Cocho, & Miramontes, 2007). However, this
ype of distribution behavior can also be explained by Tsallis distribution function based on nonextensive thermostatistical
ormalism (Gupta et al., 2008; Tsallis & de Albuquerque, 2000).

The above literature shows that distribution of authors, citations and publications in single discipline, speciality or journals
as been investigated until now using known mathematical functions. However, no study has been devoted so far to the
nalysis of the distribution of citations of papers as a function of paper rank at the level of individual authors. The aim of the
resent paper is to analyze the citation distribution of papers of different selected authors using five mathematical functions.
wo of these, the power law and the extended exponential function, are well known in the citation literature, whereas the
emaining three are novel mathematical functions. Among the new functions, the logarithmic function proposed for the
nalysis is similar to that used by Guerrero-Bote et al. (2007) and Lancho-Barrantes et al. (2010) for their iceberg hypothesis.
he new mathematical functions proposed in this work are derived following the concepts of growth kinetics of crystals in
he presence of additives which act as inhibitors of growth (Appendices A and B). An additional aim of the study is to propose

 possible mechanism of the citation rank-order distribution in terms of physical processes at the elementary level.

. Mathematical functions

In this section the mathematical functions used in this study for the analysis of the citation distribution of the papers of
ifferent authors are briefly described.

If an author publishes N papers and ln denotes the number of citations of the nth paper such that n is ranked in the order
f decreasing citations ln, the relation between ln and n is given by the power-law distribution

ln = l0
nı

, power law, (1)

here l0 > 0, ı > 0 and 1 < n < N. Here l0 is the extrapolated value of ln when n → 0. The value of the exponent ı has been
eported to lie between 2.4 and 3.1 (Perc, 2010; Redner, 1998). Power law distribution may  be derived from preferential
ttachment models and are considered as representative of complex networks (Albert & Barabasi, 2002; Leherrere & Sornette,
998). Zipf’s law is a typical case of power law but the exact mechanism behind it remains unclear. It is found that Zipf’s law
escribes the citation distribution reasonably well at relatively high values of n (Perc, 2010; Redner, 1998).
For sufficiently large values of n the relation between ln and n is described by the stretched exponential function

ln = l0 exp

[
−
(

n

n0

)ˇ
]

, stretched exponential function, (2)
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where l0 denotes citations of the maximally cited paper, and  ̌ and n0 are empirical constants. The constant  ̌ ≤ 1. For real
citation distributions analyzed in the literature,  ̌ is found to lie between 0.39 and 0.57 (Redner, 1998; Wallace et al., 2009).
In the deterministic model of Hirsch (2005) the parameter n0 = ha,  where h the Hirsch index and a is related to the cumulative
citations L and is about 0.5. The parameters  ̌ and n0 may  be obtained empirically by performing a least-squares fit over all
values of n using Eq. (2).

Stretched exponential distribution can easily be distinguished from power law distribution by plotting ln(n) data on
logarithmic and semi-logarithmic scales (Leherrere & Sornette, 1998; Perc, 2010; Redner, 1998; Wallace et al., 2009). The
case  ̌ = 1 corresponds to the usual exponential distribution which gives a linear dependence of ln ln on n with slope 1/n0.
However, the linear part decreases when  ̌ < 1.

In this paper the following mathematical relations are proposed:

ln = l0b′(1 − Z1 ln n), logarithmic function, (3)

ln = l0(1 − k1np + k2n2p), binomial relation,  (4)

ln = l0

[
1 − ˛

(
Kn

1 + Kn

)]
, Langmuir-type function. (5)

In the above equations l0 is the extrapolated value of l when n = 0, and K, ˛, Z1, b′, k1, k2 and p are positive constants, which
may  be considered as fitting parameters for the analysis of the citation distribution data. In Eq. (4) when k1np � k2n2p and
k1 = ˛1, it reduces to the form

ln = l0(1 − ˛1np), decreasing power law. (6)

where k1 = ˛1. Note that relation (6) is completely different from power law (1).
As discussed in Appendix B, logarithmic function (3),  Langmuir-type function (5) and decreasing power-law relation

(6) are derived following the concepts of adsorption processes involved during crystal growth. However, it is suggested
that binomial function (4) is an extended form of decreasing power law (6) when coverage � of possible adsorption sites is
described by Eq. (C.1).

In Eq. (5) the parameter K, defined as Langmuir constant (see Appendix A), characterizes the citation behavior of a given
author. However, the units of K are inverse of paper rank (i.e. paper-rank−1) and are determined by the way  the paper rank n
is expressed. In analogy with dimensionless pressure PA/P∗

A defined in Appendix A, in Eq. (5) one can define a dimensionless
paper rank n/N, and a new dimensionless Langmuir constant K′ = KN,  where N is the number of papers which receive citations.
Then the dimensionless Langmuir constant K′ for citations of different authors is related to their corresponding dimensionless
differential energy Q by (see Appendix B)

K ′ = KN = exp Q. (7)

The fitting parameters  ̨ of Eq. (5),  b′ and Z1 of Eq. (3) and ˛1 and p of (6) also have clear physical interpretation (Appendix
B). As shown in Appendix B, the parameter b′ < 1 in Eq. (3) and p = m < 1 in Eq. (6).  Eq. (3) is exactly the same as that reported
by Guerrero-Bote et al. (2007) for their iceberg hypothesis and applies for n ≥ 1.

3. Citation data of selected authors

We used Thomson Reuters’ ISI Web  of Knowledge (Web of Science) to collect and analyze the citations of nine arbitrarily
selected scientists from different research disciplines. J. Barnaś  (JB), T. Ditl (TD), S. Krukowski (SK), K. Sangwal (KS), and Z.R.
Żytkiewicz (ZRZ), are physicists, M.  Kosmulski (MK) is a chemist, K.J. Kurzydłowski (KJK) is a materials scientist, whereas Q.L.
Burrell (QLB) and L. Egghe (LE) are informetricians. The first seven of these scientists are from Poland whereas the last two
are from United Kingdom and Belgium, respectively. The Polish scientists are from different institutions and were selected
from a consideration of their known academic activities. TD and JB are among the most cited physicists in Poland, MK and KS
are the most cited scientists in the Lublin University of Technology, SK and ZRZ are among the most active crystal growers
in Poland, whereas KJK is an eminent materials scientist and administrator at the national level. Their data covering the
period up to 2010 were collected in December 2010. The data for LE and QLB cover the period up to 2011 and were collected
in April 2012. Both of them are well-known informetricians. The basic bibliometric data involving the number of citations
of individual papers collected from the above database are given in Tables 1 and 2, whereas the number of papers N with

citations equal to and exceeding one, the total number of papers Nmax and the cumulative citations L with self-citations are
included in Table 3.

It should be mentioned that the publication output of the Polish scientists considered in this work has previously been
analyzed (Sangwal, 2011, 2012a, 2012b).
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Table 1
Citation data for different authors.

M.  Kosmulski K. Sangwal S. Krukowski K.J. Kurzydłowski Z.R. Żytkiewicz

n ln n ln n ln n ln n ln

1 104 1 96 1 119 1 46 1 70
2  93 2 67 2 82 2 43 2 36
3  86 3 60 3 42 3 32 3 35
4  85 4 45 4 36 4 28 4 24
5  74 5 36 5 33 5–6 25 5 21
6 64 6 35 6–8 30 7 24 6 19
7 62 7 31  9 26 8 22 7 18
8  56 8 28 10 23 9–10 21 8 16
9  53 9 27 11–12 20 11 19 9 14

10  49 10–13 25 13–15 19 12 18 10–11 13
11–13  37 14 24 16–17 18 13 17 12–13 12
14–15  36 15 23 18 17 14 15 14 11
16  34 16 22 19–20 16 15–16 14 15–18 10
17  33 17–19 21 21–22 15 17–18 13 19–20 9
18  32 20 20 23–24 14 19 12 21–23 7
19 31 21 20 25–26 11 20–23 11 24–25 6
20  30 22 18 27–28 10 24 10 26–31 5
21 29  23–26 17 29–30 9 25–28 9 32–37 4
22  27 27–30 16 31 8 29–37 8 38–45 3
23  24 31 15 32–35 7 38–42 7 46–53 2
24  23 32–39 14 36–37 6 43–53 6 54–64 1
25  21 40–43 13 38–45 5 54–61 5 65–89 0
26 20 44–45  12 46–52 4 62–79 4
27–29  19 46–49 11 53–59 3 80–99 3
30–31  17 50–55 10 60–66 2 100–121 2
32  16 56–62 9 67–80 1 122–169 1
33–34  15 63–68 8 81–103 0 170–268 0
35 14 69–77 7
36–37  13 78–82 6
38–40  12 83–90 5
41–44  11 91–102 4
45–49  10 103–113 3
50–53  9 114–121 2
54–61  8 122–131 1
62–64 7 132–155 0
65–68  6
69–75 5
76–83 4
84–90 3
91–105 2

4
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fi

fi
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o

106–114 1
115–140 0

. Results and discussion

.1. Analysis of citation distribution data

The real ln(n) data for different authors were confronted with Eqs. (1)–(5) mentioned above using two  approaches. In the
rst case, the applicability of power law (1),  stretched exponential function (2) and logarithmic function (3) was checked by
lotting the ln(n) data in the form of dependences of (a) ln ln on ln n, (b) ln ln on n and (c) ln on ln n, as shown in Figs. 1–3,
espectively. These forms of the dependences follow from Eqs. (1)–(3),  and are usually used to distinguish between different
unctions and the range of their applicability (Redner, 1998).

Fig. 1 shows that there is an observable curvature in the log–log plots of the power-law distribution over the entire n rage,
ut there are narrow regions of n in some of the plots. This indicates that some other distribution alone can represent the
ata in a wide range of n. However, when the ln(n) data for a given scientist are presented as a plot of ln ln against n expected
rom the stretched exponential function, there are large ranges of n in which the dependence is linear. For example, in the
ase of KS, the linear dependence covers n between about 15 and 110 (Fig. 2) but there are no large regions of constant slope
n the log–log plot of Fig. 1. One also observes no specific trends of a linear dependence in the plots of Fig. 3. From these
gures it may  be concluded that stretched exponential distribution respresents the ln(n) data most satisfactorily.
In the second approach, the data of the above authors were analyzed using Eqs. (1)–(5) directly. Nonlinear least-squares
tting, involving chi-square residual, was carried out with MacrocalTM “Origin 4.1” package, which yields values of the fitting
arameters, their standard deviations and the corresponding “dependency” for each parameter of an equation. The values
f the fitting “dependency” for different parameters are different for a dataset. For example, in the case of fitting the data
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Table  2
Citation data for different authors.

J. Barnaś T. Dietl L. Egghe Q.L. Burrell

n ln n ln n ln n ln n ln

1 197 1 3566 58–62 37 1 224 1 39
2  146 2 391 63 25 2 122 2 38
3  94 3 294 64–67 24 3 107 3 34
4  90 4 291 68–69 23 4–5 60 4–5 35
5  89 5 285 70 22 6 48 6 34
6 73 6 256 71–75 21 7 47 7 33
7 68 7 210 76–77 20 8 41 8 32
8  60 8 172 78–82 19 9 40 9 24
9–10  57 9 140 83–86 18 10 34 10 23

11–13  53 10 112 87 17 11 30 11–13 22
14–16  49 11–12 109 88 16 12–13 29 14 19
17–18  48 13 107 89–92 15 14 26 15 18
19  43 14 103 93–99 14 15 24 16 15
20  39 15 95 100–105 13 16 23 17–18 14
21  37 16 90 106–110 12 17–20 22 19 13
22 36 17 88 111–113 11 21 21 20–21 11
23  35 18–19 85 114–120 10 22–23 20 22 10
24  32 20 78 121–127 9 24–25 19 23–26 9
25–27  31 21 76 128–134 8 26–28 18 27 7
28–30  30 22 71 135–144 7 29–30 17 28–30 6
31–32 28 23 69 145–155 6 31–34 15 31 5
33  27 24 65 156–164 5 35–38 14 32–37 4
34  25 25 62 165–177 4 39–40 13 38–41 3
35–36  24 26 59 178–187 3 41–44 12 42–47 2
37–38  23 27 58 188–207 2 45–47 11 48–50 1
39–41  22 28–29 54 208–232 1 48–53 10 51–61 0
42–44  21 30 53 233–292 0 54–55 9
45–47 19 31  49 56–68 8
48  18 32 48 69–73 7
49–53  17 33 47 74–78 6
54  15 34 46 79–90 5
55–56  13 35–37 45 91–98 4
57–60  12 38 44 99–114 3
61–65  11 39–40 42 115–132 2
66–71 10 41  41 133–162 1
72–79  9 42 40 163–198 0
80–86  8 43 37
87–96 7 44 36
97–103 6 45–46 34

104–114 5 47 33
115–127 4 48–49 32
128–144 3 50–52 31
145–168 2 53–54 30
169–206 1 55 29
207–290 0 56–57 28

Table 3
Total numbers of papers and citations of different scientists and estimated parameters of Eq. (1) for real ln(n) dataa.

Scientist N (Nmax) L (citations) l0 (citations) ı

M. Kosmulski 114 (140) 1790 142.7 ± 6.2 0.630 ± 0.020
K.  Sangwal 131 (152) 1505 104.1 ± 2.4 0.623 ± 0.010
J.  Barnaś 206 (290) 3017 219.3 ± 4.8 0.669 ± 0.010
T.  Dietl 232 (292) 10,405 798.3 ± 20.1 0.812 ± 0.012b

3534 ± 48 2.40 ± 0.08
S.  Krukowski 80 (103) 916 124.0 ± 2.9 0.803 ± 0.002
K.J.  Kurzydłowski 169 (268) 962 59.3 ± 1.7 0.611 ± 0.012
Z.R. Żytkiewicz 64 (89) 510 71.5 ± 1.6 0.799 ± 0.016
Q.L.  Burrell 50 (61) 633 56.9 ± 5.0 0.556 ± 0.043
L.  Egghe 162 (198) 1889 226.3 ± 2.3 0.832 ± 0.007

a The R2 coefficient was  between 0.6 and 0.77 for all authors other than SK and TD.
b Point corresponding to n = 1 was omitted during analysis.



K. Sangwal / Journal of Informetrics 7 (2013) 36– 49 41

0 1 2 3 4 5
0

1

2

3

4

5

1.25

10

(a)

KS
MK
SK
ZRZ
QLB

ln
l n

lnn
0 1 2 3 4 5 6

0

2

4

6

8

1

10

(b)KJK
LE
TD
JB

ln
l n

lnn

Fig. 1. Plots of ln ln against ln n for papers published by different authors: (a) KS, MK,  SK, ZRZ and QLB and (b) KJK, LE, TD and JB. Lines with different slopes
are  shown for visual reference. With increasing value of ln n the slope ı increases from zero to values up to 10.
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It was found that the value of the goodness-of-the-fit parameter R2 is the highest for the empirical binomial relation
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Table  4
Estimated parameters of stretched exponential function (2) for real ln(n) data of different scientists.a

Scientist l0 (cites) n0 ˇ

M. Kosmulski 140 ± 4 9.12 ± 0.45 0.606 ± 0.015
K.  Sangwal 574 ± 164 0.0555 ± 0.0553 0.211 ± 0.021
J.  Barnaś 849 ± 141 0.0188 ± 0.098 0.248 ± 0.016
T.  Dietl 2766 ± 659 0.1658 ± 0.1078 0.264 ± 0.216b

(6.3 ± 59.0) × 105 0.0244 ± 0.2524 0.443 ± 0.764
S.  Krukowski 550 ± 5913 0.0002 ± 0.0007 0.158 ± 0.037
K.J.  Kurzydłowski 93 ± 5 2.8235 ± 0.3875 0.365 ± 0.012
Z.R. Żytkiewicz 1233 ± 781 0.0041 ± 0.0083 0.195 ± 0.033
Q.L.  Burrell 40.9 ± 0.8 17.34 ± 0.41 1.280 ± 0.048
L.  Egghe 11,676 ± 7827 0.00013 ± 0.00029 0.155 ± 0.022

a The R2 coefficient was  between 0.8 and 0.99 for all authors other than TD.
b Point corresponding to n = 1 was omitted during analysis.

Table 5
Estimated parameters of logarithmic function (3) for real ln(n) data of different scientists.a

Scientist l0b′ (cites) Z1

M. Kosmulski 93.0 ± 1.9 0.2176 ± 0.0012
K.  Sangwal 61.4 ± 1.4 0.2073 ± 0.0014
J.  Barnaś 123.1 ± 3.1 0.2094 ± 0.0015
T.  Dietl 285 ± 9.7 0.2109 ± 0.0019b

703 ± 89 0.2247 ± 0.0070
S.  Krukowski 65.7 ± 2.9 0.2358 ± 0.0030
K.J.  Kurzydłowski 36.6 ± 0.7 0.2056 ± 0.0012
Z.R. Żytkiewicz 40.2 ± 1.7 0.2433 ± 0.0030
Q.L.  Burrell 50.5 ± 1.3 0.2512 ± 0.0023
L.  Egghe 96.3 ± 4.7 0.2151 ± 0.0028

a The R2 coefficient was  between 0.30 and 0.46 for all authors other than TD.
b Point corresponding to n = 1 was omitted during analysis.

Table 6
Estimated parameters of binomial function (4) for real ln(n) data of different scientists.a

Scientist l0 (citations) k1 k2 p

M. Kosmulski 267.9 ± 14.2 0.704 ± 0.052 0.124 ± 0.018 0.216 ± 0.017
K.  Sangwal 167.0 ± 40.7 0.696 ± 0.142 0.122 ± 0.049 0.206 ± 0.045

111.4 ± 19.9 0.476 ± 0.109 0.057 ± 0.026 0.285 ± 0.051
J.  Barnaś 338.3 ± 44.2 0.677 ± 0.074 0.115 ± 0.025 0.218 ± 0.023

1084 ± 312 1.219 ± 0.108 0.372 ± 0.066 0.096 ± 0.018
T.  Dietl 3994 ± 1783 1.325 ± 0.143 0.440 ± 0.094 0.084 ± 0.022

21,623 ± 25,556 1.701 ± 0.174 0.723 ± 0.148 0.033 ± 0.021
S.  Krukowski 431.5 ± 213.1 1.076 ± 0.216 0.290 ± 0.116 0.144 ± 0.049

500.9 ± 274.8 1.138 ± 0.226 0.324 ± 0.129 0.131 ± 0.048
K.J.  Kurzydłowski 151.0 ± 22.2 0.905 ± 0.075 0.207 ± 0.034 0.155 ± 0.018

365.4 ± 118.5 1.281 ± 0.113 0.411 ± 0.072 0.083 ± 0.018
791.4 ±  448.4 1.508 ± 0.150 0.568 ± 0.112 0.051 ± 0.019

Z.R. Żytkiewicz 257.0 ± 119.9 1.077 ± 0.205 0.291 ± 0.110 0.147 ± 0.047
Q.L.  Burrell 45.9 ± 1.6 0.091 ± 0.014 0.0021 ± 0.0007 0.778 ± 0.044
L.  Egghe 409.1 ± 121.1 0.847 ± 0.150 0.179 ± 0.064 0.183 ± 0.039
3259 ± 3129 1.555 ± 0.209 0.605 ± 0.163 0.054 ± 0.029

a The R2 coefficient was  better than 0.999 for all authors.

the k2n2p term leads to deterioration of the fit. This suggests that the empirical binomial equation alone gives the best fit of
the ln(n) data.

Eq. (5) was found to represent the ln(n) data satisfactorily for all scientists except for Dietl, where the first paper with the
exceptionally high number of citations was omitted. The best-fit values of the constants are listed in Table 7. It may  be noted
from Table 7 that the effectiveness parameter  ̨ is essentially unity. An exception here is QLB probably because of small
data size. The estimated value of  ̨ ≈ 1 implies that there are only uninhibited citations l0 and empty sites in the stacking of
citations of a paper in the citation column (see Appendix B and Fig. B1). The value of the constant K is enormously different
for various authors and its value increases with the initial increasing steepness of the ln(n) plots (see Fig. 4). Therefore, with

 ̨ = 1 the ln(n) data were fitted again for these authors and the values of l0 and K are listed in the table.

It should be mentioned that, except in the case of binomial function, the ln(n) data of TD gave the best fit only when the

first-ranked paper with the exceptionally high number of citations was omitted during the analysis by the functions used in
this work. Inclusion of this first-ranked paper with the exceptionally high number of citations always yielded very high l0



K. Sangwal / Journal of Informetrics 7 (2013) 36– 49 43

Table 7
Estimated parameters of Langmuir-type function (5) for real ln(n) data of different scientists.a

Scientist l0 (cites)  ̨ K (paper−1) Q

M.  Kosmulski 123.6 ± 1.4 1.0576 ± 0.0025 0.138 ± 0.004 2.96
167.0 ± 5.0 1 0.237 ± 0.049 3.50

K.  Sangwal 108.9 ± 4.6 0.9953 ± 0.0035 0.276 ± 0.023 3.74
105.3 ± 3.8 1 0.252 ± 0.015 3.65

J.  Barnaś  224.3 ± 7.3 1.0033 ± 0.0029 0.277 ± 0.018 4.39
229.4 ± 6.8 1 0.294 ± 0.014 4.45

T.  Dietl 683.5 ± 25.8 1.0083 ± 0.0017 3.812 ± 2.522 11.35b

767.8 ± 31.2 1 0.450 ± 0.026 4.88b

(1.2 ± 0.7) × 104 1.0034 ± 0.0029 3.999 ± 2.881 7.06
1.  21 × 107 1 4718 ± 25211 14.14

S.  Krukowski 243.8 ± 22.9 0.9992 ± 0.0023 1.093 ± 0.159 4.72
239.0 ± 18.3 1 1.053 ± 0.115 4.69

K.J.  Kurzydłowski 51.8 ± 0.9 1.0127 ± 0.0025 0.161 ± 0.006 3.76
54.2 ± 0.9 1 0.187 ± 0.005 3.91

Z.R. Żytkiewicz 117.9 ± 7.4 1.0076 ± 0.0026 0.791 ± 0.083 4.25
135.8 ± 9.3 1 1.031 ± 0.101 4.52

Q.L.  Burrell 46.4 ± 1.3 1.320 ± 0.035 0.060 ± 0.006 1.30
57.3 ± 4.9 1 0.197 ± 0.030 2.49

L.  Egghe 607.9 ± 38.8 0.9978 ± 0.0005 1.781 ± 0.154 5.87
533.5 ± 26.8 1 1.456 ± 0.098 5.66

a The R2 coefficient was between 0.90 and 0.99 for all authors.
b Point corresponding to n = 1 was omitted during analysis.
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Fig. 4. Best-fit plots of the ln(n) data for different authors according to Langmuir-type relation (5). Constants used for fitting are listed in Table 7: (a) MK,
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S  and KJK, (b) JB, LE and QLB, (c) SK and ZRZ, and (d) TD. In (d) continuous curve represents fit for data without first-ranked paper whereas dashed curve
epresents data for all papers. Somewhat poor fit of the data for KS, SK and TD may  be noted in this case. See text for details.

nd high or low values of the constant(s) of the equations. For example, when analyzing the data of TD with Langmuir-like
unction (5),  inclusion of the first-ranked paper increases l0 and K by more than three orders in comparison with those
ithout it (see Table 7).

Regarding the values of l0 obtained by fitting different functions, one finds that power law (1) and Langmuir-type function
5) give comparable values of l0 for individual authors, but, as expected since b′ < 1 (cf. Eq. (B.6), logarithmic relation (3) gives
0b′ lower than l0 obtained by analyzing the data using the above relations (cf. Tables 3, 5 and 7). However, although stretched
xponential function (2) and empirical binomial relation (4) describe the data satisfactorily, the values of l obtained by them
0
re usually much higher than those obtained by Eqs. (1) and (3) and wide ranges of the values of the constants of Eqs. (2)
nd (4) give comparable best fit of the ln(n) data for different authors (see Tables 4 and 6).
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From Table 4 it may  be observed that, except in the case of QLB, the constant  ̌ < 1 in exponential function (2),  as is
expected from stretched exponential distribution, but the constant n0 lies between 0.0001 and 17 for different authors. A
comparison of the values of n0 for two authors, such as SK and KJK or MK  and LE, having comparable cumulative citations
L shows that its value differs by a factor of 3–5 orders of magnitude. Since n0 ≈ 0.5 h, it is difficult to explain this enormous
difference in the value of n0 for these pairs of authors. The values of n0 obtained from the ln(n) data are probably reasonable
only in the case of MK  and QLB.

The observation that power law (1) and logarithmic function (3) describe the ln(n) data of individual papers of the authors
considered in this study for different authors extremely poorly suggests that preferential attachment (Barabasi & Albert,
1999) or cumulative advantage models (Price, 1965, 1976) and iceberg hypothesis (Guerrero-Bote et al., 2007; Lancho-
Barrantes et al., 2010) advanced for the power law and logarithmic distributions, respectively, can be discarded. Although
stretched exponential function (2) respresents the ln(n) data satisfactorily, there is a problem with the interpretation of the
values of the parameter n0 since it is expected that n0 ≈ 0.5 h (see Section 2). Therefore, stretched exponential function (2) also
remains essentially an empirical relation. Binomial function (4),  on the other hand, represents the data most satisfactorily
with the exponent p < 1. However, as discussed in Appendix B, this equation does not follow directly from an adsorption
isotherm. This suggests that binomial function (4) is also empirical. As pointed out in Appendix C, binomial relation (4) implies
that the number of citations of an author increases with the number of papers published by him/her and is associated with
the increasing visibility of the author in the scientific field.

4.2. Comments on Eq. (5) and significance of parameter K

It is interesting to note the equivalence of Eq. (5) with the power law (e.g. Zipf’s law) and Tsallis distribution. As observed
in the present work, the parameter  ̨ in Eq. (5) is approximately 1. Therefore, with  ̨ = 1, Eq. (5) may  be rewritten in the form

ln = l0
1 + Kn

. (8)

When Kn � 1, this reduces to the form of power law (1) with the exponent ı = 1. The form of Eq. (8) is also a special case of
Tsallis’s distribution (Tsallis & de Albuquerque, 2000)

ln = l0

[1 + (q − 1)�n]q/q−1
, (9)

where q and � are empirical parameters. Eq. (9) reduces to (8) for high values of q when q/(q − 1) → 1 and (q − 1)� = K.
The area under an ln(n) curve defines the total number of citations L, which can be obtained by integrating the equations

given in Section 3. Integration of Eq. (5) gives

L = l0

∫ N

0

[
1 − ˛

(
Kn

1 + Kn

)]
dn = l0

[
(1 − ˛)N + ˛

K
ln(1 + KN)

]
≈ l0

K
ln(1 + KN) (10)

where we have used the fact that  ̨ ≈ 1 (see Table 7) and N is the number of papers which received citations. Using the values
of N given in Table 3 and the values of l0 and K in Table 7, it can be verified that Eq. (10) predicts cumulative citations L which
are in good agreement with those given in Table 3 for different authors.

In Eqs. (8) and (10) the parameter K, defined as Langmuir constant (see Appendix A), characterizes the citation behavior
of a given author. The values of K obtained from the analysis of the ln(n) data for different authors (Table 7) and the number N
of papers receiving citations (Table 3) enable to calculate the values of the corresponding dimensionless differential energy
Q using Eq. (7).  The values of Q calculated in this way  are included in Table 7.

In the derivation of Eqs. (8) and (10), it is a priori assumed that all of the Nmax papers of an author have the same number
of sites available for inhibition and all of them are initially inhibited completely. However, later they either remain inhibited
(i.e. ˛� = 1) or are uninhibited partially to different extent (i.e. 0 < ˛� < 1). The situation ˛� = 1 implies that a paper has no
citations whereas the situation 0 < ˛� < 1 means that, depending on the value of ˛�,  the n-ranked paper receives citations
0 < ln < l0. In other words, when relations like Eqs. (3) and (5) based on adsorption isotherms describing the ln(n) data of an
author apply, the number of readers likely to cite a paper remains constant and the so-called linear coverage � in the citation
process is a measure of the citability of a paper. The higher the value of l0 for an author, the higher is the citability of his/her
papers. Similarly, the lower is the value of � for the nth paper of an author, the higher is its citability.

The process of receiving citations by Nmax papers of an author, described above, may be presented graphically, in the
order of decreasing citations, as columns containing ln filled squares followed by (l0 − ln) empty squares arranged side-by-
side along the citations axis. In other words, corresponding to a given paper rank n, the filled squares occupy lower levels
whereas the open squares are placed above the filled ones (see Fig. B1). The resulting diagram is a rectangle of sides l0 and
Nmax. This type of presentation is similar to that of Ferrers’ graphs (Andrews, 1998) but each filled and where the empty

squares are of an n-ranked paper represents contribution (citation) 1 and 0, respectively.

Eqs. (3)–(5) are derived on the ideas of inhibition of adsorption sites available on linear steps on the flat surface of a
crystal. Eq. (5) based on Langmuir adsorption isotherm assumes that all adsorption sites have the same activity and the
dimensionless differential energy Q = Qdiff/RGT involved during adsorption does not depend on the linear coverage � (see
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ppendix A; Eq. (A.3)). Eq. (3) based on Temkin adsorption isotherm assumes that Q depends on � (see Eq. (A.4)), whereas
q. (6) based on Freundlich isotherm assumes that different energies are involved in adsorption at different sites (see Eq.
A.5)). During the adsorption of gas molecules on linear steps of solids Temkin isotherm occurs when the adsorption energy
epends on linear coverage � whereas Freundlich isotherm occurs when adsorption sites in the linear steps have different
ctivity. The fact that, in contrast to Eqs. (3) and (6),  Eq. (5) describes the citation rank-order distribution for different authors
onsidered in this work satisfactorily indicates that all active sites are similar. However, as discussed in Appendix C, the form
f binomial relation (4),  which describes the citation data most satisfactorily, suggests that linear coverage � given by Eq.
B.1) is more realistic. This form of the linear coverage � indicates that the adsorption sites are of different activity and their
ctivity decreases with coverage �.

. Summary and conclusions

The citation rank-order distribution of papers of different selected authors was  analyzed in this work using five functions:
ower law (1),  stretched exponential function (2),  logarithmic function (3), binomial function (4) and Langmuir-type function
5). The former two functions have previously been proposed in the literature whereas the remaining three are novel and are
erived following the concepts of growth kinetics of crystals in the presence of additives which act as inhibitors of growth.
mong these new functions, the logarithmic function (3) proposed for the analysis is similar to that used by Guerrero-Bote
t al. (2007) and Lancho-Barrantes et al. (2010) for their iceberg hypothesis, whereas the binomial empirical function (4) is
n extension of the theoretical relation (6) with the addition of the empirical k2n2p term.

The derivation of functions (3) and (5) and function (4) without the empirical k2n2p term (Eq. (6))  is based on the assump-
ion that all of the Nmax papers of an author have the same number of sites available for inhibition and all of them are initially
nhibited completely. However, later they either remain inhibited (i.e. ˛� = 1) or are uninhibited partially to different extent
i.e. 0 < ˛� < 1). The situation ˛� = 1 implies that a paper has no citations whereas the situation 0 < ˛� < 1 means that, depend-
ng on the value of ˛�,  the n-ranked paper receives citations 0 < ln < l0. In other words, when relations like Eqs. (3) and (5)
ased on adsorption isotherms describing the ln(n) data of an author apply, the number of readers likely to cite a paper
emains constant and the so-called linear coverage � in the citation process is a measure of the citability of a paper. The
igher the value of l0 for an author, the higher is the citability of his/her papers. Similarly, the lower is the value of � for the
th paper of an author, the higher is its citability.

Analysis of the data of citation rank-order distribution of papers of different authors revealed that the value of the
oodness-of-the-fit parameter R2 is the highest for the empirical binomial relation (4), it is high and comparable for stretched
xponential (2) and Langmuir-type functions (5),  relatively low for power law (1) but it is the lowest for the logarithmic
unction (3). The observation that power law (1) and logarithmic function (3) describe the ln(n) data of individual papers of
he authors considered in this study for different authors extremely poorly suggests that preferential attachment (Barabasi

 Albert, 1999) or cumulative advantage models (Price, 1965, 1976) and iceberg hypothesis (Guerrero-Bote et al., 2007;
ancho-Barrantes et al., 2010) advanced for the power law and logarithmic distributions, respectively, can be discarded.
lthough stretched exponential function (2) represents the data satisfactorily, there is a problem with the interpretation of

he values of the parameter n0. Binomial function (4) represents the data most satisfactorily with the exponent p < 1. In fact,
he value of p < 1 is predicted by Eq. (B.5) based on Freundlich adsorption isotherm when the k2-term is omitted. Addition of
he k2-term to empirical binomial relation (4) is attributed to the increasing visibility of an author in his/her scientific field.

Langmuir-type function (5) not only describes the ln(n) data for different authors satisfactorily but physical significance
an also be assigned to its parameters l0 and K. It was found that the value of Langmuir constant K is enormously different
or various authors and its value increases with the initial increasing steepness of the ln(n) plots. In fact, in this function the
arameter K characterizes the citation behavior of an author.

Based on the Langmuir-type function (5) expression (10) for cumulative citations L relating the extrapolated value of
itations l0 corresponding to rank n = 0 for an author and his/her constant K and the number N of paper receiving citation

 ≥ 1 is proposed.
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ppendix A. Adsorption processes and crystal growth

Relations similar to Eqs. (5) and (6) are frequently used to explain the effect of concentration c of additives on the kinetics
f growth rates R of faces of crystals from solutions or the vapor phase and displacement rates v of steps on flat faces (Chernov,
984, chap. 4; Sangwal, 2007, chap. 4). In the case of crystal growth, these relations are derived on the premise that: (1)

here are nmax possible sites on a growing face or on a step spreading on the growing faces, (2) a part of the possible sites, say
ad, is occupied by additive particles whereas the remaining (nmax − nad) sites remain unoccupied, and (3) additive particles
ccupy the sites following traditional adsorption isotherms. The basic concepts of adsorption isotherms and displacement
ates of steps in the presence of inhibitors are given below.
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Fig. A1. Schematic illustration of two different types of steps, completed step 1 and developing step 2, on the surface of a crystal composed of square-shaped
building blocks. Attachment of new growth units in step 2, shown by dark blocks, growing away from the reader, occurs at its terminal by forming three
bonds with growth units: to the left, at the bottom and at the previously attached growth unit before it.
Fig. B1. Development of citations of a particular paper (a) without and (b) with inhibition in citation. In (a) already received citations and empty sites for
new  citations are shown in analogy with step 2, as seen from above in the form of area ABCD, in Fig. A1. Column of (b) is composed of additional gray
squares  representing inhibited citations.

For the reaction between additive particle A and site s, given by (Eggers, Gregory, Halsey, & Rabinovitch, 1964, chap. 18)

A + s = As, (A.1)

the equilibrium constant, usually called as Langmuir constant K, is given by

K = �nmax

(1 − �)nmaxPA
= exp

(
Qdiff

RGT

)
, (A.2)

where Qdiff is the differential heat of adsorption corresponding to the coverage �, RG is the gas constant, T is the temperature
in Kelvin and P is the pressure of adsorbing particles. From Eq. (A.2) one obtains the surface coverage � in the form
A

� = KPA

1 + KPA
. (A.3)
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he constant K has dimensions of pressure−1. However, to calculate the differential heat Qdiff of adsorption from Eq. (A.4)
ne requires dimensionless K ′ = KP∗

A which can be obtained by defining a dimensionless pressure PA/P∗
A where P∗

A is the
alue of pressure when the coverage � approaches a maximum value �max.

The surface coverage � represented by Eq. (A.3) is the Langmuir adsorption isotherm. It is based on the postulate that the
dsorption sites have the same activity and the differential heat of adsorption Qdiff does not depend on surface coverage �.
hen Qdiff depends on surface coverage �, the dependence of � on PA is given by Temkin adsorption isotherm (Eggers et al.,

964), i.e.

� = Z ln C0 + Z ln PA, (A.4)

here Z = 1/b  ln C0, with b < 1. When the active adsorption sites are of different adsorption energy, the surface coverage � is
iven by Freundlich adsorption isotherm (Eggers et al., 1964), i.e.

� = m

(
PA

P∗
A

)m

, (A.5)

here m and P∗
A are constants. P∗

A is the value of pressure when � approaches unity whereas the parameter m < 1 and is
elated to the distribution of energies of adsorption sites.

The above equations are for adsorption on surfaces but they can equally be employed to describe adsorption of additive
olecules/atoms on active sites in linear steps occurring on a crystal face during growth. Then the parameter � represents

inear coverage of the linear step by additive molecules/atoms and the adsorption isotherms refer to linear adsorption
Sangwal, 2007).

It should be noted that development of a linear step in a particular direction can take place only by the successive
ttachment of its building units (i.e. molecules/atoms) at active sites formed on the step. An active site for the attachment
f a building unit is produced repeatedly by another building unit attached before. This process of generation of an active
ite, called kink, at the end of a developing step is shown in Fig. A1.  This figure illustrates schematically two different types
f steps, completed step 1 and developing step 2, composed of square-shaped building units. In the case of molecules/atoms
ther than the building units (i.e. additive molecules/atoms), they inhibit the attachment of the building units to the active
ites because both additive molecules/atoms and step building units compete for the same active sites. Therefore, in the
bsence of additive molecules/atoms available for adsorption (i.e. � = 0), one expects uninhibited development of the linear
tep. However, for the highest adsorption when � = 1, maximum inhibition occurs in the development of the step.

ppendix B. Derivation of Eqs. (3)–(5) based on adsorption processes

Following an analogy with the development of a linear step during growth in the absence and presence of additive
olecules/atoms described above, the development of citations of a particular paper is illustrated schematically in columns

n Fig. B1.  The column of Fig. B1a, without inhibition process, is composed of empty and dark squares representing empty
ites and uninhibited citations, respectively, whereas the column of Fig. B1b, involving inhibition process, is composed
f additional squares representing inhibited sites, respectively. Empty, dark and gray squares representing empty sites,
ninhibited citations and inhibited citations are analogs of possible active sites, building units and additive molecules/atoms,
espectively, during the development of a linear step during growth.

It should be mentioned that there is a fundamental difference between the stacking of citations in the column of Fig. B1
nd the building units in a growth step on the underlying surface of a crystal. In the case of growth steps, the adjoining
uilding units are held together at equal distances by attractive interactions and the terminal building unit in the step serves
s a sink for the attachment of a new building unit at the following empty site. In contrast to this, there is no attractive
nteraction between adjoining citations in the stacking of citations in columns such as those shown in Fig. B1.  The stacking
f citations and empty sites in columns is merely our presentation of citations in which empty sites are replaced by citations
ormed outside the previously existing citations.

In order to describe the dependence of citations ln of papers published by an author on their rank n in the citation-rank
equence of N papers, we arrange the columns of citations of the N papers side-by-side such that the arrangement of citation
olumns of the papers is similar to Ferrers’ graphs (Andrews, 1998). Then we make the following assumptions:

1) All N papers published by an author receive the same number of l0 citations.
2) The l0 citations are brought by nmax possible active sites.
3) Of the nmax sites nad sites are inhibited and remain only partly accessible for citation whereas the remaining (nmax − nad)

sites remain completely uninhibited (i.e. they are accessible for citation).
4) Inhibition process during the process of citation of papers may  be described by the adsorption isotherms given above.
5) The rank n of a paper as a measure of inhibition of the citation probability of the paper such that the pressure PA of the
adsorbing particles in the adsorption isotherms may  be replaced by the paper rank n.

ssumption (5) means that the citations ln of a paper of rank n decreases with increasing n whereas l0 citations are received
y the paper with rank n = 0.
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Denoting the number of citations of a paper in Fig. B1b without and with inhibition by l0 and li, respectively, the resulting
number of citations ln of paper with rank n in the presence of inhibition with linear coverage � = nad/nmax of inhibited sites
may be given by (cf. Chernov, 1984; Sangwal, 2007)

ln = l0(1 − �) + li� = l0(1 − ˛�), (B.1)

where the effectiveness parameter

˛ =
(

1 − li
l0

)
, (B.2)

which lies between 0 and 1, depending on the value of li/l0. When li = 0,  ̨ = 1. The situation  ̨ = 1 implies that there are no
inhibited citations, and a column is entirely composed of uninhibited citations and empty sites, as in Fig. B1a.

On substituting for � from Eqs. (A.3)–(A.5) in (B.1), one obtains

ln = l0

[
1 − ˛

(
Kn

1 + Kn

)]
, (B.3)

ln = l0b′(1 − Z1 ln n), (B.4)

ln = l0(1 − ˛1nm), (B.5)

where the new parameters are given by

b′ = (1 − ˛Z ln C0) < 1, Z1 = ˛Z

1 − ˛Z ln C0
, (B.6)

˛1 = ˛m

n∗m
. (B.7)

In Eq. (B.3) the constant K has dimensions of paper-rank−1 and n* is the maximum number of papers when � approaches
unity.

Using an argument similar to that advanced above to define dimensionless Langmuir constant K ′ = KP∗
A for gas adsorption,

one can define a dimensionless Langmuir constant K′ = KN,  where N is the number of papers receiving citations when the
coverage � = 1. However, calculation of the differential heat Qdiff of adsorption from Eq. (A.2) does not carry sense because
this equation contains the RGT term which has no significance in the citation process. Therefore, one may  define a new
dimensionless differential heat Q of adsorption for citation such that Q = Qdiff/RGT.

Appendix C. Derivation of binomial relation (4)

Freundlich adsorption isotherm described by Eq. (A.5) of Appendix A is based on the postulate that surface coverage �
by adsorbing gas molecules involves active adsorption sites of different adsorption energy. Now we  assume that the total
surface coverage � follows the empirical relation

� = �0(1 − z�0), (C.1)

where �0 denotes the coverage given by the traditional Freundlich isotherm (Eq. (A.5)) and z is an empirical parameter
(0 ≤ z ≤ 1). The parameter z essentially determines the contribution of the correction term (1 − z�0) to the total coverage �0.

Substitution of the value of surface coverage �0 given by Freundlich isotherm (A.5) in Eq. (C.1) gives the total surface
coverage � in the form

� = m

(
PA

P∗
A

)m [
1 − zm

(
PA

P∗
A

)m]
. (C.2)

As mentioned in Appendix A, Eq. (C.2) also holds for adsorption on a linear step. In the case of citations, we  replace the
adsorbing gas pressure PA in Eq. (C.2) by paper rank n. Then substitution of the value of � from Eq. (C.2) in (B.1) gives

ln = l0(1 − k1np + k2n2p), (C.3)

where k1 = ˛1 and is given by Eq. (B.7), k2 = z˛1
2/  ̨ and p = m.  Note that this relation holds when the values of the parameters

k1 and k2 remain constant for a citation distribution. Physically, relation (C.3) implies that the number of citations of an
author increases with the number of papers published by him/her and is associated with the increasing “visibility” of the
author in his/her scientific field.
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