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Introduction

Tracking technologies or trying to determine their state has always been a challenging task. The
globalization of research adds to the difficulty. In the past, analysts primarily used expertise
augmented by literature review to assess the state of development of a technology of interest.
However, the increasing availability of electronic information about technology opens up new
possibilities to facilitate this process. Since the early 1990s researchers at the Technology Policy and
Assessment Center at the Georgia Institute of Technology have been investigating the use of text
mining to aid in assessment and forecasting of technologies (e.g., Watts et al., 1997, 1998; Watts and
Porter, 1999, 2003, 2007; Watts et al., 1999, 2004; Zhu et al., 1999; Zhu and Porter, 2002). This
research is based on the premise that digital records (bibliographic journal abstracts, full text journal
articles, conference proceedings, etc.) can be effectively text mined and that the results of that mining
can help determine the state of a technology. This ‘‘Tech Mining’’ process is covered in detail in the
book by Porter and Cunningham (2005).

The Tech Mining process combines bibliometrics and text analyses of Science, Technology and
Innovation (STI) information resources. The rationale for pursuing this is the premise that
Management of Technology (MOT) decision processes can benefit from empirical indicators to
complement expertise. Porter and Cunningham (2005) identify 39 MOT questions that Tech Mining
can help address, but a more succinct set are simply: Who, When, Where, and What? [The other two
so-called ‘‘reporter’s questions’’ – How and Why? – almost always require more human insight.] Who,
when, and where interests are relatively straightforward to address by careful treatment of
bibliographic record fields – e.g., who (authors, inventors, patent assignees), when (article publication
or patent grant dates), and where (inventor or author address). Software can readily tally frequencies
of such elements across a search set (e.g., patent abstract records concerning solar cells) to identify the
leading organizations and trends. That is not to say that serious text analysis is not needed, it is – to
extract organizational identities from address strings or to disambiguate author identities, for
instance (Tang and Walsh, 2010).

The ‘‘what’’ question is far more challenging. Some fielded records contain helpful content, such as
keywords in paper abstracts and classification codes in paper or patent abstract records. However,
these tend to lag frontier developments as terminology emerges, so warrant enrichment to extract
topical content, especially the noun phrases or words from titles, abstracts, claims, or full text.
Additional approaches may introduce terms of special interest to ascertain their prevalence (over
time; by key R&D players). Aims include identification of topics that show a marked upsurge in R&D
attention in the most recent time period – i.e., ‘‘hot topics.’’ Compilation of ‘‘new topics’’ in recent
times can also help identify novel interests within a field by presenting them to field experts to scan
for potentially emergent topics to pursue. The ultimate motivation is that such methods can be used to
inform MOT judgments.

The process that evolved at Georgia Tech over 20+ years of development uses the output of text
mining to good effect, but, overall, the techniques employed in the Tech Mining process still require a
significant amount of analyst judgment, as well as expertise in text mining techniques (Porter and
Cunningham, 2005). One key research question today is: Can recent advances in text analysis be
leveraged to increase the level of automation in Tech Mining so the analyst can focus more on the
question and less on the process? To this end, this paper looks at two techniques. The first is a
sequence of ‘‘term clumping’’ steps to consolidate topical information. This technique represents a set
of incremental engineering improvements on existing processes. The second approach uses Topic
Modeling, which represents a more radical shift through the introduction of new algorithms. The
study uses Dye-Sensitized Solar Cells as an example case. The comparison is carried out by two teams
– the Tech Mining team at Georgia Tech applying Natural Language Processing (NLP) with Principal
Components Analysis (PCA) and the Topic Modelers at UC Irvine.

Background

Over the years many techniques have been used to model the research indexed in technology
databases. This is done to analyze the structure of technical domains and enable analysts to solve
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technical problems, project the direction a technology is taking, and understand their own place
within the technical domain. Latent Semantic Analysis (LSA), PCA, Support Vector Machines (SVM),
and Topic Modeling are methods that have been utilized in the past (e.g., Fodor, 2002; Deerwester
et al., 1990). The Georgia Tech process has used a variant of PCA to facilitate text analyses, usually
focusing on technology topics, but also addressing MOT per se (e.g., Watts and Porter, 1999, 2005).
However, the full process requires significant human interaction, iteration, and has scaling issues. Is
there a more automated scalable approach? How do the outputs of varying approaches compare with
our NLP/PCA-based results?

Since any type of text clustering is based on co-occurrence of words, whether some combination of
keywords and/or words contained in a document or abstract, it would seem that the actual clustering
algorithm chosen will not bring about large differences in the actual clusters developed. This
hypothesis is supported by numerous projects (e.g., Courseault, 2004; Ding, 2003). The basis of these
similarities is the fact that the objective of all clustering is to minimize associations between clusters
and maximize the relationships within clusters. Different algorithms have different starting points
and mechanisms of selection. This statement does not necessarily mean that the results are the same.
The details of the chosen clustering algorithm are important to the end result and must be determined
by the end goal. The difference, however, is primarily based on factors such as the following: whether
the clusters are term clusters or document clusters; whether they are distinct groups or whether
certain items can be excluded from any cluster; whether the location of certain words or documents
has a distinct location in the space or can have multiple locations; whether the clusters remain the
same each time the algorithm is run or, as in the case of probabilistic methods, may change each time
the algorithm is run.

Cluster research contains a plethora of techniques and additions to well-known methods designed
to improve the ability to find either documents or bits of information, as well as to provide a general
landscape of the documents. These techniques fall into a number of categories. Hierarchical methods

group items in a treelike structure. The methods can start with small groups and aggregate those
clusters into larger clusters or start with one or more larger clusters and break those into smaller ones.
In contrast, Leouski and Croft (1996) show that non-hierarchical methods simply break the corpus into
subsets. Partitioning clustering divides the data into disjoint sets. Density-based clustering groups
neighboring objects into a cluster, based on density criteria. A cluster is defined by a given density
threshold. Statistical clustering methods, such as factor analysis, use similarity measures to partition
documents (Halkidi and Vazirgiannis, 2001). While factor analysis is a more linear statistical
approach, there are other statistical approaches, such as the probabilistic approach offered by
Vinkourov and Girolami (2000). Bayesian Clustering is another probabilistic approach which uses
Bayesian probability theory to calculate the probability that a certain object belongs in a certain group
(Rauber et al., 2000). Kohonen Self-Organizing Maps is an artificial intelligence approach based on
unsupervised neural networks. In general, each of these methods is based on frequency of term co-
occurrence. One unique method is offered by Shah (2002). In this method, the semantic relationships
among words in the document are captured. The Kohonen Self Organizing Map is used to cluster
documents that have the most similar semantic maps.

In the context of text mining, clustering can be utilized in a number of different ways for a variety of
purposes. Clustering may also serve as the basis for other types of analysis, such as those presented by
Watts et al. (2000). In this paper, an algorithm based on combining various clustering techniques is
used to find emerging technologies that accomplish a particular function in a corpus containing over
10,000 publication records. Clustering may be used to discover topic hierarchies giving structure to a
corpus and allowing an individual to explore the corpus in a more organized fashion (e.g. Larsen and
Chinatsu, 1999). Merkyl and Rauber (1999) use the Self Organizing Map as the basis for an approach
designed to uncover associations among documents. Their approach is intended to make explicit the
associations among clusters.

Much clustering addresses document clustering as a way to maneuver through documents,
especially as clustering is being promoted as a visualization method for document retrieval (e.g.
Lowden and Robinson, 2002). The increased number of Internet sites has sparked a great interest in
this area (e.g. Zamir and Etzioni, 1998). Therefore, much research in this area is based on web pages.
Broder et al. (1997) offer a method for determining the syntactic similarity of web documents for the
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purpose of filtering search results, updating web pages, and identifying copyright violations. Zamir
and Etzioni (1998) evaluate clustering algorithms used on web documents and offer an algorithm
called Suffix Tree Clustering, which analyzes phrases shared by multiple documents.

Here, the focus is on term clustering. We ‘‘clump’’ (combine) terms, first, based on term
commonalities, mainly using a combination of thesauri and fuzzy matching routines. We then draw on
co-occurrence-based approaches to group terms that tend to appear together in records using ‘‘latent’’
similarities, as introduced in this section. We focus on PCA because we have a version in our software
that generates effective Multi-Dimensional Scaling (MDS) factor maps for further analyses that have
proven effective in our Tech Mining work. We compare with Topic Modeling because it offers enticing
prospects of more automated processing and cross-language capabilities. In particular, our term
clumping-to-PCA approach relies on NLP tailored for technical English; Topic Modeling can use single
words (‘‘tokens’’) far less dependent on language structuring.

Data

The topic analyzed here is Dye-Sensitized Solar Cells (DSSCs) – a nanotechnology enhanced, third-
generation photovoltaic technology, just entering commercialization. We select this topic because the
team is actively researching it (e.g. Guo et al., 2009, 2011, 2012; Ma et al., 2013; Porter et al., 2011;
Zhang et al., 2012a,b)]. The data source is Web of Science (expressly, Science Citation Index). The range
for the data is 1991 (the year of the first DSSC paper by O’Regan and Gratzel) to 2011. The search
strategy is presented in the Appendix. It has been refined over time through a series of analyses and
review by persons knowledgeable about solar cells. Compared to routine researcher searches, it tends
to be encompassing – i.e., favoring recall over precision to a degree. The intent is to analyze a relatively
full R&D landscape.

The 4104 Web of Science records were downloaded and imported into VantagePoint text mining
software [www.thevantagepoint.com]. The software was used to extract abstract and title phrases
using a Natural Language Processing (NLP) module oriented toward S&T text. [For instance, it strives to
retain chemical formulas and names as singular entities.] The resulting phrase list contains 64,480
noun phrases. These phrases were cleaned using the general clean-up module within VantagePoint to
reduce the list to 56,800 phrases. This set of 56,800 DSSC phrases formed the basis of the comparison
between the PCA-based approach and the Topic Modeling approach.

Analyses: term clumping and PCA

The PCA approach applied here followed a number of discrete steps. These are of interest for their
potential inclusion in a semi-automated methodology of ‘‘term clumping’’ (e.g. Zhang and Porter,
2012). The aim of such an approach is to expedite the reduction of large compilations of term phrases
from a document set, such as these 64,480 phrases, to a more manageable, highly informative subset
that could be analyzed to gain insight into topical patterns. This is a work in progress. Key steps
included here are as follows:
a. F
ield selection: These Web of Science (WOS) records offer four promising topical sources: titles,
abstracts, and two types of keywords (a set deriving from the authors that are not always available –
covering only 52% of these records; and a set constructed by WOS based on cited reference title
terms – for 94% of the present set). In addition, we explored ‘‘borrowing’’ keywords from another
source (EI Compendex) and extracting that controlled vocabulary from the WOS records. Use of
such meta-data, however, accentuates certain terms to the disadvantage of the raw records. So, for
the present case, we favored letting the ‘‘records speak’’ with less intrusion, so we report on the
combination of title and abstract phrases extracted using VantagePoint’s NLP routine.
b. B
asic cleaning: The 64,480 Title+Abstract phrases were reduced to 56,800 by use of VantagePoint’s

general.fuz ‘‘fuzzy matching’’ routine. This consolidates terms with shared stems (‘‘stemming’’) and
other phrase variations expected to be highly related concepts (e.g., combine singular and plural
versions). The basic cleaned set forms the input to Topic Modeling.

http://www.thevantagepoint.com/
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c. F
urther cleaning: In VantagePoint, we applied several thesauri (‘‘.the’’ files) to further consolidate
term variations and cull ‘‘noise.’’ This process reduced the set to 51,960. These include both very
general and quite topic-specific collections:
� stopwords.the – a standard thesaurus provided with the software that uses Regular Expression

(RegEx) to batch some 280+ stemmed terms as ‘‘stopwords’’ [e.g. – the, you, and, are, single letters,
and numbers]
� common.the – over 48,000 general scientific terms
� trash term remover.the – compiled from scanning such WOS phrase collections, including the

DSSC records, to remove some 500 noise terms [e.g. – copyright 2011, references, United States
Abstract, 650nm]
� topic variations consolidator.the – combines variations on a few prominent DSSC terms
� DSSC data fuzzy matcher results.the – a compilation of phrase variations that VantagePoint’s ‘‘List

Cleanup’’ routine suggested combining [e.g. – various singular and plural variations; hyphenation
variations; and similar phrases such as ‘‘nanostructured TiO2 films’’ with ‘‘nanostructured TiO2

thin films’’]

d. A
dditional cleaning: We ran VantagePoint’s list cleanup routine, again, using a variation of a routine

provided for general use – ‘‘general-85cutoff-95fuzzywordmatch-1exact.fuz.’’ As the title hints, this
was derived by varying parameters offered by the software to adjust fuzzy matching routines. This
reduced the set to 47,842 phrases.
e. C
onsolidation: We ran a macro devised by Cherie Courseault Trumbach and Douglas Porter of IISC to
consolidate noun phrases of differing numbers of terms. As described by Courseault Trumbach and
Payne (2007), this concept-clumping algorithm first identifies a list of relevant noun phrases and
then applies a rule-based algorithm for identifying synonymous terms based on shared words. It is
intended for use with technical periodical abstract sets. Phrases with, first, 4 or more terms in
common; then 3; then 2; are combined and named after the shortest phrase, or most prevalent
phrase. In case of conflict, it associates a term with the most similar phrase. This reduced the set to
43,074 terms.
f. P
runing: We scanned the term list and added a few terms to trash remover.the, and removed a few
more general DSSC terms – reducing just a little to 43,060. We then removed phrases appearing in
only a single record – reducing the phrase set to 10,350 (after removing 2 cumulative trash terms).
So, this is clearly the critical reduction, albeit an extremely simple one to execute.
g. P
arent–child consolidation: We ran a macro devised by Webb Myers of IISC originally to consolidate
junior authors under a more senior collaborator – Combineauthornetworks.vpm. This reduces the
set to 7179 terms. To give a sense of term prevalence, here are some frequency benchmarks: 4941
terms associated with 3 or more records; 1086 with 10 or more; 348 with 25 or more; 194 with 40
or more; 49 with 102 or more.
h. P
CA: VantagePoint’s ‘‘factor mapping’’ [and/or factor matrix] routine that applies Principal
Components Analysis (PCA) was then run on groups of the 7179 terms. These followed a strategic
approach devised by Dave Schoeneck of Search Technology to take three tiers of top terms based
roughly on the percentage of records that contain them. Several runs, as follows – PCA on the top
194 terms; cleaned terms a bit more to 7164; reran PCA on the top 204 terms (occurring in 37 or
more records) – got 15 factors, but the human analyst thought those could be consolidated better,
so reran PCA requesting 10 factors; got 10 that look pretty coherent. The terms listed below in
Table 1 are from this PCA analysis. To check robustness, another PCA on terms appearing in �25
records, removing several uninteresting terms (human judgment), was based on 319 terms. Initial
result of 18 factors included several that seemed to warrant consolidation; preferred a result with
11 factors that were pretty similar to those presented below (based on the 10-factor solution based
on 194 terms).

To give the flavor of term clumping, a ‘‘find’’ on the 56,800 phrases yields 3874 containing the
strings ‘‘dye-sensiti’’ or ‘‘dye sensiti.’’ These range in frequency from 1 to 2125 records. So, depending
on analytical intent, one aim is to consolidate many of these variants before pruning (removing the
very low frequency terms). Step d (more aggressive fuzzy matching routine – i.e., changing the
adjustable parameters to match more such variants) seeks to do this. Presently we are experimenting



Table 1
PCA factors. Each row shows information about one ‘‘factor’’ (Principal Component), including: a short machine-assigned label

for the factor; the percent of variance explained by the factor; and the phrases that load highly on the factor (i.e., that relate most

closely to that factor).

PCA 10 factors

Factors Percent

coverage

Terms

Voc 1.54% mA cm; fill factor; Voc; open circuit voltage Voc; Jsc; photocurrent

density Jsc; eta; open circuit photovoltage Voc; current density Jsc; ISC

Density functional theory DFT 1.37% Density functional theory DFT; electronic structures

Conduction band 1.22% TiO; sensitizer; photocurrent; electron injection; conduction band

Electron lifetime 1.08% Electron transport; electron lifetime; electron diffusion coefficient

Transmission electron microscopy 1.00% Electron microscopy; transmission electron microscopy; electron

microscopy SEM; X ray diffraction; X ray diffraction XRD;

X ray photoelectron spectroscopy XPS

Electron donor 0.98% MW cm irradiance; electron acceptor; photophysical; electron donor

XRD 0.94% XRD; SEM; TEM

Counter electrode 0.88% Counter electrode; Pt

Ionic conductivity 0.86% Electrolyte liquid; ionic conductivity; polymer electrolytes; polymer

gel electrolyte

Open circuit voltage 0.83% mA cm; fill factor; open circuit voltage; overall conversion efficiency
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with an iterative approach, that runs fuzzy matching repeatedly, until results stabilize. Step e works to
combine varying length phrases with substantial term commonality – e.g., ‘‘dye sensitized
nanocrystalline TiO2 anatase’’ (1 occurrence) could be combined with ‘‘dye sensitized nanocrystalline
TiO2 solar cell’’ (66 records). Another paper illustrates the stepwise changes in addressing a mixed
DSSC search set combining results from Web of Science and EI Compendex database searches (Zhang
et al., 2013). In other words, Term Clumping is very much an ‘‘engineered’’ solution. The approach
focuses on refining discrete steps, automating them to the extent possible, and then combining them
into a packaged, semi-automated process.

Analyses: topic modeling

Topic Modeling is a statistical process that discerns topical structure in a collection of text
documents (e.g. Blei et al., 2003; Griffiths and Steyvers, 2004). Topic Modeling assumes that each
document in the collection incorporates a small number of topics. It simultaneously learns a set of
topics to describe the entire collection, and the topics most associated with each document. Formally,
each topic is a probability distribution over terms, and is typically displayed by listing the ten to
twenty most likely terms.

Topic Models are learned in a fully automated fashion. Like other unsupervised methods, such as
PCA, there is no need for an ontology, thesaurus, or dictionary. Instead Topic Modeling works directly
from the text data by observing patterns of terms that tend to co-appear in documents, such as dye and
sensitized. The topic model works at a very granular level, assigning a topic label to every word in every
document. Topic tags on a per-document level are obtained by aggregating these word-level topic
assignments.

The basic form of Topic Modeling – Latent Dirichlet Allocation – evolved as a Bayesian approach for
LSA/PCA (e.g. Blei et al., 2003; Griffiths and Steyvers, 2004). Topic Modeling is possibly more suited to
text data since it is a model of discrete counts rather than real-valued data. Furthermore, topics from
the Topic Model can be easier to understand since topics can be interpreted as probabilities, whereas
PCA factors can have positive and negative values (required for orthonormality). But the bigger
difference is that the Topic Model uses ‘‘T’’ topics to explain the entire corpus, whereas PCA computes
the top-T factors that account for the most variance in the data (that is, there exists no different set of T
factors that accounts for more variance). So learning a Topic Model with twice as many topics will
result in finer-grained topics, whereas computing twice as many factors in PCA will produce the same
top-T factors.
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Topic Modeling has been used in a variety of application areas, ranging from information retrieval
to research portfolio analysis. One application of relevance to science and technology is the
characterization of National Institutes of Health (NIH) funded research, available online as the NIH
Map Viewer (Talley et al., 2011). Another Topic Modeling endeavor addressed National Science
Foundation awards, generating a thousand topic characterization of that research (Nichols, 2012).
Topic Modeling is also highly scalable. One can efficiently and quickly generate Topic Models on
millions of documents, making it possibly preferential over PCA for large-scale analyses (e.g. Newman
and Smyth, 2009).

Topic Modeling uses a bag-of-words representation of a corpus, where word counts in each
document are preserved, but word order is discarded. In this work PCA is applied to term phrases
(multi- or single-word), not to unigrams (i.e., single words). One difference is that the Topic Model
uses integer term counts, and there is no term frequency/inverse-document-frequency (TF-IDF)
weighting of term frequencies that can be used in LSA/PCA.

The basic version of the Topic Model is parameterized by a single input parameter, T, the setting of
the number of topics to learn. One can use heuristics to set T, for example based on corpus size or
experience. Note that this differs from LSA/PCA where one can request the top-T factors to be
computed (and the selection of larger T does not change factors already computed). There are also
nonparametric versions of the Topic Model that use the data to learn an appropriate number of topics
to explain the data.

Our preprocessing of the 4104 DSSC abstracts followed a slightly different procedure to that used
for the PCA analysis. We used all the text from title and abstract, did some simple normalization
(lower-casing and removal of punctuation), and limited stemming. Here our focus was on unigrams, so
we did no chunking or noun-phrase extraction, except for some limited replacement of frequent
bigrams (such as thin film). We removed a short list of standard stopwords (e.g. the, and), as well as
some frequently occurring terms (e.g. journal, elsevier, all, rights, reserved). After tokenization, there
were on average 100 terms per document. Given this relatively small collection, Topic Models were
learned with T=10, 15 and 20 topics, running for 400 iterations. The setting of T=15 topics seemed to
have a reasonable resolution, and we present that model here for illustration purposes (for more
detailed analyses, one might be interested in more fine-grained topics learned using a higher setting
for number of topics, T).

Results for DSSC analyses

Table 2 shows the T=15 topics learned on the collection of 4104 DSSC abstracts. Each row shows
information for one topic. For each topic there is a human assigned label (in the first column) and
percentage (second column). The percentage indicates the overall prevalence of a topic, i.e., the
percentage of all �400,000 tokens in the corpus that are assigned to that topic.

We see from the table that the Topic Model learns a range of topics or facets about this collection of
DSSC abstracts. It divides various aspects of this technology from topics related to PERFORMANCE
(terms like performance, efficiency, effect) to topics related to CIRCUIT INFO (terms like current, voltage).
It also captures the divide of TiO2-based technology from ZnO-based technology (affirmed as vital by
interview). While not shown here, we can examine any one of the 4104 abstracts and show what
topics are discussed. Likewise, we can find relevant abstracts for a particular topic, for example, we
could rank all abstracts on their relevance to ELECTROLYTE TYPES. Since topics need to represent every
word in every document, we see a range of topic types, covering different technologies, aspects of the
technology (PERFORMANCE), and topics accounting for various terms that appear less related to
technical aspects (e.g. the two PUBLICATION INFO topics).

Discussion

Comparing term clumping-to-PCA with topic modeling

The results of the two analyses are intriguingly different, particularly from the perspective of an
analyst viewing the results. The PCA factors appear focused to specific sub-technologies within the



Table 2
Topics learned by the topic model. Each row shows information about one topic, including: a short human-assigned label; the

percent of words in the corpus assigned to that topic; the most likely terms in the topic, in order of likelihood.

Topics

Short label % Topic terms

DSSC GENERIC 9% Dye sensitizer DSSC ruthenium group acid complexes efficient

nanocrystalline_TiO2 organic_dye

PERFORMANCE & EFFICIENCY 9% TiO2 layer dye recombination performance surface efficiency

effect increase electrode

DEVICE DESCRIPTION 9% Device material cell photovoltaic dsc organic application

efficiency low high semiconductor cost

ELECTROLYTE TYPES 8% Electrolyte polymer solid_state ionic_liquid iodide polymer_-

electrolyte poly gel_electrolyte

ELECTRON TRANSPORT 8% Electron recombination charge transport diffusion spectro-

scopy electron_transport kinetic

TiO2 FILM 8% TiO2 film TiO2_film temperature electrode particle layer

prepared thin_film deposition

MOLECULAR CHARACTERISTICS 7% State dye TiO2 surface molecular band absorption electronic

level excited density functional

TiO2 NANOSTRUCTURES 6% TiO2 nanotube arraytitania nanoparticle mesoporous anatase

light structure scattering

CIRCUIT INFO 6% Cell current voltage short_circuit open_circuit dye photocur-

rent factor density TiO2 solid_state

PHOTOELECTROCHEMICAL 6% Dye light film absorption sensitization electrode photoelec-

trochemical sensitized photon visible

SPECTROSCOPY 5% Surface ray spectroscopy electron microscopy properties

characterized temperature scanning film

ELECTRODE 5% Counter_electrode carbon electrode dsc substrate layer resis-

tance performance glass fto

PUBLICATION INFO 5% Doi chem phy_chem chem_soc mater sol phy mat commun lett

sci adv energ nature

ZnO NANOSTRUCTURES 5% ZnO film nanowire nanorod oxide growth zinc deposition array

thin_film nanoparticle nanostructure

PUBLICATION INFO 4% Chemical physics society applied letter American electrode

conversion Chinese material energy
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DCCS domain. The percentage of variance within the data explained by these factors is relatively
low, but not unexpected, since the pre-processing tended to move the analysis away from the
most common terms and toward the middle-high occurring ones. This is intentional. An analysis of
high frequency terms from our DSSC work (Ma et al., 2013) finds a good degree of structure within
the field and can explain much of the variance. This would indicate that the technology is
organized and relatively well developed (key terms are agreed upon, the lexicon is established,
definitional battles are minimal). Present interest therefore rests with the mid-to-high tier
frequency terms. The PCA analysis shows some variability at the middle tier indicating that DSSC
technology is still undergoing transformation. For example, variability in microscopy terms (XRD,
SEM, TEM) indicates that best practices are still under development. However, these same terms
show some of the weakness of non-expert trained systems – PCA does not understand that TEM
and Transmission Electron Microscopy are the same. We are working on an acronym identifier
macro to improve this.

Topic Modeling results present a somewhat clearer view of the state for the technology – with a
much shorter route to obtain these results. Like the term clumping-to-PCA process, the Topic
Modeling process shows some variability of the technology at the second tier. However, it is
interesting to note, that key to effective representation of the topics is the labeling – a non-automated
(human) process. In this experiment, we only compute topics using unigrams and some frequent
bigrams, so the absence of n-grams (multi-word phrases) can make human interpretation of a topic
challenging. However, it is possible to post-process the topics, and print out significant (high
likelihood) phrases associated with each topic. These can be used to help label the topics.
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Do note that in the present analysis we are focusing on the analyst perspective – considering
how the analysis interacts with analyst. In other works, we consider statistical validation of topics
and factors through standard measures such as precision and recall. For example, we have
composed artificial search sets consisting of some seven distinct searches in Web of Science and
seven intersecting topic searches in EI Compendex. We then compare the efficacy of term
clumping-to-PCA with Topic Modeling in enabling record clustering to match the actual search
sets. Even this is not an unequivocal test in that the distance among the search sets is not absolute
(i.e., a given record could appear in more than one search set; moreover, the topical distance
surely varies among the sets).

Processing topical content and MOT

Validation of topical content manipulation is important. Throughout our DSSC studies, we have
enlisted persons knowledgeable in solar cells to check our search strategy, topic content, and
other facets. In particular, one Georgia Tech PhD student, Chen Xu, has collaborated in several of
the papers (e.g., Guo et al., 2012; Ma et al., 2013) and a faculty member, Jud Ready, in one
(Guo et al., 2011).

In July, 2013, three of members of Georgia Tech team had the opportunity to present selected
results to Dr. M. Nazeeruddin, a long-time leader in DSSC research at EPFL (Ecole Polytechnique
Federale Lausanne – where DSSC research was initiated in 1991 and continuing as the single
organizational leader in the field). He found the major topics useful in characterizing DSSC
research emphases. He could peruse a list of the higher frequency terms to spotlight
pivotal R&D thrusts pertinent to the future of the field. In addition, results were presented to
a DSSC conference, receiving generally supportive feedback on the topical characterizations
(Guo et al., 2011).

We engaged seven persons knowledgeable about these solar cells to assess results of our DSSC
topical treatment of the combined Web of Science and EI Compendex search sets (Zhang et al.,
2013). We sought their judgment on which topics and/or PCA factors would be useful in analyzing
this emerging technology. For the terms, 183 of 322 elicited endorsement by at least one of six
selective raters (249 of 322 got endorsement by at least one of seven). For 11 PCA factors,
10 received endorsement by at least 2 of 7 (8 were selected by 3 or more) as useful in
characterizing the field. So the clumped terms and factors do reflect strong value in further study
of the field.

Addressing the research question

Can we reduce the time an analyst spends text mining and improve output? Both techniques
appear promising. The engineered approach of Term Clumping, despite its complex interior, can be
packaged to reduce cycle time and it can be implemented within existing software. We have been
conducting a series of DSSC analyses that do use such topical content. Of particular note, term
clumping helps consolidate terms and phrases from which the analyst can key on:
� H
igher frequency terms – to help distinguish sub-systems, and to identify major topics for further
analyses that address:
o who is doing what (e.g., Guo et al., 2012, profiled top DSSC research organizations to contrast their

research emphases)
o trends for major topics (e.g., Guo et al., 2011, comparing major topic trends), and distinguishing

‘‘hot topics’’ (e.g., Guo et al., 2010, contrasting temporal concentrations for TiO2 and ZnO research)
o social network analyses (considering similarities in topical interests; e.g., Guo et al., 2009,

presented a research network map based on contrasting national emphases)

� L
ower frequency terms – to help identify new R&D emphases based on the year of first use (a

standard VantagePoint macro provides this in minutes)

� P
CA factors – to pursue topical thrust differences – e.g., which organizations are recently most active

on Voc issues (as one investigates Merger & Acquisition candidates, likely through patent analyses)?
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Or, does EPFL or CAS most emphasize counter-electrode aspects (as one seeks expertise on same)?
Zhang et al. (2012b) compare PCA factors with high frequency clumped terms for mapping DSSC
research emphases. A combination approach, taking the high-loading terms on the high frequency
PCA together with the top 50 clumped phrases, proved helpful in profiling the R&D.
The Topic Modeling approach for addressing ‘‘what’’ issues looks attractive. The fewer steps needed
to complete the analysis and little analyst input required suggests significant time savings is possible.

The cycle times for current Term Clumping runs can be measured in terms of hours while the Topic
Modeling runs take minutes. The issue of labeling topics, which at first pass, appears to be a risk, might
ultimately be the step that allows the analyst sufficient time to get grounding in the data. Both
approaches look promising enough to pursue deployment within tech mining software. Once
implemented, we can conduct further trials to provide a side by side comparison of the approaches.

Conclusions

The key issue with the PCA process is that much of the understanding of the state of the
technology comes from the analyst’s journey through the process. Table 1 in isolation is not
particularly illuminating when disconnected from the process used to create it. A full analysis
encompasses addressing not just ‘‘what,’’ but also who, when and where. Furthermore, the ‘‘what’’
question addressed by the PCA-based process is, at its core, a process to separate signal from noise
– or more precisely, noise from signal. The analyst might not possess the technical expertise to
fully understand the nuances of the topic at hand, but an experienced text mining analyst uses the
PCA process to ferret out and remove noise from the data, leaving the final PCA step to order the
remaining signal.

This noise removing interplay between the analyst and data has been the core of the process at
Georgia Tech for over 20 years. It is also the most time consuming step in the analytical process and is
more of an art than a science. Over the years we have endeavored to systematize the process (e.g.
Porter and Zhang, 2012). However, we remain at the mercy of the data we have available
(bibliographic abstracts) and core techniques we rely on to order that data. In the 1990s, our research
pushed us toward PCA as a workable approach. We have looked at other techniques. Several
techniques, particularly those based on supervised learning, would probably perform better in a single
analysis. However, supervised learning would greatly restrict the eclectic range of topics we typically
address, forcing us to stick to topics where we feel comfortable conducting supervised training.

The Topic Modeling approach looks promising. This DSSC comparison, although not comprehen-
sive, is still quite helpful. Topic Modeling appears to have utility to reduce the cycle time, the
complexity, and analyst input required for a technology analysis. Its ability to separate signal from
noise is superior to a blunt implementation of PCA. The fact that it is unsupervised fits our analytical
needs. The approach also presents some intriguing possibilities for layering different techniques
together. The scalability is very attractive, suggesting the possibility to move beyond abstracts into full
text analysis. Use of unigrams reduces language dependency, and that holds great appeal. However,
Topic Modeling is not a silver bullet that can be used in isolation. Human analysts, working in concert
with other techniques, will still be required to produce an effective assessment of a technology.
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Appendix

The search algorithms and component results for the Web of Science search are as follows:

#1: 4000 records
TS= (((dye-sensiti*) or (dye* same sensiti*) or (pigment-sensiti*) or (pigment same sensiti*) or (dye*
same sense)) same (((solar or Photovoltaic or photoelectr* or (photo-electr*)) same (cell or cells or
batter* or pool*)) or photocell* or (solar-cell*)))
Annotation: #1 search term is various expression of Dye sensitized solar cell (pigment sensitized solar cell is

a kind of DSSC)

#2: 1204 records (#2 not #1: 32 records)
TS=((DSSC or DSSCs) not ((diffuse cutaneous Systemic sclerosis) or (diffuse cutaneous SSc) or (diffuse
SSc) or (distributed switch and stay combining) or (Distributed Static Series Compensator*) or
(decoupled solid state controller*) or (Active Diffuse Scleroderma*) or (systemic sclerosis) or (diffuse
scleroderma) or (Deep Space Station Controller) or (Data Storage Systems Center) or(decompressive
stress strain curve) or (double-sideband-suppressed carrier) or (Flexible AC Transmission Systems) or
(DSS induced chronic colitis) or (Dynamic Slow-start) or (dextran sulfate sodium) or (disease or
patient* or QSRR)))
Annotation: It is the papers which include 1) DSSC but not includes #1 and relate to Dye sensitized solar cell

and exculde 2) noisy data.

#3: 330 recordes (#3 not (#1 or #2): 54 records)
TS=((((dye- Photosensiti*) or (dye same Photosensiti*) or (pigment- Photosensiti*) or (pigment same
Photosensiti*)) same ((solar or Photovoltaic or photoelectr* or (photo-electr*)) same (cell or cells or
batter* or pool*))) not (melanocyte* or cancer))
Annotation: #3 search term is 1) various expression of Dye photo-sensitized solar cell, and use 2)

(melanocyte* or cancer) to exclude noisy data.

#4: 188 records (#4 not (#1 or #2 or #3): 18 records)
TS = (((((dye adj (sensiti* or photosensiti*)) and (conduct* or semiconduct*)) same electrode*) and
electrolyte*) not (wastewater or waste-water or degradation))
Annotation: #4 search term searches DSSC papers according to1) the component of DSSC and use 2)

(wastewater or waste-water or degradation) to exclude noisy data.

Total: 4104 records
#1 or #2 or #3 or #4
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