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Advances in bibliometrics present new methods for analyzing emerging collaborative innovation models.
These methods are illustrated by the Canadian Stem Cell Network, which fosters high-profile multidisci-
plinary, collaborative, international research. However, patenting negatively impacts collaboration patterns
in published research. Policies directed at collaboration and commercialization may be in conflict, depending
on the degree to which one activity is emphasized over the other.
Commercialization has become a domi-

nant theme in the innovation strategies

of industrialized countries, particularly in

the context of stem cell (SC) research in

which economic benefit resulting from

commercialization is used to justify fund-

ing and political support (Winickoff et al.,

2009). The priority placed on commercial-

ization exists against a background of

funding programs designed to encourage

research networks and collaborations.

Such programs bring researchers in mul-

tiple fields together, with the expectation

of promoting basic and applied research

and the translation of that research into

products and therapies (Lee and Boze-

man, 2005; Munos, 2009). However, an

increasing body of evidence suggests

that commercial activities of academic

scientists undermine academic collabo-

rations, resulting in secrecy and with-

holding of materials and data (Walsh

et al., 2005; Hong and Walsh, 2009). Such

negative impacts on multidisciplinary

academic collaborations are particularly

concerning for SC research, which Giebel

(2005) argues, ‘‘needs to be incubated in

academia much longer before it is ready

to graduate into a business that can

commercialize the technology and deliver

real products.’’

Advances in the field of bibliometrics

allow for new objective analyses of

research networks and the impact of poli-

cies on such networks (Strandbourg et al.,

2006; Moed, 2005). Our case study of

a Canadian Network of Centers of Excel-

lence (NCE), the Stem Cell Network
(SCN), illustrates both the utility of a biblio-

metric approach and addresses how key

variables, including commercialization

activity, impact on academic research

collaborations. Commercialization activ-

ity in the form of patenting has been

shown to have a negative impact on

scientific knowledge in the public domain

(Huang and Murray, 2009). For example,

the number of citations of key academic

articles on human genes decreases after

the gene identified in the article is claimed

in a published patent application. The

publication of the patent application, 18

months after it was filed, is when

the patent application becomes public

knowledge. Here, we question whether

there is also a negative impact of patent-

ing and other commercialization activities

on academic collaborations measured

through coauthorship.

The NCE program was established in

1989 and marked a change in science

funding models in Canada. Instead of

being directed toward individual or small

groups of investigators, it was designed

to create networks of primarily academic

researchers in specific fields, such as

SC research (Atkinson-Grosjean, 2005).

Most importantly, however, the NCE

brought in a new philosophy for inclusion

of individuals within partnerships, requir-

ing network researchers to seek cofund-

ing from the private sector and to

focus development on commercializable

outputs. This requirement constituted

a significant policy shift imposed from

the top down to change research culture
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investigator-driven inquiry (Atkinson-

Grosjean, 2005).

Funded since 2000 and till 2011,

the SCN is directed at translating SC

research into clinical applications, com-

mercial products, and public policy

(http://www.stemcellnetwork.ca/). It is a

nonprofit corporation comprising aca-

demic researchers, clinicians, and bioen-

gineers, as well as ethicists, lawyers,

and social scientists, the latter three fields

collectively known as ELSI. Its program is

assessed by external peer review for

research excellence and its ability to bring

together most of Canada’s SC community

to facilitate networking, research excel-

lence, and commercialization of network

funded research.

However, although the SCN at the time

of data collection had contributed funding

to two projects that moved into phase I

and IIb clinical trials, the majority of

SCN-funded research prior to 2008 used

animal models and cell-based research.

This was so despite the creation, and

now dissolution, of Aggregate Therapeu-

tics, Inc. (ATI), a company created to

pool and manage the intellectual property

and know-how of 37 SCN researchers

(Herder and Brian, 2008) who voluntarily

agreed to participate. ATI failed to attract

private sector investment, probably

because of issues commonly identified

as barriers to the commercialization of

cell-based therapies, including: (1) the

early stage of much of the research; (2)

questions about the development of
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exploitable intellectual property, defin-

able products, and profitable business

models, and (3) a host of regulatory and

ethical challenges (Giebel, 2005; Little,

et al. 2006; Plagnol et al., 2009).

Bibliometrics as a Tool for
Innovation Policy Analysis
At present, new innovation models are

emerging in the life sciences in which the

emphasis is placed on collaboration and

partnerships (Gold, et al. 2008; Edwards,

et al., 2009). There is a recognition that

no one entity can itself do most of

the research and development given

increasing technological complexities

and enhanced understanding of the com-

plexity of living systems. Indeed, even

pharmaceutical companies that tradition-

ally have relied on a vertical integration of

research through product development

and marketing activities now recognize

that new drugs will only be developed

through innovative partnerships with

public research institutions and biotech-

nology companies (Munos, 2009).

Bibliometrics enables an exploration

of these complex collaborative systems.

Bibliometric analyses are based on the

wealth of data available on the Internet

or from other digital records in, for

example, publications, patents, citation,

sequence, and chemical databases. The

main difference between these analyses

and traditional metrics for innovation is

that instead of merely counting indicators

of success along a linear innovation path-

way, such as number of publications,

patents, or funding, bibliometric analyses

can measure networking activities such

as researchers who publish, patent, or

seek funding together. Further, when

combined with statistical modeling, they

can assess the significance of factors

such as geography, institutional affiliation,

and personal or group attributes.

Other bibliometric tools illustrate the

structure of a field of research (cocitation

analysis) or how the field changes over

time (citation trail analysis). Citation trail

analysis tracks citations through gen-

erations of publications in a field and

may be used to track or identify seminal

research publications, technologies, or

patents. Further, bibliometrics can also

be used to explore the influence or

the activities of specific groups of

researchers in a global research environ-

ment. For example, tracking key publica-
26 Cell Stem Cell 7, July 2, 2010 ª2010 Elsev
tions both over time and geography

allows for visualization of uptake and

diffusion of new technologies, methods,

or knowledge. Geographic information

software (GIS) such as Google Earth

(http://earth.google.com) can help track

the movement of researchers and their

students around the world. Collectively,

these tools allow for a more nuanced

understanding of the benefits flowing

from innovation networks.

In this Synthesis article, we overlay the

attributes of individual researchers on

a network of researchers who coauthor

academic articles (coauthorship network)

in the field of SC research. This approach

enables us to explore, when combined

with statistical modeling, whether individ-

uals who engage in commercialization

activities, such as patenting and company

formation or participation, collaborate in

the academic realm as much as individ-

uals who do not. We ask this question

while controlling for other attributes of

individual authors such as institutional

affiliation, geography, seniority, impact

of research, and research field, among

others. We show that, while there are limi-

tations in the available data and analytical

tools, network visualization combined

with statistical modeling of attributes of

individuals within the network may be

a powerful tool for policy analysis.

Collaboration networks, in general, may

be used for visualizing patterns of link-

ages between individuals or research

groups, including coauthorship of scien-

tific or other publications, copatenting,

patentee-assignee relationships, licens-

ing and cofunding relationships, materials

exchange, and training. Network Statis-

tics can indicate how central or important

an actor is within the network. Here, we

only visualized a coauthorship network

for SCN Principal Investigators (PIs).

A second bibliometric analysis tool we

used was author cocitation analysis.

Author cocitation analysis uses informa-

tion on how authors are cited together in

the literature to define fields of interest

(i.e., whether two authors have been cited

together in a third, fourth, and multiple

articles is an indication that they are in

the same field). Taken together over a

large number of publications, author coci-

tation analysis can be used for visualizing

the subfields within a field of research

such as stem cell research (Figure S1

available online). We used cocitation anal-
ier Inc.
ysis to identify subfields and to objectively

assign SCN PIs to those subfields (e.g.,

hematopoietic SC), which then became

an attribute used in the statistical model.

Our approach involves six steps, which

are fully described in the Supplemental

Information: (1) data collection (publica-

tions, patents, and attributes of individual

SCN PIs), (2) data cleaning (for example,

ensuring that individual authors could be

indentified from multiple versions of their

names such as John Smith, J Smith, JA

Smith, John A Smith or that ‘‘J Smith’’

was in fact two individuals), (3) construct-

ing and visualizing the coauthorship

network (where each individual author

appears as a node and the lines connect-

ing the nodes are based on the number of

times two individuals have coauthored

a paper), (4) analyzing the coauthorship

network (deriving two network statistics

from the full network based on the number

of coauthors for each SCN PI), (5) per-

forming the cocitation analysis so that

each SCN-PI could be assigned to

a subfield of research, and (6) developing

a series of generalized linear models

(GLMs), a type of regression analysis, to

explore, for each of the two network vari-

ables (from step 4), if commercialization

activity had an effect on coauthorship

after taking into account the other attri-

butes of individual SCN PIs.

Data Collection
The initial data were provided by the SCN,

including: a list of 83 science PIs, publica-

tions funded by the SCN, the names of PIs

involved in independent start-up com-

panies, and the names of PIs involved in

the SCN commercialization company

ATI. In our statistical model, we excluded

four honorary PIs and all ELSI PIs because

of different publication and citation

patterns in the social sciences (Moed,

2005) and because these researchers

were minimally linked through coauthor-

ship with science PIs (Figure 1). All statis-

tics are calculated with data on the 79

active science PIs.

We identified institutional affiliations of

PIs by using Google and/or PubMed

searches and created PI citation reports

with the ISI Web of Knowledge. The

main attributes of PIs, namely the number

of publications, number of citations, aver-

age number of citations per publication,

H-index, and years since first publication,

are shown in Table 1. The H-index is

http://earth.google.com


Figure 1. Coauthorship Network for SCN PIs Showing Effect of Patenting and Involvement in Start-Up Companies
Coauthorship network is visualized with CiteSpace (http://cluster.cis.drexel.edu/�cchen/citespace), based on a subset of the full data set, namely (1)
publications by SCN PIs (n = 507), (2) publications cited by and (3) citing those publications, and (4) all publications cited in the citing publications. Sustained
coauthorship on at least three publications is required in order to appear as a linked author. SCN PIs appear as colored circles, with the size of the circle
representing the relative number of publications. Approximately one-quarter of SCN PIs have never coauthored three times or more with the same coauthor.
Yellow denotes the top 20 PIs in terms of their patent/publication ratio, blue denotes other science PIs, and fuchsia denotes social science and humanities
(ELSI) PIs. Triangular symbols denote those PIs who have been involved with an independent start-up company. PIs with high patent/publication ratios
and who have been involved in start-ups are generally less well connected to the central network and are more peripheral compared to those with low
patent/publication ratios. This effect is statistically significant.
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a measure of research impact based

on publications and citations. We used

PubMed, ISI Web of Knowledge, and

Scopus citation databases to collect four

types of publications: (1) the unique Med-

line indexed scientific publications funded
Table 1. Impact of Patenting and Publication

Variable (n = 79 PIs) Average ± SE

Dependent Network Variables

Number of coauthorsb 114 ± 134 (11

Neighborhood sizec 3779 ± 546 (7

Independent or Predictor Variables

Number of patents 11 ± 1.8 (0–99

Total number of publications 128 ± 14.4 (1

Total number of citations 5590.4 ± 699

Average number of citations

per publication

40.9 ± 3.5 (9–

H-index 29 ± 1.9 (7–81

Years since first publication 21.5 ± 0.9 (9–

Attributes of SCN science PIs used as dependent

variables explained variance in the two dependent

dependent network variable is shown. Other variab

of research, year the researcher became a PI in the

significance values) on all variables included in the

because they indicate the proportional increase (+

variable.
a Calculated on log-transformed data for patents,
b Number of distinct coauthors of a PI in the coaut
c Number of authors who collaborated either with
d These independent variables were not included b
by the SCN (n = 507), (2) publications cited

by and (3) citing those publications, and

(4) all publications cited in the citing

publications. We collected the PIs’ inter-

national filed and granted patents by

using the Canadian Intellectual Property
s on Coauthorship Patterns

(Range)

Model Onea: Coauthors

Beta Coefficient ± SE (Pr (>

–828)

5–23,151)

) �0.189 ± 0.082 (0.021)

6–591) 1.051 ± 0.202 (0.001)

.3 (153–29935) 2.406 ± 0.741 (0.001)

149) –d

) –

43) –

and independent variables in generalized linear mo

variables. The statistical significance of three indep

les included in the top model for each of the two de

SCN, and institutional affiliation. Statistical details (

top models are shown in Table S2. The beta coef

) or decrease (–) in the dependent variable for ever

publications, and citations so that these variables

horship network.

the PI or with one of the PI’s collaborators.

ecause they were highly correlated with other var

Cell Stem
Office database and Delphion (Table 1).

Three measures of commercialization

used were: (1) patents (applications and

granted), (2) involvement in ATI, and (3)

involvement in other start-up companies

(Figure 1).
jzj))
Model Twoa: Neighborhood Size

Beta Coefficient ± SE (Pr (>jzj))

�0.308 ± 0.102 (0.003)

1.178 ± 0.255 (0.001)

3.161 ± 0.918 (0.001)

–

–

–

dels to assess which independent or predictor

endent variables used in the top model for each

pendent network variables were type of PI, field

regression coefficients with standard errors and

ficients can be used to calculate the effect size

y one unit increase in the independent network

better approximated a normal distribution.

iables included in the top model (Table S1).
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Network Characteristics
After data cleaning to eliminate duplicate

publications and to correctly identify

authors and the links between them

(Supplemental Information), we built a

computational model of the full coauthor-

ship network on the basis of individual

author nodes and the number of coau-

thored papers (links) between them. The

full coauthorship network was based on

162,555 unique PubMed publications

with close to a million author name occur-

rences and 361,064 individual author

nodes. There were 2.77 million links

between coauthors, weighted by the

number of times the two linked individuals

appear as coauthors of a publication. For

comparison, up to December 2007, there

were 157,122 PubMed records with

‘‘stem cell’’ as a MeSH Term, indicating

that our search strategy, despite using

the interdisciplinary SCN publications as

a starting point, captured a significant

percentage of research publications in

this field.

Network PIs exhibited a wide range of

collaborative behaviors, patenting activ-

ity, and other characteristics (Table 1).

The PIs belonged to 22 Canadian univer-

sities and other publicly funded research

institutions in 12 cities across the country.

All PIs were linked in some way to the

overall international coauthorship net-

work of SC researchers, and many had

large numbers of international coauthors,

ranging from 11 to 828 (Table 1). The

SCN classified the 79 active science

researchers as basic (54), clinical (14),

and bioengineering (11).

To assign SCN PIs to research areas,

we performed an all-author cocitation

analysis (see Supplemental Information;

Figure S1) of the most highly cited

researchers in the dataset along with the

SCN PIs; 17% of SCN PIs were included

in this category of most highly cited

researchers. This result indicates the

profile of SCN researchers with 14 PIs

among the one hundred most highly cited

researchers in this field.

All-author cocitation analysis identified

seven subfields—hematopoietic SCs;

SCs and the nervous system; SC growth

and cancer; SCs and early development;

SCs and muscles (including cardiac);

genetic vectors; and ELSI. We then cate-

gorized SCN PIs accordingly by identi-

fying the research areas most closely

related to their research publications (Fig-
28 Cell Stem Cell 7, July 2, 2010 ª2010 Elsev
ure S1). This label became another attri-

bute of the SCN PIs to use as a categorical

variable for the statistical analysis.

Coauthorship Patterns
Our approach goes beyond a descriptive

analysis of a visualized network by com-

bining the coauthorship network with fur-

ther statistical analyses. We used GLMs

to examine the influence of a series of

independent variables on two measures

of a PI’s collaboration intensity (network

variables). Note that additional attribute

data were collected only for the SCN PIs

who were embedded within the complete

coauthorship network. GLMs allowed us

to determine, for each network variable,

whether commercialization activity had

an effect after correcting for other statisti-

cally significant variables in the model.

The network variables were: (1) the

number of distinct coauthors of a PI in

the collaboration network (‘‘coauthors’’)

and (2) the number of authors who collab-

orated either with the PI or with one of

the PI’s collaborators (‘‘neighborhood’’)

(Table 1). The independent variables were

those hypothesized to have a significant

statistical influence on collaboration: (1)

commercialization activity (patents); (2)

research quantity (number of publica-

tions); (3) research quality (total number

of citations, average number of citations

received per publication, and H-index);

(4) seniority (years since first ISI-indexed

publication) (Table 1). In addition, we

included (5) type of PI (basic researcher,

bioengineer, or clinician); (6) field of

research; (7) the year in which a PI joined

the SCN to distinguish SCN founders

from more recent arrivals; and (8) institu-

tional affiliation (Table S2).

Other attributes collected, but not

included in the final models, were city

and patent to publication ratio. These

were not included because statistical vari-

ables were separated into sets of mutually

highly correlated variables (Pearson’s jrj >
0.7; Table S1), and only one variable from

each set was used for any given GLM

to avoid multicollinearity of variables. For

example, no statistical model included

both city and institution because these

are highly correlated. The H-index was

highly correlated with both number of

publications and number of years since

the first publication. A PI’s patents/publi-

cations ratio was almost perfectly corre-

lated with the natural logarithm of his/
ier Inc.
her number of patents. The analysis was

run multiple times with different combina-

tions of independent variables. The selec-

tion of the top model followed an ‘‘informa-

tion-theoretic approach’’ that balanced

the model fit against minimizing the

number of variables within the model.

Table 1 and Table S2 provide the beta

coefficients, standard errors, and signifi-

cance levels for the top models. The beta

coefficients can be used to calculate the

effect size because they indicate the

proportional increase (+) or decrease (�)

in the dependent variable for every one

unit increase in the independent network

variable.

We used natural logarithms of publica-

tion, citation and patent numbers so that

these variables better approximated a

normal distribution. Categorical variables

(e.g., city, institution) were automatically

converted into a set of ‘‘dummy vari-

ables,’’ such that for each combination

of a category (e.g., city) and a possible

value of that category (e.g., Toronto or

Edmonton), one dummy variable is intro-

duced into the statistical model, with

value 1 if that value applies to a PI in this

category. This is a standard method for

using categorical variables in regression

analysis.

For the first dependent network vari-

able, ‘‘coauthors,’’ the top model (R2 =

0.852, indicating a very strong fit for the

model) showed that institutional affilia-

tion affected coauthorship much more

strongly than geographical location (in

this case, city) —possibly an indication

that institutional culture or policy influ-

ences researchers more than mere prox-

imity. We are able to make this distinction

because each run of the analysis includes

only one of the highly correlated variables

at a time (e.g., institution or city). In this

case, the top model containing institution

was a better fit with the data than another

run of the model containing city. The three

most collaborative institutions were the

Lawson Health Research Institute, BC

Cancer Agency, and the Samuel Lunen-

feld Research Institute, Toronto (Fig-

ure S2). Not surprisingly, more senior PIs

tended to coauthor with more individuals,

and more productive researchers also

tended to exhibit higher levels of coau-

thorship. Both research quantity (number

of publications) and quality (number

of citations) predicted coauthorship

(Table 1). In addition, bioengineers had
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fewer coauthors than basic and clinical

researchers (ANOVA: F2,76 = 3.52, p =

0.034), but this was not significant in the

model. Tukey posthoc tests indicated

bioengineers had fewer coauthors than

basic researchers but clinicians did not

differ from either group.

In terms of commercialization activity,

the 15 PIs known to be involved in inde-

pendent start-ups had, on average, five

times as many patents as those not

involved (Figure S3), and the 15 individ-

uals involved in start-ups had an average

90 ± 18 coauthors compared to an

average of 120 ± 14 for those not in-

volved, a nonsignificant difference. Thus

increased patenting captures researchers

actively engaged in commercialization

as opposed to incidental patenters, for

whom patents are a metric increasingly

valued by institutions and funders.

Indeed, the pressure to patent may be in-

ferred from the fact that 76% of science

PIs had at least one patent. There was

no difference in patents or coauthors for

PIs involved in ATI. This is not surprising

because approximately half of PIs agreed

to participate, whether they in fact com-

mercialized research or not. Therefore,

there was no statistical reason to include

either start-up or ATI in the model, espe-

cially since patenting captured involve-

ment in start-ups.

Patenting had a statistically significant

negative impact on coauthors even

after taking into account the other vari-

ables that are highly predictive of collabo-

rative behavior (Table 1). The effect size

(Supplemental Information) was a 17%

decrease in the number of coauthors

from a one unit change in the number of

patents (log transformed). Figure 1 illus-

trates these effects: the top 20 patenters

and those involved in start-up companies

are less well connected to the central

coauthorship network, and many are

peripheral.

The second dependent network vari-

able, ‘‘neighborhood,’’ showed a similar

pattern (R2 = 0.844, also a very good fit

for the model), but research field was

also significant. Researchers in the field

of SCs and early development collabo-

rated more than those in other fields,

probably because it contained the highest

number of PIs (24) and a few highly

productive individuals. Patenting also

had a statistically significant negative

impact on neighborhood (Table 1). Again,
there was a 26.5% decrease in neighbor-

hood size from a one unit increase in pat-

enting (log transformed).

Thus, our study demonstrates that bib-

liometric methods, combined with statis-

tical modeling, have great potential

for evaluating science funding policies

(Moed, 2005). Here, we assessed whether

policies directed at commercialization

are compatible with policies directed at

enhancing academic networking through

research collaborations and the func-

tioning of virtual networks, such as the

SCN. Our objective analysis of all SCN

PIs showed that individuals actively

engaged in commercialization activities

had fewer coauthors. This finding is in

contrast to the subjective evaluation of

a third of SCN PIs in responding to a

survey on the impact of commercializa-

tion pressure on research activities in

which the majority found the overall

impact to be positive (11 PIs) or neutral

(13 PIs), rather than negative (2 PIs)

(Caulfield, et al., 2008).

Some Limitations
The main limitation of our analysis was the

use of proxy measures for commercializa-

tion and collaboration. Coauthorship

incompletely captures the full extent of

collaborative research activities, which

include training and tacit knowledge

exchange (Katz and Martin, 1997). How-

ever, it is the most commonly used indi-

cator for academic research activity, and

especially appropriate for research that

contributes knowledge promptly to the

public domain. Similarly, patents were

an appropriate proxy for commercializa-

tion activity because the filing of a patent

application is an early and essential step

in the commercialization process, and

researchers involved in start-up compa-

nies had more patents. This study focuses

solely on academic collaborations and

future research is required to determine

whether PIs involved in commercialization

activities developed greater industry col-

laborations, which, in the long term, could

lead to the more socially beneficial

outcomes of clinical trials and therapies.

However, SCN research, although mov-

ing toward those objectives, is still largely

academic in cases where the major

metrics for success are publications and

strong research collaborations.

Finally, our case study uses a Canadian

SC research network. Nevertheless, given
Cell Stem
the well-characterized barriers to com-

mercialization of cell-based therapies

internationally (Giebel, 2005; Little, et al.,

2006; Plagnol et al., 2009), and mid-sized

economies with strong, networked, pub-

licly funded stem cell research programs

such as the United Kingdom, Australia,

and Germany, our results may be appli-

cable in other contexts, with the degree

requiring further exploration.

Concluding Thoughts
In conclusion, science researchers in the

SCN exhibit a high degree of collaboration

both nationally and internationally and

many have significant international pro-

files. Collaboration patterns were best ex-

plained by institutional affiliation rather

than broader geography; research quality

(average number of citations) and quantity

(number of publications); research area;

and, not surprisingly, seniority. Most

importantly, however, commercialization

activity, measured by the number of

patents, negatively impacted the degree

of collaboration that results in published

research.

Thus, policies directed at enhancing

collaborative networks and policies

directed at commercialization are moder-

ately antagonistic. The extent of this effect

will depend on the degree to which one

activity is emphasized over the other.

Our finding has significant implications

for the evolving field of SC research in

which commercialization pressures and

patenting activity are high (Bergman and

Graff, 2007), but future clinical application

will depend on highly collaborative inter-

disciplinary research. Our findings speak

to the importance of appropriate policies

that balance incentives for interdisci-

plinary collaboration with commercializa-

tion and that enable a culture of sharing

for data and bioresources in precompeti-

tive research (Winickoff et al., 2009; Scho-

field et al., 2009).

SUPPLEMENTAL INFORMATION

The Supplemental Information includes three
figures, two tables, and Supplemental Experi-
mental Procedures and can be found with this
article online at doi:10.1016/j.stem.2010.06.010.
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