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Abstract

The number of vertical search engines and portals has rapidly increased over the last years, making the importance of a
topic-driven (focused) crawler self-evident. In this paper, we develop a latent semantic indexing classifier that combines
link analysis with text content in order to retrieve and index domain-specific web documents. Our implementation presents
a different approach to focused crawling and aims to overcome the limitations imposed by the need to provide initial data
for training, while maintaining a high recall/precision ratio. We compare its efficiency with other well-known web

information retrieval techniques.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Within the last couple of years, search engine
technology had to scale up dramatically in order to
keep up with the growing amount of information
available on the web. Current large-scale search
engines such as Google have the ability to handle
billions of pages [1]. But as the amount of web sites
is growing rapidly, the number and size of stored
documents is growing even faster and site contents
are getting updated more and more often. Centra-
lised systems cannot grow that fast and therefore
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they cover an ever-decreasing segment of the web.
The large size and general focus of their indices
entails a rather low precision. Naturally, specialised
search engines and domain-specific web portals
have seen an increasing popularity in recent years.
These are also called vertical engines and vertical
web portals (also wvectories and vortals [2,3]),
respectively. Contrary to large-scale engines, topical
search engines are inexpensive in storage require-
ments and more appropriate to services catering for
specialty markets and target groups. A search
engine with a specialised index has consequently a
more structured content and offers higher precision
than a generalised search engine, as it has already
been intelligently extracted from the web. This
allows for a greater search functionality and
information extraction from these pages [4].
Furthermore, a user visiting a specialised search
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engine has a prior knowledge to the covered
domain, so extra input to disambiguate the query
might not be needed.

In this paper, we study existing methods for
targeted web information retrieval (IR) in order to
construct or expand a vertical search engine. An
important limitation in many supervised methods
for web resource discovery is the necessity of an
existing large hyperlink graph, required for training
and for document matching purposes. Ensuring its
index quality and freshness is not always feasible for
many small-scale vertical search engines, which are
often semi-automatically constructed or main-
tained. The dynamic nature of information on the
web makes it difficult, if not impossible, to construct
a complete and up-to-date data representation
required for an ideal IR system. The main goal of
our work is to provide an efficient information
resource discovery algorithm in the context of a
topical web search engine, when no previous
knowledge of link structure is available, except that
found in web pages already fetched during a
crawling phase. By assuming an existing text
document dataset and integrating text with link
analysis in a novel way, we attest that IR in such
cases can be greatly improved.

The paper is organised as follows. In Section 2,
we discuss methods of intelligent IR on the web. A
thorough analysis of both text- and link-based
approaches is given as it is essential to the
comprehension of our proposed method. In the
next section, we study briefly the theoretical back-
ground and related works in vertical search engines
and focused crawling. In Section 4 we propose a
new classifier for automatic hypertext categorisation
catering for limited training data. Our method
leverages text content and link information in a
novel way in order to aid the construction of a
small-scale vertical search engine. In Section 5 we
present the implementation tactics for our experi-
ments. This section also depicts the experimental
results and a comparison against existing methods.
Finally, Section 6 concludes the paper, gives a
justification of the adopted implementation and
assertions, and points out future research topics.

2. Web information retrieval

In data retrieval, we are normally looking for an
exact query match. That is, we are checking to see
whether an item is present or not in the file. In IR on
the other hand, we want to find those items which

partially match the request and then select from
those a few of the best matching ones [5]. The
purpose of an automatic IR strategy is to retrieve all
the relevant documents while at the same time
retrieving as few of the non-relevant ones as
possible. In the early days of the web, IR was just
an application of traditional data retrieval techni-
ques where the user’s information request is usually
expressed by a set of keywords and simple query
lexical matching versus indexed documents returned
the relevant pages. But there is a crucial difference
between simple static text and hypertext documents
in that the latter have also hyperlink structure
besides their text content, making an alternative
representation for them a necessity. Naturally,
search engine technology has witnessed a paradigm
shift; from early-web traditional text-based ranking
schemes to improved algorithms that rely on link
analysis. A fine example of the previous argument is
the popularity and success of Google [1].

Recently, much effort has been directed to
combining these two approaches for efficient IR,
i.e., induce available text information in link
analysis techniques. In this paper, we evaluate the
application of these approaches in targeted web
resource discovery and we leverage the combination
of textual and linking information aiming at
improving the construction of a vertical search
engine. Vertical search engines are discussed in
Section 3. But first, it is essential to look at text- and
link-based IR techniques separately.

2.1. Text-based techniques in web IR

Although the physical characteristics of web
information are distributed and decentralised, the
web can be viewed as one big virtual text document
collection. In that regard, the fundamental ques-
tions and approaches of traditional IR research
(e.g., term weighting, query expansion) are likely to
be relevant in web document retrieval [5]. In early
search engines, the basic use of the content of web
pages was in the form of exact query matching in a
document index database. Assuming that there is a
topicality in the web [6], meaning that relevant
pages are found close connected together in the web
graph, we can argue that the probability of a page u
citing pages {v;} similar to it is higher than linking to
randomly dissimilar pages. Without loss of general-
ity we can say that if u is relevant to a topic 7, a
number of {v;} also belong to that topic with a
high probability. Therefore, judging from the text
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content of a web document, we can estimate the
relevance of its outlinks.

Two classic models of text IR are the Boolean
and the Vector Space Model (VSM). The Boolean
model treats a page as a set of keywords, while the
vector model treats a page as a bag of keywords,
thus takes into account the frequency information.
In its simplest form, the VSM is described with
indexing terms that are considered to be coordinates
in a multidimensional space where the documents
and the queries are represented as binary vectors of
terms. Assuming that we have n documents d,
1<j<n, and a total number of terms ¢; 1<i<m,
where m is the size of the vocabulary V (m = |V]), a
document is described as an m-dimensional vector
in the term space. Accordingly, a query ¢ is also
represented as a binary vector of dimension m where
the occurrence of a term is marked with 1 or 0
otherwise. Alternatively, term frequencies instead of
binary values can be used in each document vector.

The language-independent “bag-of-words” repre-
sentations of documents have proved surprisingly
effective for text classification [7]. In this section, we
shall present two extensions of the classic VSM that
yield better results and, later, we shall use them as
classifiers in focused crawling. The first one is based on
weighting and probabilistic ranking while the second
one utilises the Latent Semantic Indexing (LSI).

2.1.1. Probabilistic ranking

Term Frequency—Inverse Document Frequency
(TF-IDF) is a classical global weighting scheme for
an indexing system and VSM where terms appear-
ing in documents are weighted proportionally to
term frequency and inversely proportional to the
document frequency [7]. In a more sophisticated
extension of this approach, the documents of a
collection are ranked in a decreasing order of their
probability of relevance to a user’s query, a
principle known as probability ranking [8]. This
method is based on term reweighting, using the
baseline IR algorithm of [8] and yields better results
than the simple TF-IDF scheme. Assuming that we
have the VSM of Section 2.1, the following
measures are used:

The collection frequency weight CFW(t;) of a term
t; implies that terms appearing in few documents are
more valuable than those appearing in many, i.e.

CFW(1;) = log nﬁ (1

where n; is the occurrence of term ¢; in the collection.

The average document length, NDL(d;), is the
normalised document length and is given by

NDL(d;) = Dgi(Ldf ) , )

where DL(d}) is the document length of document d;
and DL is the average document length in the
corpus of n documents. The term frequency weight
TH(,, d)) of a term ¢; in a document d; is defined as
the number of occurrences of this term in the
document and states that a term appearing many
times in a document is likely to be more important
for that document. The combined weight CW(t;, d))
of a term ¢; in a document d; is the combination of
all the above measures

CW(t,d;)

_ CFW(t)) x TF(t;,d;) x (ki + 1)

ki x (1 = b) + (b x (NDL(d)))) + TF(t;,d;))’
The constant k; determines the effect of term
frequency in combined weight, while the constant
b (0<h<1), controls the effect of document length.

Suggested values according to [8] are k; = 2 and
b =0.75.

(€)

2.1.2. LSI—Singular Value Decomposition updating

Various approaches to VSM depend on the
construction of a term—document two-dimensional
m X n matrix where each of the m rows represents
the occurrence of a term in all the documents of the
collection, while each of the n columns represents a
single document in term space. In a term—document
matrix A that consists of m x n elements, where m is
the number of terms and n is the number of
documents in the collection, the ijth cell denotes
the relation between the ith term and jth document.
Typically, if a term exists in the document the value
1 is assigned, while a zero value denotes the absence
of a term in a specific document. Alternatively, the
value of cell 4;; can correspond to the frequency of
term 7 in document j. The term—document matrix is
generally sparse with n>m for large-scale search
engines with sizeable indices. This rule does not
apply to small vertical engines covering a few
hundred or thousand of documents, where these
values are comparable. The problem with the simple
term—document matrix approach is that the word
contexts can become too large. As a simple
solution, we can use smaller contexts (machine-
readable dictionaries) or reduce the space using
various multidimensional scaling and factor analysis
techniques.
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LSI, an optimal special case of multidimensional
scaling, is a concept-based automatic indexing
method that tries to overcome the two fundamental
problems which plague traditional lexical-matching
indexing schemes: synonymy and polysemy [9]. LSI
models the semantics of the domain in order to
suggest additional relevant keywords and to reveal
the “hidden” concepts of a given corpus while
eliminating high-order noise. The attractive point of
LSI is that it captures the higher-order “latent”
structure of word usage across the documents rather
than just surface-level word choice. This is done by
modelling the association between terms and docu-
ments based on how terms co-occur across docu-
ments [10]. The dimensionality reduction is typically
computed with the help of Singular Value Decom-
position (SVD), as it is discussed below. SVD is
similar to principal components analysis, which can
only be used with square matrices and has been
successfully applied to many problems in other
domains such as visual object recognition. The SVD
of a given matrix 4, is defined as

A=USVT, 4)

where A4 is the term—document matrix, U and V are
mx ko and n x ky matrices, respectively, with
orthonormal columns (U'U= V'V =1 with
ko = rank(A). The columns of U and V define the
orthonormal eigenvectors associated with the non-
zero eigenvalues of 44" and A"A4. S is a diagonal
ko x ko matrix which contains the singular values of
A arranged from the largest to the smallest. In LSI,
an approximated version of A is computed by
truncating its singular matrices and is denoted by 4,
where k = rank(A;)<ky. Therefore, only the k
singular values and their associated left and right
eigenvectors are used for retrieval:

A = UpSi V. (5)

The dimensions of Uy, V;, and Sj are now m x k,
n x k, and k x k, respectively, while A, remains
m x n. In SVD the eigenvectors with the largest
eigenvalues capture the axes of the largest variation
in the data. Therefore, it is logical to assume that by
neglecting the smallest values we extent the repre-
sentation of the model, but retain its main semantic
aspects. The dimensionality reduction of LSI offers
considerable computational performance improve-
ment over classic VSMs but also achieves noise
reduction and yields better results in text IR [11].

In VSM, the similarity between the query ¢ and
the n documents in the database can be found by
calculating the cosines between the query vector and
the document vectors. In LSI, the cosine is the result
of the comparison of the query vector to the
columns of matrix 4;. The cosine between a query
vector ¢ and a document j (i.e., a column j of Ay) is
defined as

cos 0 — (Are)'q . ejT ViSi(Uy q)
T N Areillallglls ISk VEelbllglls
j:1929"'9n3 (6)

where ¢; denotes the jth canonical vector of
dimension n (i.e., the jth column of the identity
matrix Ip,xn, ¢ is m x 1, and ||a||, stands for the L,
norm of vector a.

In typical text document IR, there is little need for
a frequent reorganisation of the training corpus
since its size is assumed large enough and the affect
of inserting new documents is insignificant. New
terms not existing in the vocabulary V are con-
sidered out of vocabulary words and new docu-
ments are never inserted in the system. But there are
situations where either the corpus is relatively small
or the already classified by the system documents
are used for relevance feedback. This is the problem
of targeted web resource discovery where incoming
information is extremely important in assessing
more documents and, therefore, it should be
integrated to the system. As it will be seen in
Section 4, frequent and efficient corpus updating in
such systems is crucial. Adding new pages to the
corpus or modifying existing ones also means that
the index has to be regenerated for both the recall
and the crawling phase. But once an index is created
it might be obsolete in a matter of seconds when
new information (terms and documents) need to be
inserted to the system [12]. Depending on the
indexing technique followed, this can be a compu-
tationally intensive procedure. Therefore, the prac-
tical application of matrix decomposition such as
the SVD in dynamic collections, such as the index of
a vertical search engine, is not a trivial problem.

In the case of LSI, there are well-known and
relatively inexpensive methods such as fold-in and
SVD updating that avoid the reconstruction of the
term—document matrix and the need for a new
decomposition. According to [12], updating refers
to the general process of adding new terms and/or
documents to an existing LSI-generated database.
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Updating can mean either folding-in or SVD
updating

® SVD updating is a method of updating where new
terms and documents are folded to matrix Ay
[13].

® Folding-in terms or documents is a much simpler
alternative that uses an existing SVD to represent
new information.

® Recomputing the SVD is not an updating
method, but a way of creating an LSI-generated
database with new terms and/or documents by
reconstructing the original matrix 4 and per-
forming SVD to the new term—document matrix.

Recomputing the SVD of a large term—document
matrix requires computation time and, for large
problems, may be impossible due to memory
constraints. In contrast, folding-in is based on the
existing latent semantic structure and hence new
terms and documents have no effect on the
representation of the pre-existing terms and docu-
ments. Furthermore, the orthogonality in the
reduced k-dimensional basis for the column or
row space of 4 (depending on inserting terms or
documents) is corrupted. This can have deteriorat-
ing effects on the representation of the new terms
and documents. The advantage of folding-in is that
it requires less time and memory and is simple to
execute. Each new document in this technique is
represented as a weighted sum of its component
term vectors. Once a new document vector has been
computed it is appended to the set of existing
document vectors. Similarly, new terms can be
represented as a weighted sum of the document
vectors in which they appear.

SVD updating, while more complex, maintains
the orthogonality and the latent structure of the
original matrix [13]. Adding both new documents
and terms in an LSI reduced subspace using SVD
updating involves three steps: add new documents,
add new terms, and make correction changes in
term weighting. The new expanded term—document
matrix C can be depicted in Fig. 1.

If we want to add ¢ new term vectors then 77, is
a sparse matrix, since each term rarely occurs in
every document of the original space. In SVD
updating, we append T to the rows of 4.

A[mxn]
B[(i7z+t)><n] = T[rxn] . (7)

A[m xn]
(original matrix) D[(m+l) xd]

T (new documents)
[txn]
(new terms)

C[(m+t) x (n+d)] =

Fig. 1. SVD updating: inserting ¢ new terms and d new
documents.

If we define

Sk
SVD(B) = UpSpVy, Higsnxi = and
TV

SVD(H) = UpySuVy,,
then, according to [13]:

U 0
Up = Uy, Sp=Sy and
B e H B H

V= ViV (8)

We observe that, instead of performing an SVD on
the (m + ¢) x n matrix B, we only have to do it for
the (k + ¢) x k matrix H. Since k< min(m,n), the
performance gain in computation is significant.

If we want to insert additionally d new docu-
ments, we now append the sparse matrix Di11)xd]
to the columns of matrix B:

C[(ert)x(ner)] = (B|D) (9)

If we define SVD(C) = UcScVe, F=(SylURD)
and SVD(F) = UpSr V,TF then:

Vg 0
Ve = Ve, Sc=Sr and
c 0 1, F c F

Uec=UgVp. (10)

Again, the benefit in computation reduction is
considerable.

2.2. Link analysis techniques in web IR

What really differentiates hypertext from static
text documents is the fact that the former, besides
the text content, contain additional semantics, such
as linking information, citations and metadata.
Furthermore, the existence of hypertext structure
implies that different features and information units
can also be exploited (e.g., tag contexts, Document
Object Model (DOM) trees, etc. instead of para-
graphs and sentences). Contrary to text-based
techniques, link analysis’ main target is to identify
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the importance or popularity of documents. This
task is clearly derived from earlier work in social
network analysis [14] and bibliometrics citation
analysis, specifically in bibliographic coupling [15]
and co-citation [16]. There, the objective is to study
the patterns of how scientific papers make reference
to one another and attempt to identify topics in a
document collection, as well as influential authors
and papers on those topics, based on patterns in
citation frequency. The best-known measure of a
journal importance is the impact factor. This metric
essentially judges a publication by the number of
citations it receives [17].

Likewise, link and social network analysis have
been successfully applied recently to web hyperlink
data in order to identify authoritative information
sources [18]. The common assumption in most web
IR techniques is, as in social networks in academic
publications, that hyperlink confers authority. A
link from one page u to another v corresponds to u
author’s belief that v contains valuable information.
Here, valuable can mean either that v is relevant/
similar to the conceptual contents of u or belongs to
the same topic and has some information that the
user might find useful. Under this hypothesis, pages
strongly cited by many are considered to play an
influential role in the web IR. Similarly, the impact
factor in web IR would correspond to the ranking
of a page simply by a tally of the number of links
that point to it. This is known as BackLink count
(BL) or Link In-Degree and is defined as the number
of the ancestors of a hypertext document in the web
graph. But the use of BL is typically not appropriate
in the setting of web IR. Since the web is considered
an open system for many applications, including
crawlers, the BL 1is never known, but it is
approximated based on the web pages retrieved so
far. Also, BL can favour universally popular
locations, such as the home page of Yahoo,
regardless of the specific query topic. It is clear that
this metric is sensitive to link spamming. Conse-
quently, BL can only serve as a rough, heuristic-
based measure of document importance and quality
in social network analysis. More intelligent con-
nectivity-based page quality metrics that take into
account the cumulative prestige of the pages that
link to it are required.

Obviously, the traditional social network analysis
techniques are not always applicable in the web
setting. The massive size, the diversity in content,
context, format, purpose, and quality, and
the dynamic distribution of the web document

collection, all make impractical previous IR re-
search findings based on small and homogenous test
collections [19]. Contrary to scientific journals, web
documents are inherently noisy. They have an
unstructured style and an immense authoring
variety and their connectivity linking information
is an implicit rather than an explicit indication of
similarity. For example, the former assumption
about the relation between hyperlinking and
authority does not apply for all links in a web
document. The link from one page u to another v
can serve multiple tasks, such as navigation,
expansion, and resource, besides citation [20]. Also
in recent years, the number of automatically
generated dynamic links or explicitly placed adver-
tisements and banners has dramatically increased.
Another fact attributing to the high noise of the
web is that the contents of page v might have
changed since page u and hyperlink (u,v) have been
created, thus making the authors original intentions
invalid.

Two of the most promising web IR tools, namely
Google [1] and Clever [21] seem to use combinations
of retrieval techniques identified above. Clever
combines topic-dependent link analysis techniques
called HITS with term similarity techniques of text
retrieval, while Google seems to employ a number
of text retrieval techniques to obtain high-perfor-
mance text retrieval ranked heavily by a universal
link analysis score called PageRank. Both Google
and Clever not only leverage heavily off the implicit
human judgment embedded in hyperlinks, but also
improve on link analysis results by combining it
with text retrieval techniques [19].

2.2.1. Pagerank (PR)

According to Brin and Page [22], a link from
page u to page v is a vote by u’s author to v, meaning
that u’s author cites v because it is popular and/or
relevant to u. The intuition behind PageRank is
that not all “votes” count equally, but citations
from “better” (important/popular) pages count
more. In other words, the significance of a
page depends on the significance of those referen-
cing it. Because of this cumulative prestige of the
pages that link to a page, PageRank is a better
measure of its importance or authoritativeness than
BackLink count [22]. If page p has n pages
41492 ---,4, which point to it (ie., they are
citations), d is a damping factor with 0<d <1 and
C(g,) 1s the number of links going out of page ¢; (i.e.,
the out-degree) then the PageRank of the page p is
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given as follows:

PR(q;)
Clg)

As illustrated in Fig. 2, the PageRank algorithm
recursively defines the importance of a page to be
the weighted sum of its backlinks’ importance
values. PageRank scores form a probability dis-
tribution over web pages, so the sum of all web page
PageRanks will be one.

The rank of a page is divided evenly among its
outlinks to contribute to the ranks of the pages they
point to. The equation is recursive, but starting with
any set of ranks and iterating the computation until
it converges we are able to compute it. PageRank
can be calculated using a simple iterative algorithm
and yields the principal eigenvector of a specially
normalised link matrix of the web. The main
intuition behind PageRank is that it simulates the
actions of a random surfer. With a probability of d,
a user that is currently at a web page p can either
click one of p outlinks or, with a probability d, can
jump to a random page of the web. The parameter d
can be estimated by statistical analysis of user surf
tactics. It is usually selected between 0.8 and 0.9.

PR(p)_(l—d)—i—dZ (11)

2.2.2. HITS

An alternative but equally influential algorithm of
modern hypertext IR is Kleinberg’s HITS [23], first
implemented in the Clever [21] search engine from
IBM. According to Kleinberg [23], web pages can be
categorised to two different classes. Target pages or
authorities are rich and relevant in text content to
the user’s query and these only need to be indexed in
a vertical search engine. On the other hand, pages
that might not have relevant textual information,
but can lead to relevant documents are called Aubs.
The interesting part is that discovering the good
hubs is not a straightforward task, since a hub

might not reference directly authorities, but other
hubs which in return link to relevant target pages.
Pages of this kind (hubs) do not need to be indexed
in a vertical engine as they are of little interest to the
end user but they play a significant role in the
crawling process. They have to be stored in a
different manner than authorities. However, both
kinds of pages can collaborate in a combined
analysis procedure in order to determine the path
of a focused crawler. With reference to Fig. 2, the
authority and hub scores for each document in the
HITS algorithm are calculated iteratively as follows:

n

Z HubScore(q), (12)

lmkmg P

AuthorityScore(p) =
all ¢

Z AuthorityScore(r). (13)

linking
from P

HubScore(p) =

all r

Unlike PageRank, HITS offers a query-dependent
connectivity-based ranking which means that it
measures the quality and the relevance of a page
to a given user query [24]. As a result, no universal
prestige ranking can or needs to be calculated,
making the algorithm more appropriate to tasks
such as web crawling. It must be stated that HITS
can be extended trivially to be query-independent
too, by considering the root set as the full Web
graph.

Bharat and Henzinger [25] argue that HITS does
not work satisfactorily in cases where there is a
mutually reinforcing relationship between hosts
(nepotism), or there is high noise due to automati-
cally generated links, often by using web authoring
tools, or when nodes in the neighbourhood graph,
non-relevant to the topic, tend to drift the followed
path (topic drift). In their proposed algorithm,
nodes have additional properties and they make use

a4 4 inlinks outlinks 1 A
of p of p
9> r;
ancestors < q; > s descendants
of p of p
\ q’l rm -/

Fig. 2. PageRank and HITS algorithms.
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of web page content in addition to its graph
structure.

2.3. Combining text and link information for web IR

Numerous techniques try to combine textual and
linking information for efficient URL ordering in
the literature. Many of these are extensions to
either PageRank or HITS. Cohn and Hoffman
[26] describe a joint probabilistic model extending
previous work at Probabilistic LSI/Analysis
(PLSI) and Probabilistic HITS (PHITS). PLSI is a
variant of LSI that builds a factored multinomial
model based on the assumption of an underlying
document generation process [26]. Like LSI, PLSI
is a latent variable model for general co-occurrence
data, but instead of using SVD, PLSI performs a
probabilistic decomposition and which associates an
unobserved class variable zy € Z = {z1,25,...,2k}
with each observation or occurrence of term ¢
and citation ¢; in document d;. The document d; is
then represented as a convex combination of factors
with mixing weights P(z|d;). The predictive prob-
abilities for terms in this document are non-
negative:

K
P(tild) = P(tilz) Pzl dy) (14)
k=1

with the normalisation constraints > P(#;]z;) = 1
for all k and ¢, P(zx|d;) = 1 for all j. Using the
Expectation-Maximisation (EM) algorithm, PLSI
aims at finding the local maximum of the likelihood
of the observed term frequencies:

M
L=>"Y TF(.d) 1og[
j i=1

Jj=1

K

P(lilzk)P(Zkldj)] ,
=1

(15)

where TF(t;,d) is the term frequency of ¢ in
document d;.

In analogy with HITS, PHITS performs a
probabilistic factoring of document citations
used for bibliometric analysis. It replaces the
eigenvector analysis of HITS with a probabilistic
so that the resulting model has clear statistical
interpretations.

The PLSI+PHITS model is a principled prob-
abilistic model for document—term and document—
citation pairs and has been shown to provide
improved classification performance [26]. Subse-
quently, the following convex combination needs to

be maximised:

N M

L=a) Y TF(id) log P(i;,d))

j=1 i=l
N K

+(1—a)Y > LF(d;.c) log P(dy,c)),  (16)
j=1 =1

where LF(d;c;) corresponds to the frequency
occurrence of citation ¢; in document d;. The
parameter a sets the relative weight of text and
connectivity information. If a is 1 the model
considers only text, while if it is 0 it takes into
consideration only citations. A second parameter, b,
controls the EM algorithm in order to avoid over-
fitting [27]. This tempered EM is usually implemen-
ted by continuously decreasing b until it reaches a
set lower limit or until that does not yield further
improvements.

3. Vertical search engines and focused web crawlers
3.1. Search engines

Extracting useful knowledge from large amounts
of hypertext has become a topic of great interest, in
part because of the huge volume of data that are
now available on the web. But this enormity and
rapid growth of the web also indicates that it
becomes more and more difficult to extract relevant
information from it. A search engine is a system that
collects and organises web documents, and presents
a way to select documents based on certain words,
phrases or patterns within documents [28]. The
recall of even the largest commercial search engines
is rather low, covering 50-70% of the web today
[29]. This means that existing large-scale search
techniques are not always able to retrieve topic-
related information from pages stored deeply in a
hyperlink tree and they are not ideal for providing
topic-oriented information. Subsequently, the
plethora of available information led to the
introduction of human-maintained directories, web
portals, and vertical search engines that cover a
small portion of the web with a high precision and
organise information by topic.

The creation and maintenance of a vertical search
engine is usually seen as task of classification
requiring supervised automatic categorisation of
text documents into specific and predefined topic
areas. In clustering, the document collections are
processed and grouped into clusters that are
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dynamically generated by an algorithm. On the
other hand, in classification large volumes of data
break apart into several discrete classes that are a
priori determined on the basis of a training dataset
and a user-provided taxonomy [30]. Here, a corpus
is constructed manually or semi-automatically and
documents are labelled to predefined categories.
During the training phase the agent knows the
correct answer for each input state and builds a
model from the set of preclassified documents.
Using this knowledge, the agent/crawler guesses
the label for unlabelled cases in training and
expands the system with new documents. Conse-
quently, text categorisation is more suitable than
clustering for vertical search engine design, since a
conceptual preunderstanding of the domain and
knowledge of each topic’s attributes is required and
assumed. These topics are therefore well defined
even though they might contain no data at first.
Each one can be described with a set of keywords or
a few text examples manually selected which help
the construction of the search engine at early stages.

Human ability to judge whether a web page is
relevant to a specified topic and distinguish provo-
cative misuse of web authoring ecthics is still
exploited in web portals and vertical search engines.
The maintenance and document classification tasks
are usually executed by human indexers because of
their very high precision. Human indexers have still
an important role in the creation and maintenance
of vertical portals and search engines mainly
because they implement common tactics that are
difficult for a machine to emulate or outperform.
Therefore, a system should assist but not replace the
work of human indexing. It is evident that this work
can be greatly enhanced by providing documents
with high probability of being relevant and/or
important than having to deal with a plethora of
unrelated documents. Our goal is to provide a semi-
automatic methodology of adding relevant pages to
the portal, assisting but not replacing completely
human effort.

3.2. Web crawlers

Alternatively to human indexing, the construc-
tion process of the index of a search engine can be
done with the help of a crawler. A crawler is an
agent that traverses the hypertext structure of the
web automatically, starting from an initial hyper-
document or a set of starting points (seeds) and
recursively retrieving all documents referenced by

that document. Web crawlers are also referred to as
web wanderers, web robots or spiders. Generally,
crawlers can be used for a number of purposes such
as indexing, HTML validation, link validation, and
mirroring [31,32]. The visiting strategy of new web
pages usually characterises the purpose of the search
engine. Generalised search engines that seek to
cover as much proportion of the web as possible
usually implement a BReadth-First Search (BRFS)
or Depth-First Search (DFS) algorithm. The BRFS
policy is implemented by using a simple FIFO
queue for the unvisited documents. BRFS order
provides a fairly good bias towards high-quality
pages without the computational cost of keeping the
queue ordered [33].

Systems on the other hand that require high
precision and targeted information must seek new
unvisited pages in a more intelligent way. The
crawler of a vertical search engine is assigned the
task to automatically classify crawled web pages to
the existing category structures and simultaneously
have the ability to further discover web information
related to the specified domain. Due to its size and
dynamic nature, the web can be described as an
open set of hyperlinked documents. Consequently,
the optimum path to relevant documents is always
unknown; an efficient crawler has to guess promis-
ing links by taking decisions that are based on
predefined rules/metrics each influencing its perfor-
mance differently. A focused or topic-driven crawler
is a specific type of crawler that analyses its crawl
boundary to find the links that are likely to be most
relevant for the crawl while avoiding irrelevant
regions of the web. Focused (thematic) crawling [34]
is a relatively new, promising approach to improv-
ing the recall of expert search on the web. It involves
the automatic classification of visited documents
into a user or community-specific topic hierarchy
(ontology).

A popular approach for focused resource dis-
covery on the web is the BeSt-First Search (BSFS)
algorithm where unvisited pages are stored in a
priority queue, known as frontier, and they are
reordered periodically based on importance or
similarity criteria. A typical topic-oriented crawler
performs a BSFS strategy by keeping two queues of
URLs. One containing the already visited links
(from here on AF) and another having the
references of the first queue called Crawl Frontier
(from here on CF). The pseudocode of a typical
BSFS crawler is shown at Fig. 3. The challenging
task of this crawler is to order the links in the CF
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while CF is not empty
dequeue URL u from CF
download page u

for each outlink URL v found:
add (u,v) to link database

enqueue v to AF

jaa R b Sl

——o

end

enqueue seed URL into Crawl Frontier CF

parse u and extract its outlinks {u,v} plus other features

if v is not already visited (does not exist in AF) then:

if (reorder criteria, e.g. every N documents fetched) then:
reorganise CF according to priority ordering policy

Fig. 3. Typical BSFS-based crawler pseudocode (CF = Crawl Frontier, AF = queue of Already Fetched documents).

efficiently. Various techniques have been researched
and implemented [34].

Chakrabarti et al. [34] discriminate hypertext
mining in two separate modules that constitute a
web crawler: a classifier that evaluates the content
relevance of a region of the web to the user’s interest
and a distiller that evaluates a page as an access
point for a large neighbourhood of relevant pages.
The importance metrics for the crawling can be
either interest driven where the classifier for docu-
ment similarity checks the text content and popu-
larity or location driven where the importance of a
page depends on the hyperlink structure of the
crawled document [36]. The inherited problem in
focused crawlers is that the system does not have
any textual information about the referenced docu-
ments in the CF since these have not been down-
loaded yet. Even then, content alone does not
always guide efficiently a focused crawler to topic-
related regions of the web. On the other hand, a
document, relevant to the trained dataset, can be
referenced by non-relevant documents and vice
versa. This is actually an important assumption in
the HITS algorithm where hubs can lead to
authoritative pages while being unrelated to the
initial query themselves [23]. Nevertheless, it is
strongly argued that the hypertext structure yields
better results in focused crawling than interest-
driven algorithms [34]. Ideally, the convergence of
these two approaches would alleviate many of the
limitations discussed earlier. Some well-known
methods of focused resource discovery are pre-
sented in the next subsection.

3.3. Related work on focused crawling

The ubiquity of search engines in our lives as an
information discovery tool has led to many recent
advances in web crawling technology. Various
methods utilising text or content analysis have been
researched. Two commonly used topic distillation

algorithms exploiting the hyperlink structure of the
web are PageRank and HITS. Kleinberg [23] has an
in-depth discussion on their applicability to web
crawling. On the other hand, content similarity
remains an essential objective for assessing the
classification of a crawled document. Here, well-
known IR techniques and text categorisation algo-
rithms can be applied.

Numerous techniques that try to combine textual
and linking information for efficient URL ordering
exist in the bibliography. Many of these are
extensions to either PageRank or HITS. The search
engine Google [1] is based on PageRank but also
combines the ranking with sophisticated feature-
matching techniques. These are not necessarily only
term-based but also take into account additional
page features and heuristic-based algorithms. BSFS
crawlers using PageRank as their heuristic are
discussed in [35,37]. An application of PageRank
to target seeking crawlers can improve the original
method by employing a combination of PageRank
and similarity to the topic keywords [38]. The URLs
at the frontier are first sorted by the number of topic
keywords present in their parent pages, then they
are sorted by their estimated PageRanks. A set
(precomputed) biased PageRank vectors instead of
a single generic vector is used in [39] in order to
generate query-specific importance scores for pages
at query time and to yield more accurate rankings.
Baeza-Yates et al. [40] surveys on the usefulness of
historical information from previous crawls several
page ordering strategies including PageRank. An
interesting work discussing how rapidly the compu-
tation of PageRank over a visited subgraph yields
relative rank is [41]. It is deduced that PageRank
locality results to poor approximation of a
PageRank on a partial crawl when high-quality
pages are accumulated in short time and vice versa.

An application of PLSI in web IR is introduced in
[26]. There, existing links between the documents
are used as features in addition to word terms. The
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hypothesis is that the hyperlinks contribute to the
semantic context of the documents and thereby
enhance the chance of successful applications. Two
documents having a similar citation pattern are
more likely to share the same context than docu-
ments with different citation patterns. An intelligent
web crawler is suggested based on a principle of
following links in those documents that are most
likely to have links leading to the topic at interest.
The topic is represented by a query in the latent
semantic factor space.

Diligenti et al. [42] propose supervised learning
on the structure of paths leading to relevant pages
to enhance target seeking crawling. A link-based
ontology is required in the training phase. Another
similar technique is Reinforcement Learning where
a focused crawler is trained using paths leading to
relevant goal nodes. This crawler seeks to predict
the total benefit from following a link (u,v) starting
from page u [43]. The effect of exploiting other
hypertext features such as segmenting DOM tag-
trees that characterise a web document and propose
a fine-grained topic distillation technique that
combines this information with the HITS algorithm
is studied in [44]. Keyword-sensitive crawling
strategies such as URL string analysis and other
location metrics (URLs with fewer slashes are more
useful than URLs with many slashes; The impor-
tance of a page p is a function of its location and not
of its contents) is investigated in [37]. In [45], there is
a discussion of an intelligent crawler that can adapt
the queue link-extraction strategy during crawling
to reduce the likelihood of starvation. A noteworthy
characteristic of this design is that it does not
depend on the existence of topical, pretrained
examples but on the crawler auto-focus, after a
number of link visits. The Bingo! engine is a well-
known focused crawling system using the HITS
algorithm for link analysis, Support Vector Ma-
chines as a document classification method and the
Kullback—Leibler divergence for feature space con-
struction [46]. A fully scalable, fault-tolerant and
distributed web crawler is described in [47]. Varla-
mis et al. [48] also incorporates linking semantics in
addition to the textual concepts for the task of web
page classification into topic ontologies. Bergmark
et al. [49] uses tunnelling to overcome some of
the limitations of a pure BSFS approach such as
the dependence in on-topic seeds. Links are not
only prioritised according to the page’s relevance
score, but also according to the estimated value of
each link.

Work on evaluating different crawling strategies
is described in [50]. Classifiers were built for each of
100 topics, to be used to evaluate the crawled pages.
The authors argue that a good focused crawler
should remain in the vicinity of the topic in vector
space. They plot a trajectory over time and assess
the crawlers based on their ability to remain on
topic. Three different focused crawling strategies
were evaluated:

® BestFirst crawler: it uses a priority queue ordered
by similarity between topic and page where link
was found.

® PageRank crawler: it crawls in pagerank order,
and recomputes ranks every 25th page.

® InfoSpiders [51]: it uses neural net, back propaga-
tion, and considers text around links.

It was found that BestFirst performed best,
followed by Infospiders, and then PageRank.

The quality of the training data for the classifier is
the most critical issue and potential bottleneck for
the effectiveness and scale of a focused crawler. Our
implementation, discussed in the following section,
presents an approach to focused crawling that aims
to overcome the limitations of the initial training
data.

4. Hypertext combined latent analysis (HCLA)

A common problem in web IR is the availability
quality connectivity link corpora. For research and
evaluation purposes available corpora such as the
WT?2 g collection have been criticised for their lack
of cross-hosts links [52]. Regarding search engine
systems, even if a hyperlink corpus is given, its
freshness is always an issue. With the breathtaking
evolution of the web it is a matter of time for the
corpus linking data to become obsolete. Recent
studies indicate that about 80 percent of all links in
the link structure will have changed or be new
within a year, 50 percent of all contents will be
changed within the same period and about 20
percent of the web pages of today will disappear
within a year [53]. Although, others argue that the
web in fact is in fact becoming denser [54]. Never-
theless, large-scale search engines might be able to
recompute their index (or even a part of it) in a
relatively short period of time and guide a focused
crawling process, but for smaller-scale vertical
engines the need of updating the index continuously
is vital [55]. On the contrary, text-based corpora are
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in abundance and can be easily constructed from
sample documents. As stated earlier, in this paper
we evaluate various crawling algorithms that can be
applied to the case when only an unlabelled (but
known to contain sufficiently enough relevant
sample documents) text corpus is available, without
any linking information and we seek web docu-
ments relevant to the given topics. The topics are
described by a set of keywords. In other words, the
problem raised is the implementation of a focused
crawler for target topic discovery, given unlabelled
textual data, a set of keywords, and no other data
resources. Taking into account these limitations
many sophisticated algorithms of Section 3.3, such
as HITS and context graphs, cannot be applied.
The main contribution of our work is an
algorithm (called Hypertext Content Latent Analysis
or HCLA from now onwards) that tries to combine
text with link analysis using the VSM paradigm.
Unlike PageRank, where simple eigen-analysis on
globally weighted adjacency matrix is applied and
principal eigenvectors are used, we choose to work
with a technique more comparable with HITS.
While the effectiveness of LSI has been demon-
strated empirically in several text collections yield-
ing an increased average retrieval precision, its
success in web connectivity analysis has not been
straightforward. There is a close connection be-
tween HITS and LSI/SVD multidimensional scaling
[55]. The HITS algorithm is equivalent to running
SVD on the hyperlink relation (source, target)
rather than the (term, document) relation to which
SVD is usually applied. As a consequence of this
equivalence, a HITS procedure that finds multiple
hub and authority vectors also finds a multidimen-
sional representation of the nodes in a web graph
and corresponds to finding many singular values for
AAT or ATA, where A is the adjacency matrix.
Our main assumption is that terms and links are
both considered representative of document rele-
vance in an expanded matrix. They are seen as

n text documents

from corpus

m word terms { A[m xn]
C=
a web documents {
from AF 0|a x nj

relationships. In the new space introduced, each
document is represented by both the terms it
contains and the similar text and hypertext (e.g.,
outlinks) documents. This is an extension of the
traditional ‘bag-of-words’ document representation
of the traditional VSM described in Section 2.1.

Unlike [26], simple LSI instead of a PLSI is used
in our work. The proposed representation offers a
number of benefits. First, text only queries can be
applied to the enriched relationships space so that
documents having only linking information, such as
those in CF, can be ordered. Secondly, the method
can be easily extended for the case where we also
have estimated content information for the docu-
ments in CF. This can be done using the anchor text
and the neighbour textual context of the link tag in
the parent HTML source code, following heuristics
to remedy for problem of context boundaries
identification [56,57]. Moreover, we can easily apply
local weights to the terms/rows of the matrix, a
common technique in IR that can augment LSI
efficiency. While term weighting in classic text IR is
a kind of linguistic favouritism, here it can also been
seen as a method of emphasising either the use of
linking information or text content. The main
disadvantage of HCLA is the complexity of updat-
ing the weights in the expanded matrix, especially
when a global weighting scheme is used for LSI. For
simplicity, we only used a simple weighting scheme
during the tests.

The application of this algorithm in a BSFS
crawler is depicted in Fig. 4. Matrix A4 is the original
text-only term—document representation while

L[m xa) O[m xb]
and are the new document
G[a xal R[a xb]

vectors projected in the expanded term-space having
both textual (term—document) components (subma-
trices Lynxq and Opyxpy) and linking (document—do-
cument) connectivity components (submatrices
G[axa] and R[axb])-

a web documents b web documents

from AF from CF
——t—
L[m x a] O[m x b]

] [ G[axz\] R[axh] J

Fig. 4. Expanded connectivity matrix in HCLA. Matrix C is (m+a) x (n+a+b).
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The steps of the proposed method are:

e With a given text-only corpus of m documents
and a vocabulary of n terms we first construct
offline a text—document matrix 4,,., and per-
form a truncated SVD A4, = SVD(4,k).

e Starting the crawling process and after a suffi-
cient user-defined number of pages (a) have been
fetched, we analyse the connectivity information
of the crawler current web graph and we insert
a = |AF| new rows as “terms” (i.e., documents
from the AF queue) and a+b = |AF|+|CF| web
pages from both AF and CF as “documents” to
the matrix. Using the mathematics of Section
2.1.2 we perform the SVD updating technique to
avoid the reconstruction of the expanded index
matrix. Because the matrices G and R in Fig. 4
are sparse, the SVD updating procedure is
simplified and the computation is reduced. In
accordance with Section 2.1.2, we want to insert
t =a terms and d = a+b documents, meaning
that we have to append the submatrix

L[m xd] O[mxb]
Diimrayx(atrby = to

Glaxapy  Rpaxn

A[mxn]
Bionay<n = O
axn

which is the new space after inserting terms from
the AF.

® Because we do not have any information of direct
relationship between any of these web pages and
the text documents {d;} of the original corpus, we
simply add a terms/rows at the bottom of the
matrix A, with zero elements. This allows the
recomputation of SVD with minimum effort, by
reconstructing the term—document matrix. If
SVD(A, k) = UpSy Vz is the truncated SVD
(k -SVD) of the original text-document matrix
A, and SVD(B) = UpSpV} the k-SVD of the
matrix after having inserted ¢ documents, then
we have:

Upnxi
UB = ( 0 5 SB = Sk7 VB = Vk' (17)
[axk]

o In order to insert fetched and unvisited docu-
ments from the AF and CF queues as columns in
the expanded matrix, we use an SVD updating
technique to calculate the semantic differences
introduced in the column and row space.

Matrices U, , S. and V. are calculated using
Eq. (10). If we define SVD(C)= UcScV¢,
F = (Sk|URD), and SVD(F)= UrSrV} then,
according to [13] :

Vg 0
Ve= Vi, Sc=Sr,
c 0 Ty F c F

Uc = UgVr. (18)

e Accordingly, we project the driving original
query ¢ to the new space defined by the expanded
connectivity matrix C represents. This is done by
simply appending a rows of zeroes to the bottom

qi X .
of the query vector: g = ( 0[n ! ) By applying
lax1]

the driving query ¢¢ of the test topic, we are able
to compute a total ranking of the expanded
matrix C. Looking at Fig. 4, we deduce that we
only need ranking the last » = |CF| columns. The
ranking scores of each document in CF are
calculated using the cosine similarity measure of
Eq. (6):

el VeSc(Ubqce)

IScVeelhllgells

(19)

cos 0, =

® Once similarity scores are attributed to docu-
ments in the frontier, we are able to reorder the
priority queue CF, select the most promising
candidate and iterate the above steps.

5. Implementation—experimental results—analysis

For the evaluation of the proposed algorithm,
two sets of experiments have been carried out in this
paper. The first experiment compares HCLA
against well-known text- and link-based algorithms
on the WebKB corpus while the second one
compares HCLA performance against PLSI-based
classification on the Cora corpus.

5.1. Experiment on WebKB dataset

In the first experiment, we evaluate six different
algorithms. The BRFS was only used as a baseline
method since it does not offer any focused resource
discovery. The other four algorithms are cases of
BSFS with different CF reordering policies. More
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specifically, the second algorithm is a simple BL as
proposed in [37]. Here, the BL of a web document v
in CF is the current number of documents in AF
that have v as an outlink.

The third algorithm (SS1) is based on the Shark-
Search algorithm [56] a more aggressive variant of
Fish-Search [58]. The intuition behind this
algorithm is that relevant documents often have
relevant neighbours. Unlike the binary relevance
metric used by the Fish-Search algorithm, Shark-
Search uses a similarity engine which returns a
fuzzy score between 0 and 1. The relevance score of
each document in AF is measured using pair-
wise document similarity that is done by
calculating the cosine lexical similarity between its
document vector and the topic keywords of the
driving query. Then, with a decay factor of 0 <d <1,
each unvisited URL v in CF inherits d times the
relevance of its parents (nodes that are direct inlinks
if v), d&* times the relevance of its grandparents
(nodes with a length-2 path to v) and so on. The
fourth algorithm (SS2) is based again on the Shark-
Search but this time the relevance scores are
calculated using a pretrained VSM that uses the
probabilistic ranking scheme of Section 2.1.1. Since
we work with an unlabelled text corpus, we use the
topic query to extract the most relevant documents
and use them as sample examples to train the
system.

The fifth algorithm we implement is based on
PageRank. According to [37] the crawler visits the
candidate pages in the order of Pagerank. Here, no
textual information is available at all, only the
connectivity between the documents fetched so far
and their outlinks. A known problem is that pages
in CF do not have known outlinks since they have
not been fetched and parsed yet. In order to achieve
convergence of the PageRank we assume that from
nodes with no outlinks we can jump with prob-
ability one to all other pages in the current web
graph. In this application, the exact pagerank values
PR(p) in Eq. (11) are not as important as the
ranking they induce on the pages. This means that
we can stop the iterations fairly quickly even when
the full convergence has not been attained. In
practice we found that no more than 10 iterations
were needed. A typical value of 0.8 was selected for
the damping factor.

The sixth algorithm is the one this paper
proposes. SVD calculations were done using the
implicitly restarted Arnoldi/Lanczos bidiagonalisa-
tion method. Simple document normalisation was

applied to each vector of the expanded matrix in
every reordering step [7].

All algorithms have been tested on the WebKB
dataset. This corpus has 8275 (after eliminating
duplicates) web documents manually classified to 7
categories. 4113 documents are miscellaneous pages
collected from other universities while the rest were
collected from four universities in 1997 by the
World Wide Web Knowledge Base project [59].
Table 1 illustrates the distribution of corpus
documents into different categories. In our experi-
ments, the preprocessing of WebKB corpus in-
volved fixing HTML errors, converting text
encoding and filtering out all external links (outlinks
that are not found inside the WebKB corpus). Also,
for algorithms SS1, SS2 and HCLA that needed text
similarity measures, we used stemmed contents
through an implementation of Porter stemmer [60]
and a word stoplist for both the train and term
documents. Only the 1000 most frequent terms were
considered for training of the VSM. For the
algorithms SS1, SS2, HCLA, where text analysis is
used, we select each time three universities for
training the classifier and the fourth for testing using
a leave-one-out technique. Documents from the
“misc” university were also used for HCLA, since a
larger size of the initial text corpus can enhance the
efficiency of LSI, while this can have deteriorating
results for the remaining algorithms. The effective
dimension of matrix A, used for LSI, is approxi-
mately 1000 x 7000. Although the WebKB docu-
ments have link/connectivity information we
disregarded this fact in the training phase and chose
to treat them only as textual data. Naturally, for the
testing phase we did take into account both textual
and linking information. The keyword-based
queries that drive the crawl were an indicative

Table 1
WebKB Corpus

Cornell Misc Texas Washington Wisconsin Total

Course 44 685 38 77 85 929
Depart 1 178 1 1 1 182
Faculty 34 969 46 31 42 1122
Other 619 692 571 939 942 3763
Project 20 418 20 21 25 504
Staff 21 91 3 10 12 137
Student 128 1080 148 126 156 1638
Total 867 4113 827 1205 1263 8275
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description of each category. These were formed by
assigning 10 people the task of retrieving relevant
documents for each category using Google and
recording their queries. The queries are summarised
in Table 2. Seeds in each case were considered the
root documents in the department category. This
entails the possibility of some documents being
unreachable nodes in the vicinity tree by any path
starting with that seed, something that explains the
smaller than 100% final recall values in Figs. 5, 7,
and 8. Categories having relatively limited number
of documents (e.g., staff) were not tested. We
repeated the experiments for each category and for
every university.

Evaluation tests measuring the overall perfor-
mance of the techniques in Section 2 were
performed by calculating the harvest rate, a measure
that reflects the current health of the focused crawl
[34]. Harvest rate is the percentage of the web pages
fetched by the crawler that are relevant to a given
predicate:

N,

H= N,’ (20)
where N, is the total number of URLSs crawled so far
and N, is the number of URLs crawled so far which
satisfy the predicate. Fig. 5 depicts the average
Harvest-Rate for categories course, faculty, project,
and student indicating also the 0.95 confidence
intervals for the best two algorithms (HCLA and
SS2).

The performance evaluation of the six algorithms
for the category student in the WebKB dataset is
done using the recall and precision measures, as
demonstrated in Fig. 6. Recall R is the percentage of
the total relevant documents in the collection
retrieved by the system, while precision P is the
percentage of relevant documents in relation to the

Table 2
WebKB Corpus topic queries

Category Topic keywords

Course Course, university, homework, lesson, exams,
assignment, lecture, tutorial, book, schedule,
notes, grading, handout, teaching, solutions

Faculty Faculty, university, professor, publications,
papers, research, office

Project Project, university, demonstration, objective,
overview, research, laboratory

Student Student, university, interests, favourite,

activities, graduate, home

number of documents retrieved:

number of relevant documents retrieved
P= . , (2D
number of documents retrieved

R number of relevant documents retrieved

number of relevant documents
(22)

The overall performance of the system is assessed
using the F; measure, which is the weighted
harmonic mean of precision and recall:

_ 2PR
"~ P+ R’

A recall-precision graph for the category student is
depicted in Fig. 6, while Table 3 demonstrates the
precision and Fj-measure statistics at three different
recall values (0.1, 0.5, and 1).

It must be stated that due to the complexity of PR
and HCLA algorithms we choose to follow an
adapted BSFS strategy, applying the CF reordering
policy every N documents fetched (and added to AF
queue) for all algorithms (except BRFS). We call
this a BSFSN! strategy. This is supported by the
results of [61] which indicates that explorative
crawlers outperform their more exploitive counter-
parts. We experimented with values of N = 10, 25,
50 and present representative results in Fig. 7 for
category project and university washington.

The results shown in the harvest rate plot (Fig. 5)
depict the superiority of our method especially at
high recall range. We must also consider that in our
implementation we did not use a sophisticated term
weighting scheme such as Okapi [62], which is
argued to boost the performance of LSI [63]. BRFS
performance was surprisingly good, matching or
exceeding in some cases SS1 and BL. This can be
attributed to the hypertext structure of the WebKB
corpus and the quality of the seed documents. On
the other hand, the unimpressive, considering its
complexity, results of PageRank justify the argu-
ment that it is too general for use in topic-driven
tasks due to its minimal exploitation of the topic
context [50].

What is not depicted in Fig. 5 is the fact that
while HCLA and PR methods may yield good
results, they require considerably more processor
power and memory resources and thus they
are significantly slower. The dynamic nature of
the crawler means that computational complexity

I (23)

'BSFS where CF is reorganised every N documents down-
loaded and added to AF.
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Fig. 5. Average harvest rate for WebKB.

increases as more documents are inserted in AF and
CF queues. An obvious solution to the problem is to
limit the size of both queues and discard less
authoritative or relevant documents at the bottom
of the queues during the reordering phase.

In a BSFS focused crawler it is crucial that the
time needed for reorganising the CF is kept at a
minimum. It is pointless to perform sophisticated
but time-costly analysis when at the same interval
we could have simply downloaded all the docu-
ments in the queue. According to [64], the best
algorithms for SVD computation of a m x n matrix
take time that is proportional to O(m*n + A'n’) (1
and 1 are constants which are 4 and 22 for a
Riemannian SVD algorithm (R-SVD)). If there is
only need for the set of singular values and not the
U and V matrices the above is reduced to O(mn?).
This hinders the performance of a LSI-based BSFS
crawler since new documents and terms are inserted

in each iteration and both values of m and n
increase. Of course, in our work, we do not need to
recompute the SVD of the highly dimensional
matrix C, but perform SVD for the reduced
matrices H and F in Egs. (8) and (10). Moreover,
we follow a BSFSN algorithm where the reordering
of the CF, and consequently the term—document
matrix expansion and SVD computation, are
performed every N documents are fetched. Natu-
rally, the larger value of N has a significant influence
in the processing time of the algorithm but can harm
the efficiency of the reordering analysis [61]. For the
results presented here it is N = 50. As we can deduce
from Fig. 7, reordering the CF in higher frequency
(i.e., lower values of N) does not necessarily yield
better results.

As we have seen in Section 4, the LSI analysis for
the original text corpus is done offline during the
training phase. This permits us to determine an
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Table 3
Comparison of precision and F; measure for different algorithms
using the category student in WebKB

Algorithm Precision F| measure

R=0.1 R=05R=10 R=0.1 R=05 R=1.0

BRFS 0.58 0.32 0.15 0.17 0.39 0.26
BL 0.52 0.24 0.13 0.17 0.32 0.23
SS1 0.63 0.29 0.17 0.17 0.37 0.30
SS2 0.62 0.34 0.18 0.18 0.41 0.31
PR 0.54 0.32 0.15 0.16 0.39 0.26
HCLA 0.56 0.37 0.21 0.18 0.43 0.35

Values are at recall rates R = 0.1, 0.5, and 1.0, respectively.

optimum value for the number of the important
factors k in term—document matrix A4 by using the
F; measure but on the basis of assuming an a priori
document classification knowledge of the dataset.
Nevertheless, for most cases, the optimal k in
corpora of a few thousand documents is typically
between 10 and 100. A recent study on LSI

performance is given in [65]. Selecting a small value
for k has important benefits for computational cost.
For our work, we found that choosing k = 50 for
the LSI of the text corpus (matrix A) in the training
phase of HCLA, yields the best results. In Fig. 8 we
see that selecting too many features (kK = 80) can
have in fact deteriorating results.

5.2. Experiment on Cora dataset

For the comparisons between HCLA and PLSI,
we chose the Cora dataset [66]. This consists of over
37000 academic papers, automatically classified
into hierarchical categories. Cora has a higher link
density and higher quality information than the
WebKB collection. External links (outlinks not
existing in the collection) account only for 20% of
the collection while this is over 60% for WebKB
[67]. Intra-class links percentage is higher in Cora,
too. Also, academics papers in Cora have more
quality text content than web pages in WebKB.
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documents.

The same document preprocessing rules and
algorithm parameters with the first experiment were
applied here too. This time we considered Cora
reference contexts as analogous to anchor text.
Frequent stemmed terms from the abstracts, the
affiliation and paper title were used to train the
VSM and formulate the driving queries. In our
experiments we followed a BSFSN (N =25)
visiting policy for both algorithms. For PLSI, we
chose default values for parameters a and 7
and b (a = 0.5, initial value of b =1, lower limit
b = 0.8, update parameter n = 0.9). Using a leave-
one-out technique, we averaged results over all
possible test/train splits of Information_Retrieval
category and its subcategories Digital_Library,
Extraction, Filtering and Retrieval (see Table 4).
Additional unlabelled documents were added ran-

domly from other categories as needed, so that the
training matrix 4 used for LSI is approximately
1000 x 7000, matching the dimensions of A in the
WebKB experiment.

Table 5 demonstrates the precision and Fi-
measure statistics for the two algorithms at three
different recall values (0.1, 0.5, and 1). The overall
evaluation of efficiency of the two algorithms is
depicted in the average recall-precision graph in Fig.
9, where the confidence intervals are at 0.95. We
deduce that HCLA offers higher performance in
high recall rates than PLSI+PHITS. From addi-
tional undocumented experiments, where anchor
text was not used, performance, depending on the
available connectivity information, was marginally
worse than PLSI+PHITS (under 5% at most recall
levels) but still, comparable.
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Table 4
Sub-categories of Information_Retrieval in Cora dataset

Category # Documents
Digital_Library 133
Extraction 77

Filtering 57

Retrieval 315
Information_Retrieval (Total) 582

6. Conclusions

This work has been concerned with a statistical
approach to text and link processing. This ignores
any understanding of language semantics, but it has
historically proved efficient for dealing with a topic-
oriented problem such as a vertical search engine

Table 5

Comparison of precision and F; measure for HCLA and
PLSI+PHITS algorithms using the category Information_Re-
trieval in Cora dataset

Algorithm Precision F| measure
R=0.1 R=05 R=10 R=0.1 R=05 R=1.0
HCLA 0.88 0.72 0.54 0.18 0.59 0.70

PLSI+PHITS 0.86 0.74 0.47 0.18 0.60 0.64

Values are at recall rates R = 0.1, 0.5, and 1, respectively.

design rather than a knowledge-based logic repre-
sentation system and moreover it requires less
human effort. We argue that content- and link-
based features can be used for both the classifier and
the distiller of a focused crawler. As expected,
sophisticated algorithms such as HCLA, PR, and
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SS2 generally yield better results than the simplistic
BL and BRFS algorithms. We have also demon-
strated that HCLA performance is comparable and
in many cases better than PLSI+PHITS. The
question remains whether the extra performance
gain justifies the complexity of the development of
an HCLA-based focused web crawler. Both HCLA
and PR methods proved significantly slower requir-
ing more processor power and memory resources.
More specifically, HCLA was up to 100 times
slower than the simple BRFS on some tests and PR
performed similarly, something that has been
attested by [35].

A positive point in our method is that it does
not have any dependence on historical informa-
tion such as a previous crawl and index of the
web, or an existing generalised search service. It
must also be mentioned that the text corpus used
to train the classifier was considered unlabeled
reducing the problem to an unsupervised machine
learning one. Complete knowledge of the text
topic taxonomy does not invalidate our work
since the proposed document representation can
be retained. The extra knowledge can be used as a
weighting scheme for the documents in the
expanded matrix or simply can replace the role
of the driving queries. In the latter case, docu-
ments of the crawling frontier do not need to be
inserted in the term—document matrix A4, thus
reducing the level of complexity of SVD updating.

Instead, they are considered as queries and their
relevance to the topic can be calculated using, for
example, a noise-or measure [57]. The individual
similarity cosine distances (19) from »n indexed
documents of each category against a query
document of the CF are combined to provide a
final score for each category, Sy =1 — [, (1 —
cos 0,) .

LSI performance is sensitive to the size of the
trained corpus and can suffer severely when little
data are available. Therefore, starting a crawl with a
small term—document matrix 4 is not recommended
since at early stages the extra linking-text informa-
tion from the crawl is minimal. This can be
alleviated by using unlabelled data and other forms
of available background text as well as labelled
training data in the classification process. This
background knowledge assists the modelling of LSI
and offers significant performance gains [57]. While
the quality of the training data is a key aspect of the
system, having sufficient but noisy text information
is preferred to having highly relevant but few
training documents. In our case, we append extra
text documents in the training phase that can even
have less relevance with the topics of the current
corpus, for instance documents from misc university
or other category. At later stages when more
information is available to the system these docu-
ments can be removed and the model can be
retrained.
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There are a number of limitations of this work that
we still have to address. Link-based algorithms, such
as HCLA, may suffer at early stages of the retrieval
process. This is attributed to the fact that at early
stages not sufficient link information is available and
the density of the current graph is rather sparse. We
believe that a hybrid queue link-extraction strategy
where HCLA is facilitated in the early stages of the
crawl by a more explorative algorithm should yield
better results. Also, it is self-evident that by using
additional text information such as reference contexts
and anchor text we can further improve the perfor-
mance of the algorithm. However in that case, the
O, « » submatrix would be non-zero meaning that the
computational cost of SVD analysis would increase.

A parameter not well documented is the choice of k
(number of important factors) in LSI. While offline
experiments can reveal an optimum initial value for
the text corpus (matrix A), there is no guarantee this
will remain optimal for the expanded matrix C,
especially since the latter increases dynamically. An
idea worth exploring in the future is an adaptive
scheme that can support the dynamic information
increase as the crawling process evolves. As the
collection grows, there is more textual evidence and
a richer graph structure, which means that the number
of important factors (k) and the “frequency” of CF
reranking (N) need to increase accordingly.

As stated earlier (Section 4), some theoretical
assumptions of the VSM and LSI have been relaxed,
mainly the document representation. Extra work
identifying the implications of orthogonality in the
new space needs to be done in the future. Another
important restriction is the weighting scheme of the
expanded adjacency matrix. Moreover, the existence
of queues in the crawling process means that there is
always the danger of stagnation. Davison [68] also
proposes an expanded adjacency matrix that allows
for different weighting schemes in different directions
and explores the use of eigen-analysis in the
augmented matrix. There, not only term—document
similarity is modelled but also term—term and
document—-document. It will be interesting to apply
the assumption of word-link semantic equivalence in
the representation of web documents in that propo-
sal. As a first step, we can expand the original
term—document matrix A, during training by
considering the documents as terms, i.e., add n rows
to the bottom of A. In the new column vector space, a
document is represented as a bag of both terms and
citations (outlinks). The significance of this represen-
tation will be realised when we there is previous

knowledge available on link connectivity between
documents, for example, when deploying an incre-
mental crawler. This can lead to a semantically richer
query definition. Another generalised way of viewing
data objects and their intra- and inter-relationships
from multiple and heterogeneous sources has been
studied in [69]. Using the Unified Relationship
Matrix, their algorithm (SimFusion) demonstrates
improved similarity measurements of web objects
over traditional content-based algorithms.

It should be stated that the size of the experiments
in this work is limited for the web setting. Extra
work on a larger scale, against other algorithms is a
challenge for future work. It would be interesting to
compare HCLA against link-based strategies that
use historical information from a previous crawl or
that can query an ‘‘oracle” which knows the
complete web graph and has calculated the actual
Pagerank of each page (Omniscient strategy) [70].

Information discovery on the web is a challenging
task with a great potential that is yet to be realised.
The diversity and complexity of web information, as
well as its richness, call for approaches that go
beyond conventional IR. One such approach is to
leverage and combine various information sources
on the web. More specifically, investigation of
combining content, hyperlinks, and other features
of web documents with human categorisation and
classification-based techniques would be an inter-
esting and valuable endeavour to undertake. Pro-
ceeding so, this work has explored the combination
of link analysis and content analysis in order to
improve retrieval performance.
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