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Abstract

Community detection in multi-relational bibliographic networks is an important issue. There has been a surge of interest in com-

munity detection focusing on analyzing the linkage or topological structure of these networks. However, communities identified

by these proposed approaches, commonly reflect the strength of connections between networks nodes and neglect considering the

interesting topics or the venues, i.e., conferences or journals, shared by these community members, i.e, authors. To tackle this

drawback, we present in this paper a new approach called CoMRing for community detection from heterogeneous multi-relational

network which incorporate the multiple types of objects and relationships, derived from a bibliographic networks. We firstly pro-

pose to construct the Concept Lattice Family (CLF) to model the different objects and relations in the multi-relational bibliographic

networks using the Relational Concept Analysis (RCA) methods. Then after we introduce a new method, called QueryExploration, that

explores such CLF for community detection. Carried out experiments on real-datasets enhance the effectiveness of our proposal

and open promising issues.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Social networks are often deemed as heterogeneous networks since they involve multiple typed objects and mul-

tiple typed links denoting different relations. Indeed, heterogeneous information networks are not only more aligned

with the real world, but also contain a wealth of information, and therefore have the potential to provide us with

more accurate and implicit knowledge. An example of an heterogeneous information network is the bibliographic

information network. In addition to having multi-relational characteristics, bibliographic information network also

contains a wealth of information networks, such as the co-author network, the citation network including titles, au-

thors, affiliations, keywords, venues(conferences), publication data and other entities, which are connected to form a

multi-dimensional heterogeneous network. Hence, following different objectives in bibliometrics (relationship study-
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ing, ranking, community mining.), dedicated approaches made use of various kinds of techniques such as: Statistics,

Data Mining, Formal Concept Analysis, Graph Theory, OLAP analysis. Among these different types of analysis, we

are more interested by Formal Concept Analysis (FCA) techniques. Despite research attention on FCA, and efficient

topological algorithm design, a much more fundamental issue concerning the design of the heterogeneous relational

infrastructure has not been addressed. In fact, FCA techniques cannot satisfy relational analysis on bibliographic

information data, because they do not consider the relationships between attributes. Central to FCA is the notion

of formal context, which is defined as a triple K = (O,A,I), where O is a finite set of objects; A is a finite set of

attributes; I is a binary relation between O and A8. In short, the formal context is a binary relation between a set of

objects and a set of attributes. However, besides the binary relations between objects and attributes, in the real world

each object also has some connections with other objects, which induces the binary relations between any two objects.

For example, the author-conference relation in a bibliographic network. Hence, it is also necessary to introduce these

real-world relations to the contexts of FCA. Although we can deduce some relations between any two objects author,

conference ∈ O from relation I, for instance, author and conference have the same subset of attributes in context K .

But for many real-world scenarios, it is more meaningful to define some binary relations on O in the context, and

discuss the direct connections between any two objects of O by virtues of these relations. To expand the scope of

application for FCA, recent researchers have introduced the Relational Concept Analysis (RCA) as an extension of

FCA techniques11,3, which allow to design relational contexts to represent attributes relationships. The primary focus

of this work is to extract emergent academic community structure from the bibliographic through the analysis of the

different relationships among the multi-relational bibliographic data. Although research attention on heterogeneous

networks representation and efficient topological algorithm design, a much more fundamental issue concerning the

exploration of the heterogeneous organization infrastructure and communities detection have not been skilfully ad-

dressed. Therefore, a new research challenge consists on detecting communities from heterogeneous multi-relational

networks. In order to discover communities with a well defined set of properties, we first need to extract the corre-

sponding relations among multiple existing relations. In this paper, we introduce a query navigation approach called

QueryExploration based on the use of the RCA techniques designed within a multiple academic database for hidden re-

lationships (or links) detection. This will have significant impact, it can help foster new collaborative teams, help with

expertise discovery and in the long term, guide research teams reorganization consistency with collaboration patterns.

2. Related Work

Previous community detection methods are overwhelmingly focused on the homogeneous multi-relational network

which contain different types of edges and only one type of nodes. However, many real-world networks are naturally

described as heterogeneous multi-relational hypergraphs which contain different types of nodes and edges. Recently,

many researches have addressed community detection in heterogeneous multi-relational networks. Lin et al.,6 pro-

posed a method based on tensor factorization, called MetaFac(MetaGraph Factorization). Authors suppose that a

community contains different types of nodes, thus dividing nodes of different types separately means that nodes of

different types have the same number of communities. The main limit of the proposed method is that we rarely see this

situation in real-world scenario. Furthermore, in Song et al.,13, authors construct a General Heterogeneous Network

Clustering algorithm called GenClus to integrate the incomplete attribute information and the network structure infor-

mation. Zhang et al.,15 proposed a method based on matrix factorization that combine user-generated contents and

friendship networks to discover user communities sharing common content interests densely connected. However, a

notable drawback of these two approaches is that they require a priori knowledge about the number of communities.

This limits their usage in deducing (inferring) the latent organization of a real system. Authors in7 proposed a new

approach for detecting communities in heterogeneous multi-relational network which follows the line of the modu-

larity optimization method. Note that the drawback of this approach is the resolution limit, that may prevent it from

detecting communities which are comparatively small in large-scale networks.

Actually, a wide range of approaches have been proposed in the literature for communities detection in heterogeneous

networks. However, they have deeply focused on topological properties of these networks, ignoring the embedded

semantic information. To overcome this limitation, in recent years, Formal Concept Analysis(FCA) techniques are

used for a conceptual clustering. Using FCA aims to extract communities preserving knowledge shared in each com-

munity. In such FCA based approaches, the inputs are bipartite graphs and the output is a Galois hierarchy that
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reveals communities semantically defined with their shared knowledge or common attributes2. Vertices are designed

as lattice extents and edges are labeled by lattice intents (i.e., shared knowledge). However, a Galois hierarchy is not

a satisfactory scheme since an exponential number of communities may be obtained. Therefore, reduction methods

should be introduced. In fact, only very few researches have actually focused on this difficulty9. The authors in10

used the iceberg method as well as the stability method as a Galois lattice reduction methods. Authors in5 identify

concepts with frequent intents above a set threshold. The main limit of this purpose, that some important concepts

may be overlooked. Brandes et al. 1 combine both the iceberg and stability methods, its argued that this approach

yields good results for extracting pertinent communities based on concepts. As its described in the survey conducted

by Planti and Crampes9, discovering communities based on FCA techniques is the most accurate, because it extracts

communities using their precise semantics. Nonetheless, they fall short of giving simple and practical results. There-

fore, we introduce in this paper a new approach for academic community discovering based on Relational Concept

Analysis(RCA) because of its multi-relation nature11. In order to find out the multi-relational academic community

structure across multiple network dimensions, we have to integrate the information from all dimensions. In particular,

we firstly propose to use the RCA techniques11 to model the different relations and entities embedded in the hypergaph

bibliographic networks. Then, we introduce a new algorithm, called Query Exploration, based on the exploration of

the generated Galois Lattices to extract the multi-relational academic communities.

3. Background on FCA and RCA

A. Formal Concept Analysis (FCA): Formal Concept Analysis is a mathematical approach that derives a set of

objects described by attributes into a hierarchy of concepts that is a complete lattice4. A formal context is a triplet

K = (O,A,I), where O represents a finite set of objects, A is a finite set of items (or attributes) and I is a binary

(incidence) relation (i.e., I ⊆ O ×A). Each couple (o, a) ∈ I expresses that the object o ∈ O contains the item a ∈ A.O
is called one-valued context. A worth of interest link between the power-sets P(A) and P(O) associated respectively

to the set of itemsA and the set of objects O. This leads us to the definition of a formal concept.

definition 1. (Formal concept)A pair c = (O, A) ∈ O × A, of mutually corresponding subsets, i.e., O = ψ(A) and A
= φ(O), is called a formal concept, where O is called extent of c and A is called its intent.

Proposition 1 presents the partial order on formal concepts w.r.t. set inclusion4.

proposition 1. A partial order on formal concepts is defined as: ∀ c1 = (O1, A1) and c2 = (O2, A2) two formal
concepts, c1 ≤ c2 if O2 ⊆ O1, or equivalently A1 ⊆ A2.

When partially sorted with set inclusion, formal concepts form a structure called Galois (concept) lattice, defined as

follows.

definition 2. (Galois (concept) lattice) Given a context K , the set of formal concepts C is a complete lattice LC =
(C, ≤), called Galois (concept) lattice, when C is considered with set inclusion between concepts intents (or extents)4.

B. Relational Concept Analysis (RCA): Relational Concept Analysis is an extension of Formal Concept Analysis

(FCA) to the processing of multi-relational datasets i.e. datasets in which individuals are described both by their own

features and by their relations to other individuals11.

definition 3. (Relational Context Family) A relational context family RCF is a pair (K, R) where K = {Ki}i=1,...,n is
a set of (object-attribute) contexts Ki = (Oi,Ai, Ii) and {r j,l} j,l∈{1,...,n } is a set of relational (object-object) contexts r j,l

⊆ O j × Ol, where O j (called the domain of r j,l) and Ol (called the range of r j,l) are the object sets of the contexts K j

and Kl, respectively. O j is called the domain of r j,l (dom(r j,l)) and Ol is called the range of r j,l (ran(r j,l)) 11.

A function rel is associated with a RCF which maps a context K = (O,A,I) ∈ K to the set of all relations r ∈ R

starting at its object set K : rel(K) = {r ∈ R, where dom(r) = O}. Hence, given a relation r and a quantifier f chosen

within the set F = {∀, ∃, ∀∃, ≥, ≥ f , ≤, ≤ f }. k maps an object set from ran(r) to an object set from dom(r) as k :

F × R × ∪i=1,...,n P(Oi) → ∪i=1,...,n P(Oi)
11. Scaling a context along a relation consists in integrating the relation to

the context in the form of one-valued attributes using a scaling operator. A context is scaled upon all the relevant
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relations originating from the context by augmenting K with all the resulting relational attributes. Thus, an object

owns an attribute depending on the relationship between its link set and the extent of the concept, i.e., the instances of

a relation r, say rk(oi, o j), where oi ∈ Oi and o j ∈ O j, are called links. The evolution of each context Ki ∈ K from the

input RCF yields a sequenceK p
i whose zero memberK0

i = (Op
i ,Ap

i , Ip
i ) is the input contextKi itself. From there on,

each subsequent member is the complete relational expansion of the previous one upon the relations r from rel(Ki).

This yields a global sequence of context sets K p and the corresponding sequence of lattice sets, called the Concept

Lattice Family (CLF). Thus, the concept lattice family is a set of lattices that correspond to the formal contexts, after

enriching them with relational attributes.

In this work, we consider the exists scaling. Hence, let ri j ⊆ Oi × Oj be a relational context. The exists scaled

relation r∃i j is defined as r∃i j ⊆ Oi × B(Oj, A, I), such that for an object oi and a concept c:(oi, c) ∈ r∃i j ⇔ ∃x, x ∈
o′i ∩ Extent(c).

Fig. 1. An example of a multi-relational academic network.

4. A framework for Community detection based on Multi-Relational querying exploration (CoMRing)

Our main objective, is to discover a set of multi-relational academic communities, from multi-relational source,

formally represented by the Relational Concept Analysis (RCA).

In order to find out the academic community structure across multiple network dimensions, we have to integrate the

information from all dimensions. In particular, we are interested of the academic search and mining system, which

extracts and integrates the academic data from the distributed Web.

Our CoMRing approach is based on two main steps, as represented in Fig.2, which are:

• Modeling the academic network (objects and relations) based on Relational Concept analysis(RCA) techniques.

• Navigate between Concept Lattices based on a new algorithm called QueryExploration to extract the multi-

relational academic communities.

4.1. The Multi-relational bibliographic network model

Three concepts are involved in our model: Object Context, Relation Context, and Concept Lattice Family. As

illustrated in Fig.1, a set of Authors A= {a1, a2, . . . , an}, locates in a given Country Cr= {cr1, cr2, . . . , crp} and works

on the same Topics T= {t1, t2, . . . , tk} and a country could hold some Conferences Conf={c1, c2, . . . , cl}); (we use

the same notation for the rest of the paper). To generally describe such collaboration data, we define an object

context as a set of objects or entities of the same type, e.g., an author context is a set of authors and define a relation

context as the interactions among objects contexts, e.g., (author, topic) relation, (conference, country) relation. We
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Fig. 2. The CoMRing framework.

use a relational concept family to describe the relations contexts and the objects contexts constructed from a multi-

relational bibliographic network. Fig.1 depicts the data schema of the handled multi-relational bibliographic network.

The relational concept family is made of 4 objects contexts : KAuthors, KCountries, KCon f erences,KTopics; and 4 relations

contexts : rLocates, rHolds, rHas, and rDiscusses. We report in Fig.3 these 4 objects contexts and in Fig.4 the 4 related

relations contexts.

Fig. 3. The objects contexts extracted from the multi-relational bibliographic network.

The overall process of RCA follows a multi-FCA method11 which allows to build a set of lattices called Concept

Lattice Family (CLF). The RCA process is an iterative one which generates at each step a set of concept lattices. First,

the process constructs concept lattices using the objects contexts only. Then, in the following steps, it concatenates

objects contexts with the relations contexts based on the existential scaling operator that produce scaled relations.

Hence, the exists scaled relation translates the links between objects into conventional FCA attributes and extracts a

collection of lattices whose concepts are linked by relations. According to our example, the generated concept lattice

family, consists of four lattices: Authors and Topics in Fig.5, Countries and Conferences lattices in Fig.6.

4.2. Multi-Relational Querying Exploration for Community Detection

In this section, we introduce a new approach to extract a set of academic communities, which gives a general

navigation schema that applies to concept lattices built with the existential scaling. We present a QueryExploration

method, which allows to select suitable communities that respond to the submitted users’ query. Indeed, in order to
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Fig. 4. The relations contexts extracted from the multi-relational bibliographic network.

Fig. 5. Authors and Topics Lattices.

navigate on concept lattices to communities discovering, users have to submit a query that respects the RCF relations.

Firstly, we have to transform such query to a query path QP that guides the navigation across a concept lattice family.

In fact, a query path QP is the inverse order of the relational query RQ which is composed of several Simple Queries

S Q defined as follow:

definition 4. (Simple Query) A Simple Query S Q on a context K=(A,O,I), denoted by SQ={oq}, is a set of objects
satisfying the query (or the answer set) with oq⊂O.

definition 5. (Relational Query) A Relational Query RQ = {rq0, rq1, . . . , rqm} on a relational context family(K,R) is
a triplet RQ=(q′s,rst,q′t ) with:

• q′s and q′t , source query and target query respectively, are a set of Simple Queries S Q.
• rst is the relation between q′s and q′t . It leads one-to-one mapping between q′s and q′t .
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Fig. 6. Countries and Conferences Lattices.

To explore the concept lattice family, we have to construct a query path QP. It allows to know the path that we have

to follow and specifies the source and the target lattices.

definition 6. (Query Path) Let QP={qp0, qp1, . . . , qpn} and qpi is a pair ((qs,Ls),(qt,Lt)) where Ls and Lt ⊂ CLF,
the source and target lattices respectively, that we will navigate in it. The Query Path QP is the inverse order of the
relational query. It means qp0=rqm and qpn= rq0; with qs0= q′tm and qt0=q′sm

Algorithm 1: Query − Exploration
Input: - The path QP={qpk} with qp=((qs,Ls),(qt,Lt))
Output: - Answer to the query (set of communities)

1begin
2foreach qp in QP do
3if k eq 0 then
4foreach C in Ls do
5os:= qs;

6if os ⊆ Extent(C) then
7qt := qt

⋃
C;

8foreach Element in qt do
9Let C be the Concept(Lt) having Intent(C)⊇ Element;

10Ob j:= Obj
⋃

Extent(C); qt:= qt
⋃

C;

11return (Ob j);

In order to detect academic communities, we have to navigate between different lattices aiming to respond to the submitted users’

query. Indeed, we propose a new method called QueryExploration that leads to navigate between Galois Lattices based on the ex-

tracted query path QP. It takes as input the query path QP=qpk with qp=((qs,Ls),(qt,Lt)) and outputs the identified community as

an answer to the user query Q.

The QueryExploration algorithm starts by handling all concepts C of the source lattice Ls, in order to extract the corresponding con-

cepts (Ci) of the initial query path qp0 (line3 to line7). It proceeds by identifying the concept extent of the lattice Ls then it extracts

the concepts that contains an extent related to the query qs. The result of the initial phase is a set of concepts Ci that respond to

the query qs. The second phase of QueryExploration (line8 to line10), consists in generating iteratively a set of concepts containing

the set of concepts(Ci) extracted in the initial phase. It consists on handling the corresponding concept intent of the lattice Lt,

for extracting the set of concepts (Ci+1) containing the Ci. If there is no more query path to be explored, QueryExploration extracts
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the extent of the last selected concept (Ck). This set of Ck extent represents the set of individuals that constitutes the academic

community returned to the user.

Example: Suppose that a user submits the following query: Q =’I am looking for author community locates in country which
holds conference that has Network topic’. Hence, within this first step, q is transformed into a relational query as follows :

rq=((qA,’Locates’,qCr); (qCr,’Holds’,qCon f ); (qCon f ,’Has’,qT )) with qT=’Network’.

The correspond query path, QP=((qT ,LT ), (qCon f ,LCon f ); (qCon f ,LCon f ),(qCr,LCr); (qCr,LCr), (qA,LA)).

In this case, the QueryExploration method starts by handling all concepts extent C in the source lattice LT , in order to extract the

corresponding concepts which is an answer to the query qT .

The result of the first phase is the C 3 which contains ’Network’ as extension. The second step, consists on handling the corre-

sponding lattice LCon f to extract the set of concepts which contains the C 3 in the concept intent of the lattice LCon f . In this case,

C 37 is an answer of this query because it contains C 3 in its intent. QueryExploration proceeds then by following the query path

order. The next path in the query path QP is((qCon f ,LCon f ),(qCr,LCr)). Thus, it extracts the set of concepts that contains C 37 in

there intents by handling the lattice LCr. The answer of this query is C 20. In the same way, the QueryExploration algorithm extracts

the the set of concepts containing C 20 in their intent with handling the lattice LA. The result of this query is thus the C 33. Then

after, QueryExploration extracts the extent of the final selected concept which is C 33. In this case the extent of C 33 are ’Manual

Will’ and ’Mariya Das’. These two individuals constitute an academic community returned to the user.

5. Experimental evaluation

We collect data from two bibliographic databases. First we use the well known database DBLP. But in order to complete our

conceptual hypergraph model, we access on AMiner database for taking keywords, institutions and research topics. In theses two

sources, we keep only four research topics (Data Mining, Computer Network, Artificial Intelligence, Human Computer, Computer

Graphics) and we pick only a few representative conferences for the five areas (11 conferences). At the end, we build a data set

which contains 914 contributions and 336 authors since 2010. Finally, the navigational query algorithm is developed in JAVA and

tested on a Windows 7 with Intel core i5, 2.4GHz and 8GB of Ram.

Baseline Model: For enhancing the effectiveness of our approach, we have selected the most popular baseline communities struc-

ture which suggests communities as a set of authors belonging to the same affiliation. To carry out our experiments, we consider

two simple queries (Q3 and Q4) and two relational queries (Q1 and Q2). We study whether our approach is able to capture the

hidden relations between authors and if it can responds to different type of queries:

Q1: addresses 4 entities, i.e., Authors, Countries, Conferences and Topics; and 3 relations, i.e., Locates, Holds and Has.

Q2: concerns 3 entities, i.e., Authors, Countries and Conferences; and 2 relations, i.e., Locates and Holds.

Q3: concerns 2 entities, i.e., Authors and Countries; and 1 relation, i.e., Locates.

Q4: addresses 2 entities, i.e., Authors and topics; and 1 relation, i.e., Discusses.

Community quality via ground truth: We consider two different ground truths 14. The first ground truth GT1 : each explicit

authors’ topic in the dataset is a ground truth community GT1. GT1 contains authors nodes which share the same topic. The sec-

ond ground truth GT2: each explicit author conference is a ground truth community. GT2 contains authors nodes which participate

in the same conference.

Effectiveness of our approach: The performance is assessed by the measures of Recall, Precision and Fβ measure, computed

over all vertices 12. These measures attempt to estimate whether the prediction of this vertices in the same community was correct.

Given a set of algorithmic communities C and the ground truth communities S , precision indicates how many vertices are actually

in the same ground truth community (Precision = |T∩S |
|T | ). The Recall indicates how many vertices are predicted to be in the same

community in a retrieved community (Recall= |T∩S |
|S | ), and Fβ measure is the harmonic mean of Precision and Recall (Fβ mea-

sure= β × Precision×Recall
Precision+Recall where β ∈ {1,2}).

Finally, for performances comparison with the baseline according to the four queries and the two ground truths, an overall average

score of the Precision, Recall, F1 measure and F2 measure is computed. The results are depicted in Fig.7. Note that aggre-

gated bars on Q1 to Q4 correspond to the results on the 4 considered measures. Thus, according to the sketched curves in Fig.7,

we can point out that CoMRing approach outperforms the baseline. In fact, as expected, the Recall values of the baseline are

much lower than those achieved by our approach among the two ground truths (GT1 and GT2). As we show, the average Recall

achieves 83.87% and 65, 02% comparing with the baseline which has 28, 31% and 14, 58% in term of Recall vs. an exceeding

about 55.5% and 50.4% over the query Q4 among the two ground truths respectively. Indeed, in term of F2 measure the CoMRing
approach(67,61%, 65,7%) outperforms considerably the baseline(23,44%, 16,5%) over the query Q4 among GT1 and GT2 respec-

tively, in this case we can say that the baseline have only a small number of communities detected fairly well and not many detected

communities reflect to the ground truth communities.

However, the percentage of Precision for the baseline outperforms slightly our approach according to Q1,Q2 and Q3. Whereas,
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Fig. 7. Average score of the Precision, Recall, F1 measure and F2 measure of CoMRing approach vs. those of the baseline (B).

for Q4, our approach has an average of 68, 57% showing a drop of 28, 31% vs. an exceeding about 40.2% against the baseline.

A significant observation shows that the relational query Q1 have better Recall (55, 68%) than that of the simple query Q3 and

that of the relational query Q2 (44, 85%). We can conclude that the relational query improves the community structure and leads

to extract relevant communities. Hence, considering four different queries, our approach outperforms the baseline in terms of

Recall, F1 measure and F2 measure often by a large margin in the Recall score. Carried out experiments show that the use of

multi-relations allows to detect hidden relations that respond to two types of queries which are relational and simple queries. We

also study the Recall score evolution over the ground truth GT1 with respect to authors number in each extracted community by

considering the 4 queries. We can point out from Fig.8 (Left) that detected communities over all queries have different size, com-

munities size ranges between 2 to 300 authors per community. Thus, our approach doesn’t suffer of the resolution problem which

is a big problem for a lot of approaches such that 7.

Another important observation is that the Recall score increases accompanied to the increasing of the communities size over the

queries Q1,Q3 and Q4. It increases from 22.72% (community with 59 authors) to 70.16% (community with 180 authors) over the

query Q1 and from 2.02% (community contains 21 authors) to 52.99% for community which contains 132 authors. The obtained

results highlights that the proposed approach allows to detect significant communities with different size considering different

queries and that our approach is more efficient in communities with big size. We focus now on the most complex relational query

Fig. 8. Left.The Recall scores against the number of items in the community with respect to the 4 queries. Right.The Recall scores against the

number of conferences in each community extracted by the query Q1.

Q1. Experiments show that our approach rises the challenge of detecting multi-relational communities semantically rich. Indeed,

Q1 allows to extract 5 communities, each community is labelled by only one topic, an average of 2.2 conferences and an average

of 1.7 countries. Fig.8 (Right) represents the Recall evolution against the number of conferences shared in each community ex-

tracted by the query Q1 over the two ground truths GT1 and GT2. As we show in the Fig.8 (Right), we have 5 communities: 2

communities sharing 1 conference, 2 communities sharing 2 conferences and 1 community shares 5 conferences.

For the topic communities ’Human Computer’ and ’Computer Network’ which contain one conference in each community, the av-

erage Recall is between 22.72% and 31.33% among the two ground truths (GT1 and GT2). Furthermore, we can note an interesting

increasing of the average Recall when the number of communities conferences increases, it reaches 55.24% over the ground truth

GT1 and 62.2% over the ground truth GT2 in ’Data Mining’ and ’Computer Graphics’ communities which has two conferences
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in each community. Indeed, we can note also that the community with the highest number of entities (5 conferences) shows a

significant improvement by 47.44% and 14.92% over the ground truth GT1 and by 37.13% and 6.26% over the ground truth GT2

comparing with one and two conferences entities communities respectively.

It’s clear that more the number of shared entities (conferences) is bigger more the Recall score of communities is higher. An

interesting observation is that more the community is rich of shared relations and entities more the Recall increases and thus more

the matching between the ground truth communities (GT1 and GT2) and the extracted communities is important. We can conclude

that the increase of relations and entities improves communities structurally and semantically.

In summary, this experiments show that the CoMRing approach is better than the state of the art in many areas: first, it detects a

set of multi-relational communities semantically rich with a high accuracy; second, it overcomes the resolution limits; third, the

CoMRing approach detects communities from general networks without requiring a priori knowledge from users; fourth, it extracts

different type of communities and responds to different type of queries(simple and relational), thus we don’t have to change the

model every time we change the type of query provided that it respects the hypergraph model.

6. Conclusion

In this paper, we have introduced a novel approach called CoMRing for discovering communities from heterogeneous multi-

relational bibliographic networks based on querying exploration. Firstly, we proposed to use the RCA techniques to model the

different entities and relations of the bibliographic network. We introduce a new method, called: QueryExploration for academic

communities detection, which allows to navigate between the different lattices linked by attributes relations. Our future research

will focus on further study other quantifier such as ∀ quantifier to address a more diversified set of queries. We also plan to evaluate

and test our approach on other real-world multi-relational networks such as Genetic data collection for medical diagnosis.
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