
C

M
a

b

a

A
R
A
A

K
S
C

1

t
o
t
u
a
c
t

i
r
c
i
b
d
p

i
s
h
i

(
(

0
h

The Journal of Systems and Software 86 (2013) 2225– 2241

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u r n al homepage: www.elsev ier .com/ locate / j ss

loud engineering is Search Based Software Engineering too

ark Harmana, Kiran Lakhotiaa, Jeremy Singerb, David R. Whiteb,∗, Shin Yooa

University College London, Gower Street, London WC1E 6BT, United Kingdom
School of Computing Science, University of Glasgow, G12 8QQ, United Kingdom

 r t i c l e i n f o

rticle history:
eceived 2 July 2012
ccepted 15 October 2012
vailable online 23 November 2012

eywords:

a b s t r a c t

Many of the problems posed by the migration of computation to cloud platforms can be formulated
and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud
software engineering involves problems of optimisation: performance, allocation, assignment and the
dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and
business objectives. SBSE is concerned with the application of computational search and optimisation to
earch Based Software Engineering (SBSE)
loud computing

solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE
has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing
cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to
benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which
SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud
computing challenges in ways that can be addressed using SBSE.
. Introduction

In many ways cloud computing is not conceptually new: it effec-
ively integrates a set of existing technologies and research areas
n a grand scale, but there is nothing inherently new about most of
he specific technical challenges involved. The business model that
nderpins cloud computing is new. Rather than viewing software
nd the hardware upon which it executes as fixed assets to be pur-
hased and subsequently subject to depreciation, the cloud model
reats both software and hardware as rented commodities.

This is a profound change, because it removes both the business
ssue of depreciation and more technically oriented concerns over
esource fragmentation and smooth scalability, along with definite
ommitments to particular platforms, protocols, and interoperabil-
ty. Nevertheless, in order to avail themselves of these advantages,
oth the cloud provider and their clients will need new ways of
esigning, developing, deploying and evolving software, thereby
osing new questions for the research community.

The pace of the recent industrial uptake of cloud comput-
ng, with its associated technical challenges, also increases the

ignificance of existing conceptual and pragmatic questions that
ad previously failed to receive widespread attention. Examples

nclude the tailoring of operating system environments and testing

∗ Corresponding author.
E-mail addresses: m.harman@cs.ucl.ac.uk (M. Harman), k.lakhotia@cs.ucl.ac.uk

K. Lakhotia), jeremy.singer@glasgow.ac.uk (J. Singer), david.r.white@glasgow.ac.uk
D.R. White), shin.yoo@ucl.ac.uk (S. Yoo).

164-1212 © 2012 Elsevier Inc.
ttp://dx.doi.org/10.1016/j.jss.2012.10.027

Open access under CC BY license.
© 2012 Elsevier Inc.

in a virtualised environment. Some of these technical issues present
new difficulties that must be overcome, whilst others offer oppor-
tunities that will enable software engineers to test and deploy code
in new ways.

Cloud computing represents a further step along a road that has
taken our conception of computation from the rarefied and ideal
world of formal calculi to the more mundane and inexact world
of engineering reality. In the 1970s and 1980s, there was a seri-
ous debate about whether such a thing as ‘software engineering’
even existed (Hoare, 1978). Many argued that software was not
an engineering artefact and that to treat it as such was not only
wrong but dangerous, with special opprobrium (Dijkstra, 1978)
being reserved for any dissenters who dared to advocate software
testing (De Millo et al., 1979).

However, as time passed and systems became larger, there was
a gradual realisation that as size and complexity increases, algo-
rithms give way to systems and programs give way to software.
A detailed and complete formal proof of a 50 million line banking
system may, indeed, be conceptually desirable, but it is no more
practical than a quantum mechanical description of the operation
of the human circulatory system. The view of software as an engi-
neering artefact, whereby it is meaningful to speak of software
engineering as a discipline, gradually became accepted – even by
its erstwhile detractors (Hoare, 1996, 1996).

As the recognition of software development as an engineering

Open access under CC BY license.
activity gained increasing traction, the view of software engineer-
ing as a discipline fundamentally concerned with optimisation also
gained wider attention and acceptance. This optimisation-centric
view of software engineering is typified by the development of the

dx.doi.org/10.1016/j.jss.2012.10.027
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:m.harman@cs.ucl.ac.uk
mailto:k.lakhotia@cs.ucl.ac.uk
mailto:jeremy.singer@glasgow.ac.uk
mailto:david.r.white@glasgow.ac.uk
mailto:shin.yoo@ucl.ac.uk
dx.doi.org/10.1016/j.jss.2012.10.027
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2 stems

a
n
g
S
i
R

a
v
c

o
c
t
u
t
w
s
a

w
p
e
t
a
f
s

a
a
c
N
c
(
t
t
h
T

t
r
t
p

1

2

S

infrastructure, a platform or an application, depending on exactly
how those services are being used. We deliberately avoid using
226 M. Harman et al. / The Journal of Sy

rea of research and practice known as Search Based Software Engi-
eering (SBSE) (Harman and Jones, 2001; Harman, 2007), a topic of
rowing interest for more than ten years (Freitas and Souza, 2011).
BSE has now permeated almost every area of software engineer-
ng activity (Zhang et al., 2008; Afzal et al., 2009; Ali et al., 2010;
äihä, 2010; Afzal and Torkar, 2011; Harman et al., 2012a).

Cloud engineering propels us further along this journey towards
 vision of software engineering in which optimisation lies at the
ery centre. The central justification for deploying software on a
loud platform rests upon a claim about optimisation. That is:

Optimisation of resource usage can be achieved by consolidating
hardware and software infrastructure into massive datacentres,
from which these resources are rented by consumers on-demand.

Cloud computing is thus the archetypal example of an
ptimisation-centric view of software engineering. Many of cloud
omputing’s problems and challenges revolve around optimisa-
ion, while most of its claimed advantages are unequivocally and
nashamedly phrased in terms of optimisation objectives. SBSE is
hus a natural fit for cloud computing; it is primarily concerned
ith the formulation of software engineering problems as optimi-

ation problems, which can subsequently be solved using search
lgorithms.

As well as providing a natural set of intellectual tools with
hich to address the challenges and opportunities of cloud com-
uting, SBSE may also provide a convenient bridge between the
ngineering problems of cloud computing and its business impera-
ives. Optimisation objectives connect these two concerns, seeking
rchitectures that maximise flexibility, assignments that minimise
ragmentation, (re)designs that minimise cost per transaction and
o on.

This paper explores this symbiotic relationship between SBSE
nd cloud computing. Many papers have been written on the
dvantages of migrating software engineering activities to the
loud (Abadi, 2009; Sotomayor et al., 2009; Armbrust et al., 2010).
o doubt there are many advantages of such a migration to SBSE
omputation in the cloud, some of which have already been realised
Le Goues et al., 2012). In this paper we pursue a different direc-
ion. Rather than showing that the cloud benefits SBSE (we term
his SBSE in the cloud) instead this paper explores and develops
ow SBSE may benefit the cloud (we term this SBSE for the cloud).
hus we ask the following question:

How can SBSE help to optimise the design, development,
deployment and evolution of cloud computing for its providers
and their clients?

We reach out to two audiences with this paper: first, we aim
o encourage SBSE researchers that cloud computing presents
elevant research challenges; second, we aim to show cloud practi-
ioners that SBSE has potential to solve many of their optimization
roblems. The primary contributions of this paper1 are:

 To set out a research agenda of SBSE for cloud computing, giving
a detailed road map.

 To make the road map concrete we specify, in detail, five
problems within the broad areas of ‘SBSE for the cloud’. We re-
formulate these problems as search problems in the standard
manner for SBSE research (Harman and Jones, 2001; Harman,

2007), by proposing specific solution representations and evalu-
ation functions to guide the search.

1 This is an invited ‘road map’ paper which forms part of Journal of Systems and
oftware Special Issue on ‘Software Engineering for/in the Cloud’.
and Software 86 (2013) 2225– 2241

3 To review how cloud systems pose new challenges and opportu-
nities within existing application areas of SBSE, and in particular
search based software testing.

The rest of this paper is organised as follows. First, we give a brief
background of cloud computing and SBSE in Section 2. Then we dis-
cuss the engineering challenges facing cloud providers and their
clients in Section 3. Section 4 gives examples of where and how
SBSE can be applied to solve cloud engineering problems, which
are new areas of application for SBSE techniques. In Section 5 we
outline where the nature of cloud computing offers opportunities
for improvement over past SBSE applications. In Section 6, we dis-
cuss some common challenges of applying these methods in a cloud
scenario before concluding in Section 7.

2. Background

We now provide a brief overview of cloud computing and Search
Based Software Engineering.

2.1. Cloud computing

Cloud computing (Mell and Grance, 2009) is a relatively recent
and currently high-profile method of IT deployment. Compute facil-
ities such as virtualised server hosting or remote storage accessed
via an API, are provided by a cloud provider to a cloud client.2 Often a
client is a third party company, who will use the compute facilities
to provide an external service to their users. For example, Amazon
is a cloud provider supplying a storage API to Dropbox, who use
the API to provide a file synchronisation service to domestic and
commercial users.

In many ways, cloud computing resembles a move away from
conventional desktop computing that has been the hallmark of
the previous decade, towards a centralised computing model. One
stark difference to the mainframes of the timesharing past is that
the new paradigm is supported by vast datacentres containing
tens of thousands of servers working in unison. These datacentres
are described by Barroso and Hölzle (2009) as ‘Warehouse-Sized
Computers’ (WSCs), reflecting their view that the machines can col-
lectively be regarded as a single entity. The coordination of these
machines is supported by specialist software layers, including vir-
tualisation technologies such as Xen (Barham et al., 2003) and
distributed services such as BigTable (Chang et al., 2008).

Most of the technologies involved in constructing and using
cloud computing are not new, but rather it is their particular combi-
nation and large-scale deployment that is novel. The emergence of
cloud computing would not have been possible without the growth
in virtualisation and widespread internet access. Cloud computing
promises to commoditise data storage, processing and serving in
the way envisioned by utility computing (Rappa, 2004) and service
oriented architecture (Papazoglou and van den Heuvel, 2007).

2.1.1. Cloud architectures
Cloud computing is frequently presented as a layered architec-

ture, as shown in Fig. 1. However, in practice these layers are not
distinct. For example, data storage services may be regarded as
these somewhat artificial distinctions.

2 In this paper, the word ‘user’ is reserved for the end-users of software, i.e. the
customers of a client. This is complicated somewhat by the fact that some cloud
providers serve both clients and users; for example, Google provide App Engine as
a service to developers, but they also provide Gmail to users.

M. Harman et al. / The Journal of Systems and Software 86 (2013) 2225– 2241 2227

d stac

g
o
o
W
z

w
c
p
E
r
p
a
o
s

i
G
r

g
3

2

c
c
a
A
1
i
t

t
n
c
o
t
s

1

2

Fig. 1. The clou

Cloud hardware is typically composed of commodity server-
rade ×86 computers arranged in a shallow hierarchy composed
f racks and clusters of racks. They are physically located in a series
f geographically distributed datacentres. In the case of Amazon
eb Services, these datacentres are split into discrete availability

ones.
Servers run hypervisor technology such as Xen or VMWare,

hich manage multiple virtual machines (VMs) on each physi-
al machine. VMs are provided directly to client companies by
roviders such as RackSpace or Amazon at the infrastructure layer.
ach live virtual machine is an instance of an offered VM configu-
ation, which is principally defined by the memory and processing
ower available to the VM. Every instance mounts a machine image,
lso known as an operating system image. An image includes an
perating system, and the required server software such as web
ervers or transaction processing software.

The most straightforward example of a platform-level service
s Google App Engine, where a customer provides code and
oogle automatically manages the scaling to respond to incoming

equests.
Applications comprise most usage of cloud computing by the

eneral public. Popular current examples include Microsoft Office
65 and Gmail.

.1.2. Cloud research
Rather than attempting a detailed literature review of cloud

omputing, we present a simple, informal, graphical overview of
loud research. Fig. 2 is a word cloud generated from the titles of
round 25,000 papers returned by a keyword search for cloud at the
CM guide to computing literature. The search was performed on
5 May 2012. In this cloud word cloud, the size of a word reflects

ts frequency in the underlying corpus. Common English words and
hose occurring rarely are not included in the diagram.

From a cursory inspection of Fig. 2, the largest words are indica-
ive of the topic (cloud, computing) and the technology (applications,
etworks, web, etc.). To drill down to the research themes of cloud
omputing, we remove from the underlying corpus all terms that
ccur in the concise NIST definition of cloud computing, which is
he first sentence of Section 2 in Mell and Grance (2009). Fig. 3
hows the resulting filtered cloud word cloud.

There are two key points to highlight from Fig. 3.

 As mentioned in Section 1, cloud research issues are not new.
The cloud word cloud shows strong links with ancestral research

fields including distributed, parallel, and grid computing.

 The concepts presented in the word cloud are amenable to
SBSE optimisation. Apparent terms such as scheduling, cluster-
ing, reconstruction, and optimisation all admit the potential of
k architecture.

SBSE. Terms such as estimation, modelling, prediction and sim-
ulation show that the cloud research community is attempting
to apply well-known existing system optimisation techniques to
the cloud domain.

2.1.3. Cloud word cloud in the cloud
As an aside, the cloud word clouds in Figs. 2 and 3 were gener-

ated in the cloud. The paper title metadata was collected from the
ACM web portal using 50 Amazon EC2 t1.micro Linux instances,
and stored in a single S3 bucket. The estimated cost of this com-
putation is $0.89, using Amazon Web Services’ on-demand prices
from May 2012 in the EU (Ireland) region. The graphical represen-
tations of the cloud word clouds are produced by Wordle, an online
word cloud generation service (Viegas et al., 2009).

This exercise serves to demonstrate the accessibility and econ-
omy of cloud computing for simple data processing tasks. We fully
expect the rapid, widespread adoption of cloud computing, as pre-
dicted by industry analysts IDC (2011).

2.2. Search Based Software Engineering

Search Based Software Engineering (SBSE) is the name given
to a field of research and practice in which computational search
and optimisation techniques are used to address problems in soft-
ware engineering (Harman and Jones, 2001). The approach has
proved successful as a means of attacking challenging problems in
which there are potentially many different and possibly conflicting
objectives, the measurement of which may be subject to noise,
imprecision and incompleteness. Notable successes have been
achieved for problems such as test data generation, modularisation,
automated patching, and regression testing, with industrial uptake
(Cornford et al., 2003; Wegener and Bühler, 2004; Afzal et al., 2010;
Lakhotia et al., 2010b; Cadar et al., 2011; Yoo et al., 2011) and the
provision of tools such as AUSTIN (Lakhotia et al., 2010a), Bunch
(Mitchell and Mancoridis, 2006), EvoSuite (Fraser and Arcuri, 2011),
GenProg (Le Goues et al., 2012), Milu (Jia and Harman, 2008) and
SWAT (Alshahwan and Harman, 2011).

The first step in the application of SBSE consists of a reformu-
lation of a software engineering problem as a ‘search problem’
(Harman and Jones, 2001; Harman et al., 2012a). This formulation
involves the definition of a suitable representation of candidate
solutions to the problem, or some representation from which
these solutions can be obtained, and a measure of the quality of

a given solution: an evaluation function. Strictly speaking, all that
is required of an evaluation function is that it enables one to com-
pute, for any two candidate solutions, which is the better of the
two.

2228 M. Harman et al. / The Journal of Systems and Software 86 (2013) 2225– 2241

 25,00

p
i
s
a
p
t
2
w
t
t
F

d
c
i
p
i
w

Fig. 2. Cloud word cloud, summarizing

There are many surveys, overviews and reviews of SBSE that
rovide more in-depth treatment and coverage of results specific to

ndividual engineering subdisciplines such as requirements analy-
is (Zhang et al., 2008), predictive modelling (Harman, 2010; Afzal
nd Torkar, 2011), non-functional properties (Afzal et al., 2009),
rogram comprehension (Harman, 2007), design (Räihä, 2010) and
esting (McMinn, 2004; Harman, 2008; Afzal et al., 2009; Ali et al.,
010). There is also a tutorial paper aimed primarily at the reader
ith no prior knowledge of computational search or SBSE applica-

ions (Harman et al., 2012b) and a recent bibliometric analysis of
en years’ of SBSE literature (2001–2010) (Freitas and Souza, 2011).
ig. 4 shows the recent rapid rise in publications on SBSE.

In this paper we introduce the idea of ‘SBSE for the Cloud’ by
efining representations and evaluation functions for several cloud
omputing problems. We do this to illustrate how cloud comput-

ng problems can be re-formulated as SBSE problems. We seek to
rovide reasonable coverage of cloud computing applications and

ssues, but are sure that there are many more such reformulations
aiting to be explored.

Fig. 3. Cloud word cloud, filtered to remove keyword
0 research papers on cloud computing.

3. Engineering challenges in cloud computing

The engineering challenges posed by cloud computing can be
divided between those facing the providers of cloud infrastruc-
ture and those faced by their clients. For the former, there are
challenges in the (re-)engineering of their systems to ensure they
are suitable for cloud deployment, as well as reducing costs by
optimising resource usage. Cloud providers share similar goals in
reducing resource usage, but they must also focus on maintaining
their service level agreements (SLAs). Fig. 5 details the potential
application areas for SBSE methods that we have identified. The
figure is annotated with corresponding section numbers for those
discussed later in the paper.

3.1. Challenges for cloud clients
From the view of a client, the crucial feature of cloud comput-
ing is a reliance on cloud providers for their computational and
storage needs. Instead of making capital investment in hardware

s from the NIST definition of cloud computing.

M. Harman et al. / The Journal of Systems and Software 86 (2013) 2225– 2241 2229

Fig. 4. Yearly SBSE publication rates 1976–2010.
Source: SBSE Repository (Zhang et al., 2012).

 provi

a
r
o
h
p

1

2

3

c

Fig. 5. An overview of the software engineering tasks facing cloud

nd hosting their own servers, a company may instead choose to
ent facilities from providers on a pay-as-you-go(tm) basis. As with
ther forms of outsourced deployment, this enables lower over-
eads through economies of scale and expertise. However, the
ay-as-you-go model has additional advantages:

 Computing expenses are now regarded as an operational over-
head, rather than depreciating capital. Thus, large and risk-laden
upfront expenditure is not required.

 The opportunity for scalability is unprecedented. Capacity can be
added ‘on-demand’, without fixed costs and at short notice.

 There is no economic difference between using a single proces-
sor for a hundred hours versus using a hundred processors for
one hour. This enables clients to quickly complete tasks that pre-
viously would have required longer time periods or substantial

capital investment.

Cloud deployment presents a series of engineering and business
hallenges for cloud clients:
ders and their clients that may be amenable to an SBSE approach.

3.1.1. Predictive modelling
In order to best optimise cloud deployment through most effi-

cient use of available resources and minimisation of costs involved
it will be necessary to predict behaviour, load, use and other pro-
files that affect resource consumption and costs. Fortunately, there
has been much work on predictive modelling and the optimisa-
tion of predictive models using search based techniques (Harman,
2010; Afzal and Torkar, 2011) that can be applied to cloud system
behaviour prediction.

3.1.2. Scalability
Scalability does not come for free. Existing software must be

re-engineered to take advantage of the scalability of the cloud.
Scalability relies upon parallelism, which is typically provided
by either user-level parallelism (many users accessing the same

service) or data-level parallelism (data can be processed in par-
allel). Software must be designed or refactored to have a loosely
coupled and asynchronous architecture, to reduce bottlenecks
that limit scalability. Furthermore, scalability must be managed;

2 stems

d
p

3

r
r
e
a
f
b
t
s
a
a
T

3

o
b
o
s
u
t
c
r

3

s
s
T
t
i
d
l
S

3

b
n
r
t
t
fi
d

3

c
t
F
i
o
t
d

3

o
s
t
c
s

230 M. Harman et al. / The Journal of Sy

emand must be anticipated using predictive modelling, and a
olicy for managing scale must be established.

.1.3. Fault tolerance
The distributed nature of systems in the cloud and the lower

eliability (Vishwanath and Nagappan, 2010) of cloud platforms
equire a new approach to fault tolerance. Software should be tol-
rant to complete hardware failure: a virtual machine can be lost
t any time, and similarly it should be anticipated that API calls can
ail. Expectations of network performance, such as latency, have to
e revised. The fragility of the underlying platform is in stark con-
rast to the expectations of customers using the web services that
o often rely on the cloud – such services must have a high level of
vailability and low latency. Testing procedures must be suitably
dapted; the canonical example is Netflix’s ‘Chaos Monkey’ (Netflix
ech Blog, 2008).

.1.4. Resource efficiency
The cloud pay-as-you-go model makes explicit the variable costs

f computation. This provides a greater incentive for companies to
e as efficient as possible in their use of resources. The spare cycles
f the past are to a great degree eliminated, and therefore decisions
uch as how and when to scale, which technologies or tool chains to
se, and efficient software design, become far more important than
hey have been during the pre-cloud era. For example, if a company
an use a smaller VM instance by requiring less RAM, then it will
educe its operating costs.

.1.5. Evaluating systems
New scales mean new challenges. Systems that work fine at

mall scales, or in simulation, may face new problems at larger
cales caused by bottlenecks that were not previously apparent.
his is prevalent in the analysis of ‘Big Data’ (Jacobs, 2009). Of par-
icular concern to researchers is that the problem of evaluating new
deas applies to their research as much as, or more than, software
evelopment in industry. Problems may only occur at a certain

evel of scale and concurrency. We discuss this issue further in
ection 6.

.1.6. Security
Maintaining data and system security is a challenge, not least

ecause data that was previously hosted on a company’s inter-
al servers may now reside on a third party machine and possibly
eside alongside the data and computation of third parties. Tradi-
ional firewalls and intrusion detection systems do not apply and
he sandboxing of virtualisation limits the visibility of network traf-
c, impairing the monitoring of this traffic by cloud clients as a
efensive measure.

.1.7. Managing the business model
Reese (2009) notes that it is sometimes lost in discussions of

loud computing that scalability in itself is not an end, rather
hat scalability must coincide with the goals of the business.
or example, serving extra users may not necessarily be prof-
table, if those users are unlikely to purchase a given product
r service. Critical to achieving a sustainable business model is
he management of scalability and the predictive modelling of
emand.

.1.8. Accelerated development cycles
The difficulty of distributing software to individual users is

ften avoided by employing cloud computing. Only server-side

oftware need be updated when changing a service provided over
he web, for example. Furthermore, the roll-out of new software
an be limited to given users or geographical areas, a technique
ometimes referred to as canarying or A/B testing. Thus traditional
and Software 86 (2013) 2225– 2241

barriers to release are no longer an object, and companies such as
Google frequently release multiple revisions of their software in
a single week. This brings new challenges in an accelerated life-
cycle, such as continuous testing, version control and maintaining
documentation.

3.1.9. Risk management
There are two major risks facing an organisation hoping to

migrate or deploy to the cloud (Armbrust et al., 2009, 2010; Cliff,
2010). The first is the issue of vendor lock-in, particularly when
making use of platform-as-a-service, which relies on provider-
specific APIs. An accepted standard for cloud interoperability has
yet to be proposed, and as providers continue to diverge in their
approach to provision, such standardisation looks increasingly
unlikely. Projects such as Eucalyptus (Nurmi et al., 2009) have
suggested a more pragmatic approach, by creating open-source
implementations of proprietary APIs. The second major risk sur-
rounds data governance, when data is trusted to a third party (the
cloud host) and in situations particular to cloud computing, such as
coresidency.

3.2. Challenges for cloud providers

Principally, cloud providers are concerned with maintaining
their service level agreements as efficiently as possible, and in a
scalable manner:

3.2.1. Virtual machine management
It is convenient to consider the machines that populate a data-

centre as a single massively parallel unit. From this point of view,
the problems of resource management are clear: scheduling must
take place across tens of thousands of machines; individual vir-
tual machine instances must be assigned to physical servers; loads
must be monitored and balanced; VMs can be migrated between
servers, and memory can be paged across the network (Williams
et al., 2011). Coresidency also brings challenges of new pathologies,
in the same way that hard disk ‘thrashing’ may affect conventional
shared systems.

3.2.2. Managing oversubscription
Many cloud providers take advantage of the variable workloads

of clients by utilising oversubscription to reduce their costs. In an
oversubscribed system, the amount of resources provisioned to
clients exceeds the total capacity of the physical resources available
to the provider. The challenge is to anticipate when demand might
outstrip supply, and to take measures to mitigate such situations
without violating SLAs.

3.2.3. Translating SLAs to low-level behaviour
There is currently a disconnect between the high-level business

model of SLAs and the low-level resource management of kernels
and hypervisors.

3.2.4. Scalable service provision
As well as providing infrastructure, most large cloud providers

also provide some services, in the form of an API. In constructing
such services, they face many of the same challenges as their cloud
clients. For example, distributed large-scale storage systems have
seen considerable development in the last five years. The main
challenge is to ensure scalability and resilience (DeCandia et al.,
2007).
3.2.5. Resource efficiency
Providers aim to reduce their expenditure through optimis-

ing the consumption of resources including CPU time, memory

stems

u
p
(
c
t
f
t
v

4

p
c
g
a
c
r
h
S

b
p
f
A
o
a

4

i

p
s
w
c
T
v
c
i
i
c
n
i

h
c
c

r
e
o
t
p
m

v

o
o
i

b
k
p
t

cloud providers as well as cloud clients. For a cloud provider it will
result in less demand on physical hardware. For cloud clients, spe-
M. Harman et al. / The Journal of Sy

sage, data storage space and power consumption. For exam-
le, modern datacentres are for the most part power-inefficient
Barroso and Hölzle, 2009). The main overhead of running a data-
entre is climate management. Most effort in this area focuses on
he design of cooling systems, but once efficiency improves, the
ocus may shift onto ‘energy-scalable’ computing, that is ensuring
hat low utilisation corresponds to low power consumption and
ice-versa.

. Example applications of SBSE to cloud engineering

We now provide illustrative examples of specific optimisation
roblems in cloud computing, in order to demonstrate the appli-
ability of SBSE to cloud engineering. To avoid imprecision, we
ive detailed suggestions on how each task may be formulated
s a search problem, and also reference related work in SBSE that
ould be applied in this domain. Detailed descriptions of SBSE algo-
ithms and the software engineering applications to which they
ave hitherto been applied can be found elsewhere in surveys on
BSE (Harman et al., 2012a).

We have chosen optimisation problems that can potentially
enefit both, cloud providers as well as their clients. The exam-
les given in Sections 4.1, 4.3 and 4.5 address specific problems
aced by cloud providers of Infrastructure As A Service, Platform As

 Service or Software As A Service. The problems and solutions laid
ut in Sections 4.2 and 4.4 can serve to benefit both, cloud providers
s well as clients.

.1. Provider resource efficiency: cloud stack configuration

One challenge to both providers and clients, noted in Section 3,
s to reduce the resource consumption of their systems.

In this section, we propose an approach that will help cloud
roviders optimise their cloud stack configuration of physical
ervers inside a datacentre. Fig. 6 illustrates a typical server soft-
are architecture in a cloud environment. A physical server in a

loud datacentre executes a hypervisor, generally Xen or VMware.
he hypervisor runs a single operating system, such as a modified
ersion of Linux, as the dom0 host operating system. This host is
ontrolled by the cloud provider to administer the node; residing
n dom0 provides it with special access privileges. Guest operat-
ng system instances are the virtual machines utilised by a cloud
lient, and execute within domU. These are multiplexed on the
ode by the dom0 host. Each of these layers may be configured

ndependently.
There are many opportunities for optimisation: both the dom0

ost and the domU guest operating systems can be subject to
onfiguration tuning, in order to optimize particular performance
haracteristics, such as network bandwidth and energy efficiency.

Cloud providers use host configuration parameters to offer a
ange of instance configurations, each with fixed characteristics. For
xample, the Amazon t1.micro instance currently offers 613 MB
f RAM and up to two virtual processing units. These characteris-
ics may map directly onto the appropriate Xen configuration file
arameters:
axmem = 613

cpus = 2

Such host configuration files specify how the physical resources
f the underlying hardware node should be divided amongst guest
perating systems. This configuration can even be altered dynam-
cally.

The guest operating system settings are generally configured at

oot-time, for example through the boot parameters to the Linux
ernel (Red Hat Enterprise, 2007). Many of these parameters are
erformance-sensitive. Some parameters can be configured at run-
ime, but even changes that require a reboot may be applied in a
and Software 86 (2013) 2225– 2241 2231

distributed and robust cloud solution where shorter uptimes are
anticipated.

4.1.1. Formulation
We can represent the parameters of the hypervisor or operating

system as a value vector containing multiple types, suitable for the
application of a hill-climber or genetic algorithm. Search operators
should respect parameter boundaries and constraints that deter-
mine the structure of feasible solutions. In an offline scenario, in
which the optimisation is performed in a safe sandbox environment
disconnected from the live cloud instances, this may be achieved
by punishing unfeasible solutions using a specially designed fitness
function. In online optimisation, however, the search algorithm will
evaluate the fitness of candidate solutions in situ using the live cloud
instances as the fitness function. Consequently, the search will have
to be limited to the subspace of feasible solutions.

In general it seems reasonable to assume that an individual
user’s previous workload patterns may be indicative of future
behaviour, and optimise accordingly. This approach would be sim-
ilar to the work on SBSE for compiler optimisation, which searches
the space of parameter settings: SBSE has been advocated as a
tuning mechanism for compilers (Cooper et al., 1999). Hoste and
Eeckhout (2008) demonstrated how a compiler can be tuned by
targeting different performance objectives for the code it produces.
Compilers have a surprising number of possible parameters that
can be tuned in this manner: gcc has about 200. Indeed, one way
to tune an operating system or other cloud stack component would
be to search for suitable compiler settings that enable a recompiled
version to perform better in a given scenario.

4.1.2. Evaluation function
The evaluation function for the tuning of cloud stack com-

ponents would depend on the performance objectives to be
monitored and optimised. Obvious choices are dynamic perfor-
mance attributes including memory usage, execution time and
energy consumption. Since these properties are subject to variabil-
ity depending on the given workload, the evaluation function will
be forced to seek normalisation through sampling and statistical
analysis. This is a cross-cutting issue in cloud optimisation and is
discussed further in Section 6.

4.2. Client resource efficiency: image specialisation

Cloud providers usually find themselves running many
instances using the same machine image, the full features of which
are unlikely to be required in every case. On a given virtual machine,
a customer will usually be running a specific application, such as
a LAMP (Linux-Apache-MySQL-PHP) stack. Either through explicit
declaration of the intended use by customers, or by permitted mon-
itoring of activity, the provider could tailor the image to better fit
the needs of the customer.

It seems wasteful to use only a fraction of software within an
image; the larger the scale of the datacentre, the worse this prob-
lem of ‘unused software plant’ will be. Specialisation could help
in reducing image size, reducing execution time, and lowering the
time required to migrate an image across the network (Voorsluys
et al., 2009). The beneficiaries of such specialisation would be both,
cialisation offers one way of cutting cost, for example by consuming
less resources.

At present cloud providers already offer many different vir-
tual machine images. For example, Amazon currently provides 755

2232 M. Harman et al. / The Journal of Systems and Software 86 (2013) 2225– 2241

 cloud

i
i
d
U
B
c
s
i
f
L

o
r
c
c

g
s
P
t
a
a
(
a

4

m
S
c
n

m
E
c
B
n
P
k

1

Fig. 6. Schematic diagram of

mages3 for customers on the EC2 cloud platform. Each image
ncludes a particular operating system release and a set of bun-
led applications. The ‘BitNami WordPress Stack’ image provides
buntu Linux and all necessary software to support WordPress:
itNami, WordPress, Apache, MySQL, PHP and phpMyAdmin4. Such
oarse-grained specialisation can be formulated as the selection of a
et of appropriate Linux distribution packages (e.g. RPMs) to include
n a VM image. There is a well-defined dependency graph structure
or RPM packages, which could be co-opted to create specialised
inux images for the cloud.

There exists the interesting problem of identifying the trade-
ff between the frequency of use of a module versus potential size
eduction should it be removed. If removing a rarely used module
an result in a significant space saving, a workaround may be worth
onsidering.

More fine-grained VM specialisation is also possible. A sin-
le RPM (e.g., a Linux library such as libstdc++) may contain
uperfluous functionality for the purpose of a given VM instance.
rogram slicing might help to reduce the library to the bare essen-
ials for the use cases required (Guo and Engler, 2011). Even more
mbitious specialisation may be achieved by rewriting application
nd operating system components. Manual specialization effort
Madhavapeddy et al., 2010) demonstrates clear potential; the
pplication of SBSE should automate this process.

.2.1. Formulation
For the reduction of image size through the deletion of unused

odules, the search could use a dependency graph representation.
earching for compromises between usage and size reduction is
losely related to the cost-benefit trade-offs in requirements engi-
eering (Zhang et al., 2007; Durillo et al., 2009).

More generally, this is a type of ‘partial evaluation’ of the
achine image with respect to the intended application. Partial

valuation (PE) has been studied for many years as a way of spe-
ialising programs to specific computation (Beckman et al., 1976;
jorner et al., 1987; Jones, 1996). However, highly non-trivial engi-

eering work would be required to adapt and develop existing
E approaches to the scale required, such as modifying the Linux
ernel, which may run to several millions of lines of code.

3 https://aws.amazon.com/amis (accessed April 2012).
4 https://aws.amazon.com/amis/bitnami-wordpress-stack-3-3-1-0-ubuntu-

0-04.
 application execution stack.

Another approach would be to use program slicing (Harman
and Hierons, 2001; Silva, 2012) to ‘slice away’ unused parts of
an image that can be statically identified. Like partial evaluation,
slicing has been studied for many years (Weiser, 1979). However,
despite many advances in slicing technologies, scalability is cur-
rently limited.

An alternative to PE and slicing for image specialisation would
be to use a search based approach to find parts of the image that
can be removed. More ambitiously, a search based approach might
also seek to construct a new version of the image, specialised for
a particular application, using the original image to provide both a
starting point and an oracle with which to determine the correct
behaviour of the re-write. A natural choice of formulation for this
problem would rest on the use of genetic programming. Related
SBSE work using Genetic Programming (GP) (Koza, 1992) includes
recent advances in automated solutions to bug fixing (Arcuri and
Yao, 2008; Weimer et al., 2009), platform and language migration
(Langdon and Harman, 2010) and non-functional property optimi-
sation (White et al., 2008, 2011; Sitthi-Amorn et al., 2011).

A typical representation in a GP search is an abstract syntax tree.
However, the GP process inherently involves maintaining many
copies of the program under optimisation and would hence be
memory-intensive. Fortunately, recent applications of genetic pro-
gramming to the problem of cloning systems and subsystems have
developed constrained representations to overcome such scalabil-
ity issues. For example, Langdon and Harman (2010) use a grammar
based GP approach, in which changes are constrained by a grammar
specialised to the program, while Le Goues et al. (2012) represent a
solution as a sequence of edits to the original in a manner reminis-
cent of earlier work on search based transformation (Ryan, 2000;
Fatiregun et al., 2005). Either approach could be used to scale GP
to the image specialisation problem. Profiling could also focus the
search, identifying those software components that are frequently
executed.

Sufficient knowledge of a system’s behaviour will play a critical
role. The upper limit of the deletion approach is defined by the
minimal functionality that must be preserved. It is the behavioural
characteristics that would provide a pseudo-specification for the
specialisation; the resulting software should be able to handle all
system behaviours that clients are interested in. The primary source

of this knowledge should be usage profiles.

Accumulated profile data would provide a certain level of
confidence in determining the behavioural characteristics that
must be retained. If further confidence is required, Search Based

https://aws.amazon.com/amis
https://aws.amazon.com/amis/bitnami-wordpress-stack-3-3-1-0-ubuntu-10-04
https://aws.amazon.com/amis/bitnami-wordpress-stack-3-3-1-0-ubuntu-10-04

stems

S
2
F
t
t
a
t

4

c
t
s
r
w
t
i
d
l

b
(
a
p
m
c
o
c
m
f

4

r
m
c
e
c
f
5
d
h

b
T
a
a
t
a
r
o
d
F
a
i
(

fi
m
‘
a
S
p
b

M. Harman et al. / The Journal of Sy

oftware Testing (SBST) (McMinn, 2004; Harman and McMinn,
010; Lakhotia et al., 2010a; Alshahwan and Harman, 2011;
raser and Arcuri, 2011) could also be used to specifically target
hese apparently unexecuted regions of code to raise confidence
hat they are not executed. Code that resists execution for the
pplication in question, even when search is used specifically to
arget its execution, might be speculatively removed.

.2.2. Evaluation function
Natural target metrics are image size, memory usage, and exe-

ution time. For image size, we may consider the trade-off between
he size of images and the functionality provided. Image size is
tatic, eliminating the need to make repeated observations. With
egards to memory usage and execution time, we may consider
hether average, peak or minimal requirements are most impor-

ant. The average draw on either of these resources may not be as
mportant as the variance, and we might seek to raise the minimum
raw on resources and reduce the maximum draw, thereby aiding

oad prediction and management on a cloud infrastructure.
If an online approach is adopted, then an engineer might also

e presented with occasional reports of Pareto-optimal trade-offs
Harman, 2007) currently possible for heavily used applications. In
ll optimisation work, it is important to consider the appropriate
oint at which to deploy human judgement in an otherwise auto-
ated process (Harman, 2007, 2010). These human judgements

ould be informed by the automated construction of speculative
ptimisation reports from realtime image specialisers, running
oncurrently with the applications they serve and which absorb and
ake use of otherwise redundant datacentre resources to optimise

or the future.

.3. Virtual machine assignment and consolidation by providers

Virtualisation offers opportunities for power consumption
eduction using consolidation, whereby some virtual machines
ay be migrated from one physical server to another. Traditional

onsolidation can be employed so that some servers may be pow-
red down or transitioned to a low-power configuration. Servers
ontinue to use significant amounts of power when they are idle;
or example, Google report that idle power is ‘generally never below
0% of peak’ (Fan et al., 2007). Hence consolidation may be more
esirable than load-balancing, although powering down servers
as an associated cost in the time taken to restore them.

The problem of allocating VMs to servers is essentially one of
in-packing, albeit dynamic in nature and under many constraints.
he constraints are implied by the SLAs between the cloud provider
nd its clients. For example, we may seek to make power savings
s described above, but also wish to avoid cohosting two VMs from
he same customer on the same machine or network segment, so
s not to affect the terms of an SLA in regards to availability or
esponsiveness. To complicate matters, it is common practice to
versubscribe physical hardware (Williams et al., 2011), such that
emand may in some circumstances be expected to exceed supply.
urthermore, the energy profile of an application and of a server
ppears to be highly variable and experimental studies investigat-
ng servers’ energy consumption have reported conflicting findings
Barroso and Hölzle, 2009; Lee and Zomaya, 2012).

The allocation of VMs to servers has two overriding goals:
rstly, to reduce energy consumption by shutting down unoccupied
achines when demand is low within a datacentre, i.e. traditional

consolidation’. Secondly, to make efficient use of machines that

re running without impacting on a customer’s VM in a way that
LAs cannot be met. Aggressive consolidation may lead to com-
etition for resources on heavily loaded servers, and it may also
e problematic if demand rises faster than powered-down servers
and Software 86 (2013) 2225– 2241 2233

can be restored. Hence this problem and the predictive modelling
of demand are related.

There exists a substantial body of literature on virtual machine
management (Srikantaiah et al., 2008; Beloglazov and Buyya, 2010;
Lee and Zomaya, 2012), which invariably suggest handwritten
heuristics. The application of SBSE methods offers an opportunity
to increase the sophistication and efficiency of management.

4.3.1. Formulation
Let us first consider the simplest case of a single static situation.

We may express this task as a search problem by considering a solu-
tion as a mapping from a description of the demand for resources
onto an existing infrastructure of physical machines. To build on
the formulation from Lee and Zomaya (2012), a servers si out of w
servers belongs to the set S, and the utilisation Ui of a single server
si ∈ S can be described as the sum of the utilisation ui,j due to each
resident virtual machine vj running on si thus:

Ui =
n∑

j=1

ui,j (1)

The energy consumption of a single server, ci, must then be
modelled as a function of its utilisation,

ci = b + f (Ui) (2)

where b indicates the minimal (base) energy usage of a server that
is idling. However, this assumes that all utilisation is homogeneous,
whereas in fact we might regard Ui as a k-dimensional vector, giving
utilisation for each of the k types of resource (CPU, memory, energy,
etc.) provided by a server. Lee and Zomaya also assume that f is a
linear function, which is in conflict to that reported by Barroso and
Hölzle (2009).

Momentarily discarding these limitations, the problem can then
be considered as searching for an assignment consisting of a vector
A such that Aj describes where virtual machine vj should reside. The
goal is to minimise overall energy consumption, C:

C =
w∑

i=1

ci · Ri (3)

where Ri gives a boolean value indicating if a server is running at
least one virtual machine:

Ri =
{

1 if ∃j : Aj = i

0 otherwise
(4)

It is not unreasonable to assume that a provider may wish to
separate virtual machines from the same customer onto separate
servers, i.e. letting cust(vx) denote the customer who is running
virtual machine vx, we want to enforce the following constraint:

∀i, j, i /= j : cust(vi) = cust(vj) ⇒ Ai /= Aj (5)

There will be further constraints based on the risk profile of
highly utilised servers. Furthermore, we may consider the costs of
transition from the current allocation At at time t to the suggested
allocation At+1. If we assume a fixed cost for VM migration, then we
may try to minimise the difference between At and At+1. If a server
is to be shutdown or restarted, then we must take the associated
cost into consideration.

Much depends on whether the problem is treated statically, in
the sense that a single allocation is found for a given situation, or
whether the goal is to construct a policy to be executed dynam-

ically. One interesting hybrid approach would be to search for a
static allocation that not only optimises a given evaluation func-
tion, but also takes into account future scenarios, for example in
order to minimise the cost of migrations given potential anticipated

2 stems

d
(
a

r
r

A

m
d
d
p
t
h

u
E

G
m
P
m
2

4

t
a
v
p
g
o
i
t

t
i
t
a
b

4

t
r
t
t
a
b
l
m
a
V
s

m
t
o
t
p
s
u
k

234 M. Harman et al. / The Journal of Sy

emand changes. This idea is similar to that of Emberson and Bate
2010) in their SBSE work on allocating processes to processors in

 multiprocessor system.
The static allocation of VMs to physical servers can be rep-

esented using the integer vector, A. A dynamic solution will be
epresented as a program or heuristic function

t+1 = f (At, Ut) (6)

A more ambitious policy could incorporate more complex infor-
ation, such as anticipated demand, into this function. The above

iscussion is heavily simplified, and the constraints involved will
epend on the design of the datacenter, as well as the goals of the
arties involved. Justafort (2012) considers the impact at applica-
ion level, for example, where Stillwell et al. (2012) optimise on
eterogeneous platforms.

Searching over a vector space could be performed using Sim-
lated Annealing (Kirkpatrick et al., 1983), the technique used by
mberson and Bate.

The search for a dynamic heuristic would be well-suited to a
enetic Programming approach, with a function mapping virtual
achines to physical servers represented as an expression tree.

revious work on scheduling in GP provides examples of how this
ight be achieved (Jakobović and Budin, 2006; Jakobovic et al.,

007).

.3.2. Evaluation function
The objectives of this task are to minimise power consump-

ion within the constraints specified by an SLA whilst taking into
ccount potential future usage. SLA constraints will include pro-
iding enough physical RAM, ensure sufficiently low latency, and
roviding enough independence of execution to maintain uptime
uarantees – for example, by avoiding the coresidency of a client’s
wn virtual machines on a single server. Future usage must be taken
nto account to ensure that violation of an SLA constraint is unlikely
o occur after reassignment.

There are three approaches to evaluation the quality of a solu-
ion: modelling, simulation and physical evaluation; the latter can
nvolve real-time feedback from the datacentre. The CloudSim
oolkit (Calheiros et al., 2011) provides an appropriate level of
bstraction for this evaluation function and was used previously
y Beloglazov and Buyya (2010).

.4. Scale management for cloud clients

One of the key advantages of cloud computing is the ability
o automatically scale a server infrastructure for an application in
esponse to changes in demand. A cloud client will wish to minimise
heir expenditure; they are billed for the computational resources
hat they consume. A higher specification VM, with more RAM or

 faster processor, incurs a higher cost. Further, costs are typically
ased on ‘instance hours’, i.e. how long a VM is running for, regard-

ess of the amount of computation performed. Idle instances cost
oney and it is important to bring more VMs up when there is

 surge in demand, and scale an application down by terminating
M instances when demand drops. As noted in Section 3.1, this
calability must be managed.

Thus a cloud application must be configured such that it
inimises resource usage while maintaining a certain level of

hroughput. This can be achieved by either anticipating demand
r by constructing a set of rules that react to changes in an applica-
ion’s usage profile. Fluctuations can be caused by factors including

romotional campaigns, the ‘Slashdot effect’ where a popular web-
ite links to a smaller website, and even behavioural patterns of
sers. An example often cited is the electricity spike caused by
ettles switched on at half time during popular sporting events.
and Software 86 (2013) 2225– 2241

Some variations in demand are predictable, while others are
not. Cloud providers Amazon and Microsoft Azure allow a client
to configure rules for scaling an application. These rules are based
on metrics including maximum, minimum and average CPU usage,
the number of items in a servers’ request queue and so on. They are
typically designed by a developer and system administrator.

Fig. 7 shows an example snippet from a Microsoft configuration
document. The top half contains rules for a scheduled scaling of
an application (also called ‘constraint rules’), while the bottom half
shows rules that define when to react to fluctuations in an applica-
tion’s usage (also called ‘reactive rules’). Both types of rules should
be configured in a way that maximises performance, but minimises
cost. For example, one would not want to scale beyond the level
specified by the constraint rules, because otherwise a client will be
charged for idle instances. Equally, the reactive rules need to be con-
figured such that they are robust to sudden spikes in user demand.
We can consider using SBSE to optimise such rules in order to find
an optimal trade-off between performance and cost.

4.4.1. Formulation
The rules shown in Fig. 7 are described in an XML format. As

such they are already in a format amenable to a GP approach. The
structure of an XML document is defined in different schemas that
can be used by the search to ensure it only generates valid XML
documents.

Rules are composed from conditions and associated actions.
Condition operators such as equals, greater, greaterOrE-
qual, less, lessThan, not can be used to form part of the
function set. When a condition evaluates to true, the correspond-
ing action is performed. Actions are also functions that take a
variable number of parameters. For example, the scale action is
parameterised by the type of VM to scale, as well as how many
replicated VMs should be created.

The terminal set can be constructed from the attributes defined
for the different elements in the XML schema, along with their val-
ues. For example, a startTime attribute is of type timestamp. In
addition, the terminal set needs to contain all possible VM config-
uration options along with the data types required by the function
set (e.g. the range of integers).

4.4.2. Evaluation function
We can treat this as a multi-objective optimisation problem

where our objectives are latency and cost. Assume we have an exist-
ing load test suite. We may evaluate a given set of constraint and
reactive rules by measuring the average latency observed for the
load tests. Equally, we can measure the cost of executing a load test
suite in terms of computational resources required.

Evaluating a set of scaling rules by running an entire load test
is likely to be too computationally expensive in practice. Forrest
et al. (2009) showed in their work on automatic patch fixing that
sampling from a set of test cases can be more efficient than using
an entire test suite. In their work, test cases were used to validate
candidate patches, and a patch was considered valid if it passed all
test cases. They found that a sampling method provided sufficient
information to a GP in order to guide it towards possible solutions.
Candidate solutions only have to be evaluated on the complete test
suite once an optimisation run finished, or after a given number of
generations.

Since the evaluation function uses two conflicting objectives,
the GP will not generate a single solution. Instead we will obtain a
Pareto front. A Pareto front is a set of non-dominating, Pareto opti-
mal, solutions. Solutions are said to be non-dominated if no other

solution exists that is better in all objectives i.e. both latency and
cost.

Since the output of the search will be a set of equally good
solutions, a decision maker has to decide which solution to pick.

M. Harman et al. / The Journal of Systems and Software 86 (2013) 2225– 2241 2235

F from

a

V
p
c

4

c
N
a

n
t
u
c
w
a
s
o
i
m
a
c

m
c
f

4

c
s
c
t
b
a
r
s
o

Pi = Pi−1 + �i (8)

where �i = −0.7 × �i−1 + �(�). In their formula, �(�) denotes white
noise with standard deviation �. The authors matched � to a value
ig. 7. Example configuration rules for when to scale an application. Snippet taken
nd optimized using genetic programming.

isualising a Pareto front in two dimensions can help with this
rocess as it illustrates the trade-offs between lower latency and
ost.

.5. Spot-price management

We have seen how SBSE might be used to reduce the cost for
loud clients by evolving optimised scaling rules for an application.
ow we examine the management of demand from the position of

 cloud provider.
From the point of view of a cloud provider, when a server is

ot running at full capacity, underutilisation of resources equates
o lost potential revenue. Thus, it is important to maximise the
sage of their cloud infrastructure at any given time, given suffi-
ient spare capacity to cope with anticipated demand surges. One
ay to address this problem is to auction off unused resources, such

s Amazon’s Spot instances (Amazon, 2012). A client can bid for a
pot instance, and when their bid matches or exceeds the price
f a spot instance, the instance becomes available to them. A spot
nstance remains available to the client for as long as their bid price

atches or exceeds the price of an instance. Prices are periodically
djusted by the cloud provider, and when a spot price exceeds a
lient’s bid, they lose their instance.

To maximise the effectiveness of spot instances, a cloud provider
ust efficiently divide spare capacity amongst suitable instance

onfigurations, and subsequently make those instances available
or auction.

.5.1. Representation
We propose to formulate the problem of auctioning off unused

apacity as a bin-packing problem, in a similar manner to the con-
olidation problem in Section 4.3. Bins denote servers with spare
apacity and the objects to place into the bins are VM instance
ypes. We assume that a provider only offers a limited num-
er of spot instance sizes. The goal is to distribute VM instances

cross a server infrastructure such that the amount of idle server
esources are minimised. For ease of explanation we will only con-
ider the distribution of VM instances over a fixed time period of
ne hour.
a Microsoft Azure configuration file (Microsoft, 2012). Such rules can be generated

Let us denote the different types of VM instance a provider may
offer as vt1, . . ., vtn. We can simply represent the possible allocation
of VM instances to server bins as a matrix, as shown in Fig. 8. Rows
in the matrix denote VM instance types and the columns denote
server bins. The numbers in the row/columns denote how many
new instances of a particular VM type are allocated to a specific
server.

4.5.2. Evaluation function
As an evaluation function we propose to minimise spare capac-

ity. More formally, let hi denote the spare capacity (headroom) of
server si. This is determined with reference to Eq. (1):

hi = 1 − Ui = 1 −
n∑

j=1

ui,j (7)

We must then find a new allocation of spot instances to servers,
represented by the matrix B as illustrated in Fig. 8 where and Bi,j
denotes the number of new VM instances of type j, to be deployed
on server i.

The evaluation function will be to reduce hi over time, under
the constraints implied by SLAs. Offering the VMs according to the
matrix B (whether found directly or output by a search-generated
policy) is not enough to improve utilisation, as buyers for the new
VM instances must be found. In particular, B does not generate a
price at which a particular VM type should be auctioned off.

Ben-Yehuda et al. (2011) showed that spot instance prices
appear to be set, not by supply and demand, but rather a ran-
domised algorithm. In particular, the authors found the following
formula to be a good fit for historical price setting:
Fig. 8. Example matrix representing possible VM instance type allocations to server
bins.

2236 M. Harman et al. / The Journal of Systems and Software 86 (2013) 2225– 2241

ing ea
S

o
d
a
t
o
f

5

p
o
t
t
t

d
u
p
t
i
e
a
c
a

t
m
p

5

S
(
2
c
r
n
t
S
w

5.1.3. Multi-version deployment
One way to test for regression faults, or evaluate patches, is to

deploy modified software only to a certain group of users, known
Fig. 9. Share of papers target
ource: SBSE Repository Zhang et al. (2012) (data from 1976 to May 2012).

f (0.39 × (C − F)), where C denotes the maximum (ceiling) and F
enotes the minimum (floor) price of a particular VM instance. Once

 search algorithm has found an optimal allocation of VM instance
ypes for idle resources, the VM images can be pre-built and sold
ff. The price for an instance type can then be set using the above
ormula.

. Challenges and opportunities for existing SBSE methods

In the previous section we presented an overview of challenges
osed by cloud systems that will lead to new applications and
bjectives for the SBSE research and practitioner community. In
his section we turn our attention to existing areas of SBSE research
hat face new challenges and new opportunities when applied in
he cloud domain.

Search Based Software Engineering research has produced many
istinct subdisciplines, most of which will remain comparatively
ntouched by the migration to cloud platforms. For instance, the
roblems of requirements engineering (Cheng and Atlee, 2007) and
he associated SBSE research (Zhang et al., 2008), will not necessar-
ly change fundamentally. The main challenge is likely to remain the
licitation, understanding and balancing of multiple requirements
nd their relationships and tensions, in the presence of multiple
ompeting and conflicting stakeholders, with poorly understood
nd ill-expressed needs and desires.

However, for other areas of SBSE research and practice,
here will be a significant change, when the application focus

oves from traditional platforms and business models to a cloud
aradigm.

.1. Search based testing for the cloud

One of the biggest changes can be expected in the area of
BSE for testing, known as Search Based Software Testing (SBST)
McMinn, 2004; Harman, 2007; Ali et al., 2010; Harman et al.,
012a). The changes in this area are not entirely problematic;
loud platforms offer significant advantages to the tester that
esearchers in SBST may seek to exploit. This is particularly sig-

ificant, because testing and debugging form approximately half of
he overall research activity in SBSE (see Fig. 9). As such, an effect on
BST will have a significant impact of the SBSE research agenda as
hole.
ch SBSE research application.

5.1.1. On-demand test environments
One of the major bottlenecks in testing is the time it takes to

prepare test environments and execute test cases. Even when tests
can be executed in parallel, limited availability of hardware means
overall test execution time remains high. Further, up until now, it
has not been easy to setup a test infrastructure to run tests in paral-
lel. Cloud platforms offer a new solution to this problem. Apart from
unit tests, many tests such as integration and load tests depend on
an execution environment. We can easily replicate such environ-
ments by cloning a VM image. These can then be distributed across
many virtual machines to run in parallel.

5.1.2. Snapshotting
In a cloud environment, every application runs inside a virtual

machine. Thus, it is possible to take a snapshot of an applica-
tion, including its entire runtime environment, at an arbitrary
stage in its execution. This opens up many new possibilities for
debugging.

Traditionally software is deployed and installed on client
machines. Most software companies have little or no control
about the execution environment of their application.5 This lack of
information, or rather the huge configuration space applications
run within, means debugging a failure is a difficult process. In
cloud applications, the specification of a user’s machine is likely to
have much less impact on the correct running of software; users’
machines are becoming more and more akin to dumb terminals.
Since an application resides in the cloud, developers have full
access and control over its environment. Thus, when a failure
occurs, we are able to take a snapshot of the entire VM state for
debugging purposes.

In a similar manner, there is the possibility of rapidly forking a
running VM instance (Lagar-cavilla et al., 2009). This will further
enable efficient software testing, by enabling a search process to
bifurcate the execution of a problem based on, for example, a branch
predicate.
5 For example some Windows applications are deployed under Linux with the
help of third party software such as Wine (2012).

stems

a
F
o
t
w
m
o

5

e
c
t
a
m
a
t
a
a
e

5

d
i
p
b
a
s
a
l

w
T
t
k

r
s
c
f
t
s
r

5

S
a
q

d
n
c
u
r
i
r
p
t
u

i
f
i

M. Harman et al. / The Journal of Sy

s canarying. This notion is similar to alpha testing new features.
or example, Facebook recently evaluated its pay per post feature
n a relatively small audience in Australia and New Zealand, while
he rest of the world continued to use the ‘old version’. This means
e are able to easily collect profile information across versions. We
ay use this information to help SBST, for example through seeding

f optimisation algorithms.

.1.4. Quantifiable cost
It is also worth noting that the cloud offers a new way of

valuating the cost of testing. Le Goues et al. (2012) used the
loud to measure the cost of a bug fix. This is simply the mone-
ary charge incurred for the computational resources used, such
s the time it took to find a patch. In testing we could equally
easure the cost of code coverage, the cost of finding a fault

nd so on. Just as a cloud client might consider whether scaling
o another VM will bring sufficient return in revenue, we may
lso consider the return on investment of additional resources
pplied to testing. The elastic resources of the cloud must be used
fficiently.

.1.5. Short release cycles
Previously, bugs were expensive to fix once software had been

eployed. This was partly because software was ‘shipped’, and thus
t was not easy to patch deployed software applications. Even when
atches were available for download online, no assumptions could
e made whether a patch had been downloaded and installed by

 user or not. This in turn lead to its own security vulnerabilities,
ince hackers could use patches to detect security vulnerabilities,
nd then exploit users that had not updated their software with the
atest patch.

Cloud computing also offers new opportunities in this area. Soft-
are no longer needs to be shipped, as it is provided in the cloud.

hus, when a VM is updated with a patch, all users of an applica-
ion automatically start using the patched version, without their
nowledge or intervention.

The ability to easily deploy software is leading to ever shorter
elease cycles. Small changes can be pushed to every user of the
oftware, almost in an on-demand manner. These short release
ycles will require improvements in how regression testing is per-
ormed. One research avenue could be how to make regression
esting fit into a cloud development cycle. It needs to be efficient,
o it does not counteract the notion of ‘short release cycle’, while
emaining robust.

.2. Software maintenance

Much previous work in the area of software maintenance within
BSE has actually focused on refactoring software. For example,

 common goal has been to refactor software to achieve a given
uality in terms of cohesion or coupling metrics (Lutz, 2001).

As cloud computing relies on a centralised system of software
istribution, it presents new opportunities for automating mainte-
ance through search that were not possible in a standard desktop
omputing scenario. Firstly, software changes can be rolled out to
sers without user intervention. Secondly, these updates can be
olled out to a limited audience through canarying to limit the
mpact of any erroneous modifications, as well as the facility to
apidly backout those changes should it be required. This could
otentially allow SBSE researchers to automate more of the process
han has previously been palatable, as the risk profile of software
pdates is reduced.
Running many virtual machine instances, potentially duplicat-
ng software across many machines, offers new opportunities for
ault-finding and repair. Snapshotting, as described above, allows
mproved fault localisation by effectively capturing the information
and Software 86 (2013) 2225– 2241 2237

required to recreate a bug, or place the system in a state where a
bug may be replicated given the correct inputs. In addition, it opens
up the possibility of attempting to repair the problem automati-
cally, particularly if the problem relates to performance or resource
consumption.

For example, consider the work of Carzaniga et al. (2008), who
used different paths through a system, such as similar API calls,
to find a workaround for a given problem. Their work relied on
the redundancy inherent in software in that the same function-
ality can often be found in multiple locations. A similar approach
can be followed using different versions of the same software, and
those versions can also be used as oracles when automating repair.
In the cloud, there may exist many different versions of the same
software, all available to a repair mechanism through a global API.
Similarly, we may use snapshots to roll-back, modify, and re-run a
system after a crash or performance problem. An obvious method
of repair is to vary the software’s environment, by using a different
machine image or physical location in the datacentre.

6. Cross-cutting issues

This section discusses issues that must be addressed in the
design and implementation of experiments investigating SBSE for
the cloud. Researchers and engineers will encounter three com-
mon themes: the problem of effective evaluation of their ideas or
designs, how best to sample the available data in order to make
their decisions, and the phenomenon of increasing specialisation.

6.1. Prototyping and evaluation

Cloud datacentres are typically composed of servers in the tens
of thousands, and cost hundreds of millions of dollars to construct.
Constructing a datacentre is economically infeasible for an aca-
demic institution, but we must be able to evaluate our research
with sufficient fidelity to enable us to establish their credibility.
Engineers working in the industry face similar problems, and may
be limited to using existing facilities when demand for them is
low, or evaluation using canarying: limited roll-out of changes to
a restricted audience. If neither of these options are available, they
face the same challenges as academic researchers.

When working at the application level, for example when car-
rying out resilience testing, existing cloud services can be used.
However, any work that requires access to the lower levels of
the cloud stack will need a cloud testbed. The first option is to
use simulation, and there are a number of cloud simulation tools
under development (Kliazovich et al., 2010; Calheiros et al., 2011).
Such simulators may be appropriate for evaluating course-grained
behaviour under a given VM management system, by simulating
migration and consolidation patterns without concern for detailed
application behaviour.

The efficiency and fidelity of simulation restrict its application.
Therefore, it seems that part of the research agenda into cloud com-
puting must be the evaluation of a ‘scale model’ cloud approach.
Such small-scale cloud models could be constructed by building
fragments of cloud systems (e.g. a single rack of servers), or by
replicating larger slices of a datacentre using less capable hardware.

In designing both simulations and scale models of real cloud sys-
tems, there will be natural open research questions about whether
the models correctly simulate the behaviour exhibited by the real
world cloud. This is not an issue that is specific to SBSE for the
cloud, but an issue for any work that seeks to evaluate and exper-

iment with a model or simulation of the cloud and, indeed, is an
issue for any model of any system, such as for example, models and
simulations of financial systems (Cohen et al., 1983; Panayi et al.,
in press).

2 stems

I
(
w
i
c
f

i
f
m
p
p
a
s
T
i
a

i
r
r
S
G

6

m
t
n
a
a
s
fi
e
t
m
p
S
b
s
i

p
t
p
m

r
T
b
c
w
p
m
s

6

o
a
v
a
o

238 M. Harman et al. / The Journal of Sy

These issues are challenging but they are not insurmountable.
n the financial modelling domain for example, Darley and Outkin
2007), were able to construct a very effective model of the markets
hich was used to predict the impact of Nasdaq stock market dec-

malisation. If complex dynamic systems such as financial markets
an be effectively modelled and simulated, then there is grounds
or hope that the same may be true of cloud models.

Furthermore, the issue of designing a suitable cloud model is,
tself, an optimisation problem, making SBSE an ideal candidate
or cloud modelling too. The optimisation objective is to design the

odel (selecting parameters, architecture and properties) such that
redictions and behaviours observed using the model are appro-
riate simulations of real world clouds. This approach to design
nd tuning of models and simulations using search based optimi-
ation has already been applied to financial models (Rogers and von
essin, 2004; Narzisi et al., 2006). There is no reason to assume that
t cannot also be applied to optimising the design of cloud models
nd simulations.

The further challenge of generating representative workloads
s also problematic. In particular, we might hope to replicate
ealistic workloads as seen in existing datacentres. Due to the multi-
esidency of datacentres, this data may not be publicly available.
ome providers have released limited data (Mishra et al., 2010;
oogle, 2012).

.2. Monitoring and sampling

When discussing design issues at the high level, the difficulty of
easuring properties that are essential components of an evalua-

ion function can be lost. For example, consider power efficiency:
ot only is it difficult to accurately measure power consumption
nd relate that consumption to a particular virtual machine or
pplication, but the power consumption of a given application or
ervice may be heavily dependent on the demand and input pro-
le for that service. Given that there are a large number of potential
xecution scenarios, some form of sampling is inevitable; this raises
he issue of how best to choose that sample. Too large a sample

ay lead to an over-expensive evaluation function that cannot be
ractically accommodated within the constraints imposed by many
BSE algorithms. Search algorithms typically require large num-
ers of evaluations, so evaluation has to be efficient. However, too
mall a sample may yield an estimate of quality that may provide
nsufficient guidance for the search.

Finding the right sample size will, itself, be a matter of tuning
ragmatics or theoretical analysis for the SBSE approach used, but
his is not insurmountable. Compared to previous SBSE work, the
rocess of designing an efficient evaluation function will require
ore effort.
The variance in performance characteristics over the sample also

aises the issue of what form of aggregation is most appropriate.
his will depend on the applications in hand and will be influenced
y the target properties of the service level agreement between
loud provider and client. For instance, on some cloud settings, it
ill be important to reduce the variance in performance to increase
redictability of execution. However, in other cases, the engineer
ay seek to reduce the average load or the peak load on resources

uch as time and memory.

.3. Online optimisation

Many applications of SBSE to cloud systems will require online
ptimisation rather than offline optimisation, by performing in situ

daptation in the live environment. This is in contrast to most pre-
ious work, which has assumed pre-deployment optimisation in

 clean-room environment. Online optimisation is yet to be seri-
usly adopted by the SBSE community, and a major inhibiting factor
and Software 86 (2013) 2225– 2241

is the cost of computation: optimisation methods such as evolu-
tionary algorithms can require significant computational resources
themselves.

A possible solution to this problem has recently been proposed,
in the form of Amortised Optimisation (Yoo, 2012). Yoo suggests
distributing the cost of optimisation across multiple executions of
the target system: each execution of the target system provides a
single observation of the evaluation function. While the optimisa-
tion process takes place over longer timescales, the total amount
of computational overhead for the optimisation is significantly
reduced, allowing it to take place in the live environment.

Cloud systems provide an amenable environment for amor-
tised optimisation, as the parallel execution of the same application
across multiple virtual machines presents the possibility of speed-
ing up the amortised optimisation by aggregating many parallel
observations of the evaluation function. This is analogous to
past use of island models in distribution optimisation algorithms
(Whitley, 2001).

7. Conclusions

Cloud computing offers the SBSE research agenda a stimulus of
new challenges and opportunities. There is the challenge of using
SBSE to address the trade-offs inherent in cloud computing. There
are also new opportunities for extending past work in testing and
maintenance within SBSE to cloud-specific applications.

Though the fundamental technical concepts of the cloud
paradigm will be familiar to many, the emphasis they place on
the combination of virtualisation, dynamic re-assignment, distribu-
tion and parallelism does raise important new research questions.
This novel shift of emphasis also lends additional importance to
many already known, but underdeveloped, applications of software
engineering optimisation.

The shift to a pay-as-you-go business model for the deployment
and use of computation also creates new challenges and opportu-
nities. This shift is a ‘disruptive innovation’, because the cost of
computation can more readily be measured directly in monetary
terms. This is a significant change in the underlying computing
business model. One might imagine that real-currency costing may
ultimately have an impact on global finance. We may soon see
trading in ‘computational futures’ and, perhaps, even the cost of
computation as a ‘global currency standard’.

The ability to directly measure cost will also have a profound
effect on research, and particularly on SBSE research. Hitherto,
cost measurement has proved to be a thorny problem in software
engineering research: our forebears were forced to rely on cost sur-
rogates. For example, those who sought to measure development
cost had to be satisfied with function points, code size and per-
son months of developer effort. Similarly, in place of test cost, we
have become accustomed to using the test suite size, execution
time and test process duration. Cloud computing may change this:
development and test cost can be measured in dollars or yuan.

Most incarnations of SBSE are manifestations of the trade-off
between cost and value objectives. For these SBSE formulations,
the ability to measure cost in terms of the direct bottom line for
the organisation is likely to add realism and actionability. Results
for optimisation that produce reduced costs can be directly mea-
sured in financial gain to the adopters, making the business case
for adoption simpler and more compelling.

The outputs of SBSE research for cloud are also likely to be of high
impact because of the wide uptake of cloud research. Evidence of
the growth of interest and activity in cloud computing abound. In

this paper we have also presented evidence that the problems of
cloud engineering are highly amenable to SBSE solutions, reformu-
lating five such problems as SBSE problems. The rapid uptake of
cloud technologies will mean that research advances will be likely

stems

t
c
t

t
n
F
t
s
b
n
(
c

T
b
r
i
a
c

c
o
M
m
o

A

l
R
T
g
c
(

R

A

A

A

A

A

A

A

A

A

A

B

M. Harman et al. / The Journal of Sy

o impact on practice. However, the generic nature of many of these
hallenges, such as the virtualisation and distribution of computa-
ion, will also ensure that research will be highly transferable.

Despite enthusiasm for research on SBSE for the cloud, a ques-
ion may remain in the mind of the would-be researcher: ‘surely I
eed to own a cloud in order to do research in SBSE for the cloud?’.
ortunately, the nature of many of the cloud challenges means that
hey can be developed and evaluated without the need for a cloud
ystem. For example, for specialised virtualisation, evaluation can
e conducted on the degree to which the specialisation meets the
eeds of use case. Such evaluation can compare desktop versions
with and without specialisation) and need not, necessarily, be exe-
uted in the cloud to provide meaningful results.

In conclusion, there is a compelling case for SBSE for the cloud.
he amenability of SBSE, the directness of the relationship to the
usiness bottom line and likely impact are all motivations for the
esearch agenda advocated in this paper. The barriers to researchers
n terms of experimentation and evaluation are also not as great
s might be presumed; cloud ownership is not a pre-requisite for
loud research.

Cloud computing is all about a multi-objective balance between
onflicting and competing objectives. These are exactly the kinds
f problems that have made SBSE attractive to software engineers.
ulti-objective trade-offs also succinctly capture what it is that
akes software engineering engineering; engineering is all about

ptimisation.

cknowledgements

We gratefully acknowledge the invaluable assistance of our col-
eagues who read and commented on earlier drafts of this paper:
obert Feldt, Dimitrios Pezaros, Tim Storer, Richard Torkar, Posco
so, and Westley Weimar. This research was partly supported by
rants from the Engineering and Physical Sciences Research Coun-
il, and by the Scottish Informatics and Computer Science Alliance
SICSA).

eferences

badi, D.J., 2009. Data management in the cloud: limitations and opportunities.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
32, 3–12.

fzal, W., Torkar, R., 2011. On the application of genetic programming for software
engineering predictive modeling: a systematic review. Expert Systems Applica-
tions 38, 11984–11997.

fzal, W., Torkar, R., Feldt, R., 2009. A systematic review of search-based testing
for non-functional system properties. Information and Software Technology 51,
957–976.

fzal, W., Torkar, R., Feldt, R., Wikstrand, G., 2010. Search-based prediction of fault-
slip-through in large software projects. In: Second International Symposium on
Search Based Software Engineering (SSBSE 2010).

li, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K., 2010. A systematic review
of the application and empirical investigation of search-based test-case gener-
ation. IEEE Transactions on Software Engineering 36, 742–762.

lshahwan, N., Harman, M., 2011. Automated web application testing using search
based software engineering. In: 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011).

mazon, 2012. Amazon EC2 Spot Instances. http://aws.amazon.com/ec2/spot-
instances/ (accessed on 12.06.12).

rcuri, A., Yao, X., 2008. A novel co-evolutionary approach to automatic software
bug fixing. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC ’08).

rmbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Pat-
terson, D., Rabkin, A., Stoica, I., Zaharia, M., 2010. A view of cloud computing.
Communications of the ACM 53, 50–58.

rmbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patter-
son, D.A., Rabkin, A., Zaharia, M., 2009. Above the clouds: a Berkeley view of cloud

computing. Technical Report UCB/EECS-2009-28. EECS Department, University
of California, Berkeley.

arham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A., 2003. Xen and the art of virtualization. SIGOPS Operating Systems
Review 37, 164–177.
and Software 86 (2013) 2225– 2241 2239

Barroso, L.A., Hölzle, U., 2009. The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis Lectures on Computer Architec-
ture 4.1, 1–108.

Beckman, L., Haraldson, A., Oskarsson, O., Sandewall, E., 1976. A partial evaluator,
and its use as a programming tool. Artificial Intelligence 7, 319–357.

Beloglazov, A., Buyya, R., 2010. Energy efficient allocation of virtual machines in
cloud data centers. In: IEEE/ACM International Conference on Cluster Cloud and
Grid Computing.

Ben-Yehuda, O.A., Ben-Yehuda, M., Schuster, A., Tsafrir, D., 2011. Deconstructing
Amazon EC2 spot instance pricing. In: IEEE 3rd International Conference on
Cloud Computing Technology and Science (CloudCom 2011).

Bjorner, D., Jones, N.D., Ershov, A.P. (Eds.), 1988. Partial Evaluation and Mixed Com-
putation: Proceedings of the IFIP TC2 Workshop, Gammel Avernaes, Denmark,
18–24 Oct., 1987. Elsevier Science Inc., New York, NY, USA.

Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C.S., Sen, K., Tillmann, N., Visser, W.,
2011. Symbolic execution for software testing in practice: preliminary assess-
ment. In: 33rd International Conference on Software Engineering (ICSE’11).

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R., 2011. CloudSim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software-Practice & Experience
41, 23–50.

Carzaniga, A., Gorla, A., Pezzé, M., 2008. Healing web applications through automatic
workarounds. International Journal on Software Tools for Technology Transfer
10, 493–502.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E., 2008. Bigtable: a distributed storage system for structured
data. ACM Transactions on Computer Systems 4 (1–4), 26.

Cheng, B., Atlee, J., 2007. From state of the art to the future of requirements engi-
neering. In: Future of Software Engineering 2007.

Cliff, D., 2010. Remotely hosted services and ‘Cloud Computing’. British Educational
Communications and Technology Agency (BECTA).

Cohen, K.J., Maier, S.F., Schwartz, R.A., Whitcomb, D.K., 1983. A simulation model of
stock exchange trading. Simulation 41, 181–191.

Cooper, K.D., Schielke, P.J., Subramanian, D., 1999. Optimizing for reduced code space
using genetic algorithms. In: Proceedings of the ACM Sigplan 1999 Workshop
on Languages, Compilers and Tools for Embedded Systems (LCTES‘99).

Cornford, S.L., Feather, M.S., Dunphy, J.R., Salcedo, J., Menzies, T., 2003. Optimizing
spacecraft design – optimization engine development: progress and plans. In:
Proceedings of the IEEE Aerospace Conference.

Darley, V., Outkin, A.V., 2007. Nasdaq Market Simulation: Insights on a Major Mar-
ket from the Science of Complex Adaptive Systems. World Scientific Publishing
Company.

De Millo, R.A., Lipton, R.J., Perlis, A.J., 1979. Social processes and proofs of theorems
and programs. Communications of the ACM 22, 271–280.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W., 2007. Dynamo: Amazon’s highly
available key-value store. In: Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles.

Dijkstra, E.W., 1978. On a political pamphlet from the middle ages (a response
to the paper ‘Social Processes and Proofs of Theorems and Programs’ by
DeMillo, Lipton, and Perlis). ACM SIGSOFT, Software Engineering Notes 3,
14–17.

Durillo, J.J., Zhang, Y., Alba, E., Nebro, A.J., 2009. A study of the multi-objective next
release problem. In: Proceedings of the 1st International Symposium on Search
Based Software Engineering (SSBSE ’09).

Emberson, P., Bate, I., 2010. Stressing search with scenarios for flexible solutions to
real-time task allocation problems. IEEE Transactions on Software Engineering
36, 704–718.

Fan, X., Weber, W., Barroso, L.A., 2007. Power provisioning for a warehouse-sized
computer. SIGARCH Computer Architecture News 35, 13–23.

Fatiregun, D., Harman, M., Hierons, R., 2005. Search-based amorphous slicing. In:
12th International Working Conference on Reverse Engineering (WCRE 05).

Forrest, S., Nguyen, T., Weimer, W., Le Goues, C., 2009. A genetic programming
approach to automated software repair. In: Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, pp. 947–954.

Fraser, G., Arcuri, A., 2011. EvoSuite: automatic test suite generation for object-
oriented software. In: 8th European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE ’11).

Freitas, F.G., Souza, J.T., 2011. Ten years of search based software engineering: a bib-
liometric analysis. In: 3rd International Symposium on Search based Software
Engineering (SSBSE 2011).

Google, Inc., 2012. Traces of Google Workloads. http://code.google.com/p/
googleclusterdata/ (accessed on 12.06.12).

Guo, P., Engler, D., 2011. CDE: using system call interposition to automatically create
portable software packages. In: Proceedings of the USENIX Annual Technical
Conference, pp. 247–252.

Harman, M., 2007. Automated test data generation using search based software
engineering. In: 2nd International Workshop on Automation of Software Test
(AST 07).

Harman, M., 2007. Search based software engineering for program comprehension.

In: 15th International Conference on Program Comprehension (ICPC 07).

Harman, M., 2007. The current state and future of search based software engineering.
In: Future of Software Engineering 2007.

Harman, M., 2008. Open problems in testability transformation. In: 1st International
Workshop on Search Based Testing (SBT 2008).

http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/
http://code.google.com/p/googleclusterdata/
http://code.google.com/p/googleclusterdata/

2 stems

H

H

H

H

H

H

H

H

H

H

H

I

J

J

J

J

J

J

K

K

K

L

L

L

L

L

L

L

L

M

M

M

M

M

240 M. Harman et al. / The Journal of Sy

arman, M., 2010. The relationship between search based software engineering and
predictive modeling. In: 6th International Conference on Predictive Models in
Software Engineering.

arman, M., 2010. Why source code analysis and manipulation will always be impor-
tant. In: 10th IEEE International Working Conference on Source Code Analysis
and Manipulation.

arman, M., Hierons, R.M., 2001. An overview of program slicing. Software Focus 2,
85–92.

arman, M., Jones, B.F., 2001. Search based software engineering. Information and
Software Technology 43, 833–839.

arman, M., Mansouri, S.A., Zhang, Y., 2012a. Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys 45, 11:1–11:61.

arman, M., McMinn, P., 2010. A theoretical and empirical study of search based test-
ing: local, global and hybrid search. IEEE Transactions on Software Engineering
36, 226–247.

arman, M., McMinn, P., Souza, J., Yoo, S., 2012b. Search based software engineer-
ing: techniques, taxonomy, tutorial. In: Empirical Software Engineering and
Verification: LASER 2009–2010, pp. 1–59.

oare, C.A.R., 1978. The engineering of software: a startling contradiction. In: Pro-
gramming Methodology, A Collection of Articles by Members of IFIP WG2.3.

oare, C.A.R., 1996. How did software get so reliable without proof? In: IEEE Inter-
national Conference on Software Engineering (ICSE’96).

oare, C.A.R., 1996. How did software get so reliable without proof? In: FME ’96:
Industrial Benefit and Advances in Formal Methods: Third International Sym-
posium of Formal Methods Europe.

oste, K., Eeckhout, L., 2008. Cole: compiler optimization level exploration. In:
Proceedings of the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization.

DC, 2011. Press Release. http://www.idc.com/getdoc.jsp?containerId=
prUS23177411 (accessed on 12.06.12).

acobs, A., 2009. The pathologies of big data. Communications of the ACM 52,
36–44.

akobović, D., Budin, L., 2006. Dynamic scheduling with genetic programming. In:
EuroGP 2006.

akobovic, D., Jelenkovic, L., Budin, L., 2007. Genetic programming heuristics for
multiple machine scheduling. In: EuroGP 2007.

ia, Y., Harman, M., 2008. Milu: a customizable, runtime-optimized higher order
mutation testing tool for the full C language. In: 3rd Testing Academia and
Industry Conference – Practice and Research Techniques (TAIC PART’08).

ones, N.D., 1996. An introduction to partial evaluation. ACM Computing Surveys 28,
480–503.

ustafort, V.D., 2012. Performance-aware virtual machine allocation approach in
an intercloud environment. In: Electrical & Computer Engineering (CCECE)
2012.

irkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing.
Science 220, 671–680.

liazovich, D., Bouvry, P., Audzevich, Y., Khan, S., 2010. GreenCloud: a packet-level
simulator of energy-aware cloud computing data centers. In: Global Telecom-
munications Conference (GLOBECOM 2010), IEEE.

oza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge.

agar-cavilla, H.A., Whitney, J.A., Scannell, A., Patchin, P., Rumble, S.M., Lara, E.D.,
Brudno, M., Satyanarayanan, M., 2009. SnowFlock: rapid virtual machine cloning
for cloud computing. In: Proceeding of the EuroSys.

akhotia, K., Harman, M., Gross, H., 2010a. AUSTIN: a tool for search based software
testing for the c language and its evaluation on deployed automotive systems.
In: 2nd International Symposium on Search Based Software Engineering (SSBSE
2010).

akhotia, K., Tillmann, N., Harman, M., de Halleux, J., 2010b. FloPSy – search-based
floating point constraint solving for symbolic execution. In: 22nd IFIP Interna-
tional Conference on Testing Software and Systems (ICTSS 2010).

angdon, W.B., Harman, M., 2010. Evolving a CUDA kernel from an nVidia template.
In: IEEE Congress on Evolutionary Computation.

e Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W., 2012. A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: Interna-
tional Conference on Software Engineering.

e Goues, C., Nguyen, T., Forrest, S., Weimer, W., 2012. GenProg: a generic method
for automatic software repair. IEEE Transactions on Software Engineering 38,
54–72.

ee, Y.C., Zomaya, A.Y., 2012. Energy efficient utilization of resources in cloud com-
puting systems. Journal of Supercomputing 60, 268–280.

utz, R., 2001. Evolving good hierarchical decompositions of complex systems. Jour-
nal of Systems Architecture 47, 613–634.

adhavapeddy, A., Mortier, R., Sohan, R., Gazagnaire, T., Hand, S., Deegan, T.,
McAuley, D., Crowcroft, J., 2010. Turning down the LAMP: software specialisa-
tion for the cloud. In: Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing.

cMinn, P., 2004. Search-based software test data generation: a survey. software
testing. Verification and Reliability 14, 105–156.

ell, P., Grance, T., 2009. The NIST definition of cloud computing. National Institute
of Standards and Technology 53, NIST Special Publication 800-145.
icrosoft, 2012. Autoscaling Rules Schema Description. http://msdn.microsoft.com/
en-us/library/hh680955 (accessed on 12.06.12).

ishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R., 2010. Towards characterizing cloud
backend workloads: insights from Google compute clusters. SIGMETRICS Per-
formance Evaluation Review 37, 34–41.
and Software 86 (2013) 2225– 2241

Mitchell, B.S., Mancoridis, S., 2006. On the automatic modularization of software
systems using the bunch tool. IEEE Transactions on Software Engineering 32,
193–208.

Narzisi, G., Mysore, V., Mishra, B., 2006. Multi-objective evolutionary optimization
of agent-based models: an application to emergency response planning. Com-
putational Intelligence, 224–230.

Netflix Tech Blog, 2008. 5 Lessons We’ve Learned Using AWS.
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
(accessed on 12.06.12).

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorod-
nov, D., 2009. The eucalyptus open-source cloud-computing system. In: Cluster
Computing and the Grid.

Panayi, E., Harman, M., Wetherilt, A. Agent-based modelling of stock markets using
existing order book data. In: Proceedings of 13th International Workshop on
Multi-Agent-Based Simulation (MABS), in press.

Papazoglou, M., van den Heuvel, W.J., 2007. Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal 16, 389–415.

Räihä, O., 2010. A survey on search-based software design. Computer Science Review
4, 203–249.

Rappa, M., 2004. The utility business model and the future of computing services.
IBM Systems Journal 43, 32–42.

Red Hat Enterprise, 2007. Oracle Tuning Guide. http://docs.redhat.com/docs/
en-US/Red hat Enterprise Linux/5/html/Oracle Tuning Guide/RHELTuningand-
OptimizationforOracleV11.pdf (accessed on 12.06.12).

Reese, G., 2009. Cloud Application Architectures. O’Reilly.
Rogers, A., von Tessin, P., 2004. Multi-objective calibration for agent-based models.

In: 5th Workshop on Agent-based Simulation.
Ryan, C., 2000. Automatic Re-engineering of Software Using Genetic Programming.

Kluwer Academic Publishers.
Silva, J., 2012. A vocabulary of program slicing-based techniques. ACM Computing

Surveys 44, 12:1–12:41.
Sitthi-Amorn, P., Modly, N., Weimer, W., Lawrence, J., 2011. Genetic programming

for shader simplification. ACM Transactions on Graphics 30, 152:1–152:12.
Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I., 2009. Virtual infrastruc-

ture management in private and hybrid clouds. IEEE Internet Computing 13,
14–22.

Srikantaiah, S., Kansal, A., Zhao, F., 2008. Energy aware consolidation for cloud com-
puting. In: HotPower’08.

Stillwell, M., Vivien, F., Casanova, H., 2012. Virtual machine resource allocation for
service hosting on heterogeneous distributed platforms. In: Parallel Distributed
Processing Symposium (IPDPS) 2012.

Viegas, F., Wattenberg, M., Feinberg, J., 2009. Participatory visualization with wor-
dle. IEEE Transactions on Visualization and Computer Graphics 15, 1137–
1144.

Vishwanath, K.V., Nagappan, N., 2010. Characterizing cloud computing hardware
reliability. In: Proceedings of the 1st ACM symposium on Cloud Computing.

Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R., 2009. Cost of virtual machine
live migration in clouds: a performance evaluation. In: Proceedings of the 1st
International Conference on Cloud Computing.

Wegener, J., Bühler, O., 2004. Evaluation of different fitness functions for the evolu-
tionary testing of an autonomous parking system. In: Genetic and Evolutionary
Computation Conference (GECCO 2004).

Weimer, W., Nguyen, T.V., Le Goues, C., Forrest, S., 2009. Automatically finding
patches using genetic programming. In: International Conference on Software
Engineering (ICSE 2009).

Weiser, M., 1979. Program slices: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. Ph.D. Thesis. University of
Michigan, Ann Arbor, MI.

White, D., Arcuri, A., Clark, J., 2011. Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation 15, 515–538.

White, D.R., Clark, J., Jacob, J., Poulding, S., 2008. Searching for resource-efficient
programs: low-power pseudorandom number generators. In: 2008 Genetic and
Evolutionary Computation Conference (GECCO 2008).

Whitley, D., 2001. An overview of evolutionary algorithms: practical issues and
common pitfalls. Information and Software Technology 43, 817–831.

Williams, D., Jamjoom, H., Liu, Y., Weatherspoon, H., 2011. Overdriver: hand-
ling memory overload in an oversubscribed cloud. SIGPLAN Notices 46,
205–216.

Wine, 2012. Windows Compatibility Layer for UNIX. http://www.winehq.org/
(accessed on 12.06.12).

Yoo, S., 2012. NIA3CIN: non-invasive autonomous and amortised adaptivity code
injection. Technical Report RN/12/13. Department of Computer Science, Uni-
versity College London.

Yoo, S., Nilsson, R., Harman, M., 2011. Faster fault finding at Google using multi-
objective regression test optimisation. In: 8th European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’11).

Zhang, Y., Finkelstein, A., Harman, M., 2008. Search based requirements optimisa-
tion: existing work and challenges. In: International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ’08).

Zhang, Y., Harman, M., Mansouri, A., 2012. The SBSE Repository: A Repository and

Analysis of Authors and Research Articles on Search Based Software Engineering.
http://crestweb.cs.ucl.ac.uk/resources/sbse repository/

Zhang, Y., Harman, M., Mansouri, S.A., 2007. The multi-objective next release
problem. In: GECCO ’07: Proceedings of the 2007 Genetic and Evolutionary
Computation Conference.

http://www.idc.com/getdoc.jsp?containerId=prUS23177411
http://www.idc.com/getdoc.jsp?containerId=prUS23177411
http://msdn.microsoft.com/en-us/library/hh680955
http://msdn.microsoft.com/en-us/library/hh680955
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://docs.redhat.com/docs/en-US/Red_hat_Enterprise_Linux/5/html/Oracle_Tuning_Guide/RHELTuningandOptimizationforOracleV11.pdf
http://docs.redhat.com/docs/en-US/Red_hat_Enterprise_Linux/5/html/Oracle_Tuning_Guide/RHELTuningandOptimizationforOracleV11.pdf
http://docs.redhat.com/docs/en-US/Red_hat_Enterprise_Linux/5/html/Oracle_Tuning_Guide/RHELTuningandOptimizationforOracleV11.pdf
http://www.winehq.org/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

stems

for Research in Evolution, Search, and Testing at University
College London. He received his PhD in Computer Science
from King’s College London in 2009. He is working on the
application of meta-heuristic optimisation and informa-
tion theory for software testing.
M. Harman et al. / The Journal of Sy

Mark Harman is professor of Software Engineering in
the Department of Computer Science at University Col-
lege London, where he directs the CREST centre and
is Head of Software Systems Engineering. He is widely
known for work on source code analysis and testing
and was instrumental in founding the field of Search
Based Software Engineering (SBSE), the topic of this
paper. SBSE research has rapidly grown over the past five
years and now includes over 800 authors, from nearly
300 institutions spread over more than 40 countries.
A recent tutorial paper on SBSE can be found here:
http://www.cs.ucl.ac.uk/staff/mharman/laser.pdf.

Kiran Lakhotia is a Research Associate in the CREST cen-
tre at University College London. He is working in the field
of Search-Based Software Testing and in particular auto-
mated test data generation. In 2009 he received his PhD
in Computer Science from King’s College London.

Jeremy Singer is a lecturer in Complex Systems Engineer-

ing at the University of Glasgow. He received Bachelor
and PhD degrees in Computer Science from the University
of Cambridge. His research interests include optimizing
compilation, virtual machines, memory management and
many core parallelism.
and Software 86 (2013) 2225– 2241 2241

David R White is a SICSA Research Fellow in Complex Sys-
tems within the School of Computing at the University of
Glasgow. His work includes the creation and optimisation
of software using heuristic search and evolutionary com-
puting, and new ways of researching and teaching cloud
computing. He received the PhD degree in Computer Sci-
ence from the University of York in 2010 for his work
on applying search based software engineering methods
to the optimisation of software properties such as power
consumption and execution time.

Shin Yoo is a lecturer of software engineering in the Centre

http://www.cs.ucl.ac.uk/staff/mharman/laser.pdf

	Cloud engineering is Search Based Software Engineering too
	1 Introduction
	2 Background
	2.1 Cloud computing
	2.1.1 Cloud architectures
	2.1.2 Cloud research
	2.1.3 Cloud word cloud in the cloud

	2.2 Search Based Software Engineering

	3 Engineering challenges in cloud computing
	3.1 Challenges for cloud clients
	3.1.1 Predictive modelling
	3.1.2 Scalability
	3.1.3 Fault tolerance
	3.1.4 Resource efficiency
	3.1.5 Evaluating systems
	3.1.6 Security
	3.1.7 Managing the business model
	3.1.8 Accelerated development cycles
	3.1.9 Risk management

	3.2 Challenges for cloud providers
	3.2.1 Virtual machine management
	3.2.2 Managing oversubscription
	3.2.3 Translating SLAs to low-level behaviour
	3.2.4 Scalable service provision
	3.2.5 Resource efficiency

	4 Example applications of SBSE to cloud engineering
	4.1 Provider resource efficiency: cloud stack configuration
	4.1.1 Formulation
	4.1.2 Evaluation function

	4.2 Client resource efficiency: image specialisation
	4.2.1 Formulation
	4.2.2 Evaluation function

	4.3 Virtual machine assignment and consolidation by providers
	4.3.1 Formulation
	4.3.2 Evaluation function

	4.4 Scale management for cloud clients
	4.4.1 Formulation
	4.4.2 Evaluation function

	4.5 Spot-price management
	4.5.1 Representation
	4.5.2 Evaluation function

	5 Challenges and opportunities for existing SBSE methods
	5.1 Search based testing for the cloud
	5.1.1 On-demand test environments
	5.1.2 Snapshotting
	5.1.3 Multi-version deployment
	5.1.4 Quantifiable cost
	5.1.5 Short release cycles

	5.2 Software maintenance

	6 Cross-cutting issues
	6.1 Prototyping and evaluation
	6.2 Monitoring and sampling
	6.3 Online optimisation

	7 Conclusions
	Acknowledgements
	References

