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Abstract-The paper deals with the shape of the obsolescence function, which one can 
construct, based on the age data of reference lists. This paper shows that the obsolescence 
factor (aging factor) a is not a constant but merely a function of time. This jeopardizes 
this factor as a useful measure. We show (by experiment and also mathematically) that 
the function a has a minimum, which is obtained at a time t later than the time at which 
the maximum of the number of citations is reached. We then fit sets of citation data by 
using the lognormal distribution (other distributions do not fit well). Analytical calcu- 
lations with this function a are indeed valid for these data. These arguments also yield 
a description of the utility function 1( and the total utility U. The latter can be used in com- 
paring the “total lives” of the literature in various subjects. 

I. INTRODUCTION 

Several attempts have been made in the past to compute the obsolescence (also called aging) 
factor (see below), half-life (the time in which 50% of the material has already been used), 
or the utility factor (see section IV) for periodical publications (Brookes, 197Oa, 1970b, 
1971; Rao, 1973; and many others). We note that only the obsolescence factor a must be 
determined, since both half-life and the utility factor are simple functions of a. Most of 
these studies were based on an assumption that the distribution of age of the cited jour- 
nals follows an exponential distribution; that is, if t represents the discrete age of journals 
cited and c( t ) is the relative number of journals whose age is t years, then 

c(t) = C3eeet, t I 0, (1) 

where 6 > 0 is a parameter (see Fig. 1 for a graph of (1)). Based on this assumption, it is 
straightforward to define the obsolescence (aging) factor a as 

a(t) = Q - dt + 1). 
c(t) 

Indeed, in case of (l), a(t) is independent of t: 

Q(t) = ee~~e~i’ = em’, 

which we define as the aging factor 

Q = e-‘. (3) 
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Fig. 1. Graph of the exponential distribution. 

Formula (2) above is not used in practice, since 

l in practical citation data, a lot of values c(t) = 0 occur, and hence (2) fluctuates a 
lot; 

l even when c ( t ) f 0, formula (2) allows for an irregular set of numbers a ( t ), since 
we do not use grouped citation data; or we use c( t ) for t small (in which case we 
have a lot of citations), but then we are troubled by the initial increase in numbers 
of citations; or we use c(t) for t large (but then we deal with only few data). 

A smart way to overcome this problem was offered by Brookes (1973). The method 
can be described as follows: Assuming (1) and (3), we can write 

c(t) = w. (4) 

Let m denote the total number of citations to publications that are t years old, or older. 
Hence 

m = eat + Oat+' + . . . 

= d(e + e0 + ed + . . . ) 

= a*T, 

where T denotes the total number of citations. Hence 

This formula is very good in practice since we use only grouped data. Note that, as in (3), 
the result is always a constant, independent of time, if we assume the exponential distri- 
bution (1). 

General citation data, however, do not conform with (l), nor with Fig. 1. The com- 
mon graph encountered in practice is as in Fig. 2: There is an initial increase of citations 
(in this period the article or journal volume is distributed and the use increases), followed 
by a “sort of” exponential decay (Griffith et ul., 1979; Brookes, 1970a; Avramescu, 1973, 
1979; Geller & de Cani, 1981; Stinson & Lancaster, 1987; Motylev, 1981, 1989; Rao, 1973). 
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Fig. 2. Schematic form of the citation age distribution c(l). 

As a consequence, there is no way to find an aging factor a independent of t : a is only 
independent of t in case of the exponential distribution; hence, in any case conforming with 
Fig. 2, a is a function of t. 

In the next section we will give several citation data and we will see that the function 
a, defined as in (2) (which can be used as a general definition of aging function), always 
has a minimum. This behavior of a will be explained in a mathematically qualitative way, 
only using the form of the graph in Fig. 2. 

The third section studies (both analytically as well as statistically) possible fits of 
citation data. We conclude very clearly that only the lognormal distribution can be used as 
the underlying distribution (contrary to Weibull’s, Avramescu’s, or the Negative Binomial 
Distribution). 

We therefore stress the impossibility of using the aging function as a constant and ad- 
vocate the use of half-life instead. We also make a note on the total utility factor U which 
is directly related to the aging factor a via the formula: 

1 
U=- 

1 -a’ 
t r 0. 05) 

The formula (6) is true only if c(t) follows an exponential distribution. We study the ex- 
tension of the utility as a function of t in case of other distributions. 

II. THE AGING FUNCTION a: FORM AND QUALITATIVE EXPLANATION 

II.1 Data 
We start by giving details on a number of citation data that were obtained for the anal- 

ysis of different books. The reason we used books is simply because we wanted to have a 
large amount of homogeneous data. We analysed the citation data appearing in the follow- 
ing books: 

1. L. Egghe and R. Rousseau. Introduction to informetrics, Elsevier, Amsterdam, 
1990. This is a new book on informetrics, dealing with a lot of informetric topics 
and having a large bibliography (508 references to the journals). 

2. L. Egghe. Stopping time techniques for analysts and probabilists, London Math- 
ematical Society Lecture Notes series, 100, Cambridge University Press, 1984. This 
is a book on a former specialty of the first named author comprising 193 references 
to the journals. 
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3. R.B. Cairns. Social development: The origins and plasticity of interchanges, W.H. 
Freeman & Co., San Francisco, 1979. This book contains 634 references to the 
journals. 

We stress the fact that the observations we will make in this paper were also encoun- 
tered in all other sets of citation data that we investigated. 

The data are found in Tables 1, 2 and 3 (in the same order as above). They yield t (in 
years), c(t) (the number of references to publications that are t years old, t = 0,1,2,. . . ), 
and a(t), the obsolescence (aging) function. As mentioned in the introduction, for prac- 
tical reasons, Brookes’ method was used in order to have smoother values for a(t). Here 
(5) becomes 

m(t) l’f 
a(t) = ~ , 

i 1 T 

where m (8) denotes the totat number of citations to publications that are more than or 
equal to t years old, and T denotes the total number of citations (hence T = m(O)). (Dis- 
regard for the moment the columns with the headings F(t), G( t ), and oft ); we will deal 
with them in the next section), Based on these tables, we could also graph the frequency 
polygons for the age distribution c of citation data. For this, see Fig. 3. 

It is clear that we have a citation graph of the form of Fig. 2. It is very striking from 
the above tables that the function a(t) decreases (when t increases) until a minimum is 
reached, after which a (slow) increase starts (of course, for very high t, we encounter a few 
irregularities due to the small number of citations). 

No matter what is the exact mathematical form of the function c(i), we will now 
show-in a mathematically qualitative way- that a citation curve of the form of Fig. 2 im- 
plies that the aging function a must have the qualitative properties as described above. 

Table 1. Ane distribution of journals cited in informetrics 

Tc(t) 
t (observed) Q(f) F(t) G(f) D(r) 

12 
10 
8 

8 

t 
4 
2 

0.972050 
0.948874 
0.939632 
0.927135 

0.055118 

ZE 
(I:334961 
0.387795 

0.019142 0.035976 
0.086511 0.059159 
0.171245 0.049227 
0.256001 0.058960 
0‘334400 0.053395 

0.921473 
0.923037 
0.925733 
0.926682 
0.925412 

0.429134 
0.460630 
0.496063 
0.539370 
0.572835 

0.614173 
0.645669 
0.688976 
O-726378 
0.746063 

0.781496 
0.807087 
0.830709 
0.750394 
0.866142 

0.404610 
0.466604 
0.521033 
0.568750 
0.610612 

0.925518 
0.923704 
0.923292 
0.919964 
0.917227 

0.917900 
0.914418 
0.912637 
0.910756 
0.909384 

0.647411 
0.679842 
0.708506 
0.733919 
0.756519 

0.776677 
0.794712 
0.810892 
0.825448 
0.838579 

0.908681 0.881890 0.850453 
0.907468 0.885827 0.861216 
0.909965 0.893701 0.870995 
0.910833 0.901575 0.879900 
0.911432 0.905512 0.888025 

0.024524 
0.005974 
0.024970 
0.029380 
0.037778 

0.033238 
0.034172 
0.019530 
0.007541 
0.010456 

0.004819 

X2s% 
0:024945 
0.027563 

0.031437 
0.024611 
0.022706 

EXE . 

(continued) 
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t 
TC(f) 

(observed) Q(r) F(l) Gft) B(t) 

26 
27 

:: 
30 

0.913254 0.913386 0.895454 0.017932 
0.913380 0.925197 0.902259 0.022938 
0.911555 0.937008 0.908504 0.028504 
0.909067 0.938976 0.914245 0.024741 
0.910996 0.944882 0.919532 0.025350 
0.910745 
0.914911 
0.916289 
0.917552 
0.918706 
0.922656 
0.924136 
0.922298 
0.922732 
0.923292 
0.927923 
0.927826 
0.927605 
0.932261 
0.931687 
0.928936 
0.928558 
0.941948 
0.940043 
0.929679 
0.957655 

0.946850 0.924408 0.022442 
0.948819 0.933080 0.015739 
0.950787 0.936940 0.013848 
0.952756 0.840521 0.012235 
0.956693 0.943847 0.012846 
0.960630 0.952507 0.008123 
0.966535 0.957354 0.009181 
0.968504 0.959544 0.008960 
0.972441 0.961594 0.010847 
0.974409 0.965317 0.009092 
0.976378 0.971500 0.004878 
0.978346 0.972825 0.005521 
0.980315 0.974075 0.006240 
0.982283 0.979351 0.002933 
0.986220 0.980241 0.005980 
0.988189 0.987487 0.000702 
0.992126 0.988428 0.003698 
0.994094 0.992302 0.001793 
0.996063 0.992825 0.003238 
0.998031 0.994157 0.003875 
1~000000 0.998820 0.001 t80 

Statistics of Table 1 

Mean 11.946850 
Var 180.227490 
St. Dev. 13.424883 
Total Number of Citations 508 

Mean (Log t) 2.027863 
Var (log t ) 0.958368 
St. Dev. (Iog t) 0.978962 

Kolmogorov-Smirnov Statistic: 0.05 level 0.~0340 
0.01 level 0.072320 

Legend of Table 1 

t: Age of the journal 
Tc( t): Number of Citations (observed) (T = total number of citations) 
a(t): Aging function (formula (7))* 
F(t): Cumulative (observed) (based on c(t)) 

G(t): 

where u = log t’ and where p and CT are the mean resp. the standard deviation w.r.t. log t. 

D(t): IF(t) - G(t)/ 

*We used formula (7) instead of (2) in order to show better the behavior of the function Q. Formula (7) is 
the “smoothened” version of formula (2) and, as is apparent from the tables, inherits all the properties of Q as 
expressed in Fig. 5. The theoretical relation between (2) and (7) remains open, however. 
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Table 2. Age distribution of iournals cited in analysis 

i-c(t) 
t (observed) a(0 F(r) G(r) D(r) 

5" 

:: 
33 
17 

20 

i: 

129 

5 

: 
0 
3 

: 

i 
2 

i 
2 

: 

1 

.986962 

.967892 

.940492 

.906285 

0.025907 
0.093264 

Kz: 
0: 476684 

0.005515 
0.063303 
0.173322 
0.299963 
0.420386 

0.525371 
0.613053 
0.684714 
0.742674 
0.789357 

0.020391 
0.029961 
0.044294 
0.088638 
0.056298 

.897692 0.580311 

.a83349 0.647668 

.872746 0.735751 

.862540 0.782383 

.a58557 0.844560 

0.054940 
0.034616 
0.051037 
0.039710 
0.055203 

.a44318 0.870466 0.826938 0.043528 

.a43397 0.886010 0.857242 0.028768 

.846157 0.906736 0.881748 0.024988 

.a44128 0.906736 0.901638 0.005098 

.a53718 0.922280 0.917846 0.004434 

.a52429 

.a56988 

.856997 

.863986 

.a62526 

.a65288 

.a70748 

.865349 

.a70713 

.a84730 

0.927461 0.931109 0.003648 
0.937824 0.942010 0.004186 
0.937824 0.951006 o.oI3Ia2 
0.948187 0.958460 0.010274 
0.958549 0.969843 0.011294 

0.974186 0.015637 
0.977840 0.008928 
0.980924 0.001649 
0.989259 0.004803 
0.995163 0.000345 

.a79538 

0.958549 
0.968912 
0.979275 
0.984456 
0.994819 

1.000000 0.997441 0.002059 

Mean: 7.3420. Mean (log 1): 1.747902. 
Variance: 36.3183. Variance (log t): 0.476030. 
St. Dev.: 6.0265. St. Dev. (log r): 0.689950. 

Total number of citations: 193. 

Kolmogorov-Smirnov statistic: .05 level: 0.097895. 
.Ol level: 0.117330. 

r, c(r), a(f), F(t), G(t), and D(t) are as in Table 1. 

“includes two citations to the zero-year-old journals. 

II.2 Analysis of the aging function 
Let us use a continuous time variable t and assume that our citation data conform with 

a density function of the form as in Fig. 2. Mathematically such a curve can be character- 
ized as: C” is continuous and there is a unique to > 0, such that c’( t,,) = 0 and c”( to) < 0 
and a unique t, > to, such that c”( tl) = 0 (see Fig. 2). Furthermore, lim,,, c(t) = 0 and 
c(t) > 0, for all t. Now using (2), 

c(t + 1) 
a(t) = ___ 

c(t) 

for t > 0. The assumption of a continuous setting of time is quite natural; in fact, only due 
to publication restrictions, t is usually restricted to whole years, but in reality, time is con- 
tinuous. So 

a’(t) = 
c(t)c’(t + 1) - c(t + I)c’(t) 

c*(t) 
(8) 

(a) Suppose 0 < t < to. Then, based on our assumptions, c( t ) < c( t + 1) and c’( t ) > 
c’(t + 1). Hence (since all numbers c(t), c(t + l), c’(t), c’(t + 1) are positive) 

c(t)c’(t + 1) < c(t + l)c’(t), 



Citation age data and obsolescence 

Table 3. Age distribution of journals in social development 
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Tdt) 
t (observed) c(t) F(t) G(t) D(t) 

4a 

ii 

:: 
42 
47 
46 
25 
20 

22 
24 

:: 
14 
20 
10 
12 

T 

10 
6 

s 

53 
2 

: 
2 

0.996840 
0.977412 
0.962006 
0.944682 
0.926975 
0.931911 
0.925068 
0.918158 
0.917839 

0.006309 0.004715 0.001594 
0.066246 0.040864 0.025382 
0.143533 0.106123 0.037410 
0.247634 0.186730 0.062961 
0.323344 0.265606 0.057738 
0.389590 0.343083 0.046507 
0.463722 0.414432 0.049291 
0.536278 0.478732 0.057546 
0.575710 0.535974 0.039736 
0.607256 0.586584 0.020672 

0.918546 0.641956 0.631171 0.010785 
0.917969 0.679811 0.670392 0.009419 
0.916124 0.716088 0.704887 0.011201 
0.913990 0.750789 0.735247 0.015542 
0.911530 0.772871 0.762000 0.010871 
0.911522 0.804416 0.785613 0.018804 
0.908476 0.820189 0.806492 0.013697 
0.909077 0.839117 0.824992 0.014124 
0.908317 0.853312 0.841417 0.011895 
0.908489 0.864353 0.856031 0.008322 

0.909256 0.880126 0.869060 0.011066 
0.908079 0.889590 0.880701 0.008889 
0.908640 0.897476 0.891123 0.006353 
0.909462 0.900631 0.900472 0.000158 
0.911780 0.905363 0.908876 0.003513 
0.913304 0.913249 0.916443 0.003194 
0.913433 0.916404 0.923271 0.006867 
0.915180 0.917984 0.929442 0.011461 
0.917379 0.922713 0.935029 0.012316 
0.918199 0.925868 0.940096 0.014228 

0.919494 
0.921289 
0.922966 
0.923269 
0.922735 
0.923411 
0.925401 
0.924421 
0.923951 
0.924968 

0.927445 
0.929022 
0.933754 
0.940063 
0.943218 
0.943218 
0.949527 
0.954259 
0.955836 
0.963722 

0.865300 
0.970032 
0.971609 
0.973186 
0.977918 
0.981073 
0.984227 
0.984227 
0.987382 
0.987382 
0.990536 
0.993691 
0.995268 
0.996845 
0.998423 
1.000000 

0.944698 0.017254 
0.948886 0.019864 
0.952701 0.018947 
0.956183 0.016120 
0.959364 0.016147 
0.962276 0.019058 
0.964943 0.015416 
0.967390 0.013131 
0.969637 0.013801 
0.971704 0.007982 

0.922284 
0.923094 
0.921666 
0.922420 
0.922730 
0.920451 
0.919057 
0.917184 
0.918804 
0.916263 
0.917835 
0.914278 
0.925025 
0.937537 
0.944039 
0.940947 

0.973607 0.008308 
0.975361 0.005330 
0.976980 0.005371 
0.978475 0.005288 
0.979857 0.001939 
0.981136 0.000063 
0.982321 0.001906 
0.983420 0.000807 
0.984440 0.002942 
0.985387 0.001995 
0.986267 0.004269 
0.987087 0.006604 
0.983894 0.001375 
0.997553 0.000707 
0.998865 0.000442 
0.999119 0.000881 

Mean: 11.8454. Mean (log t): 2.123179. 
Variance: 138.67%. Variance (log t): 0.673986. 
St. Dev.: 11.7762. St. Dev. (log 1): 0.820967. 

Total number of citations: 634. 

Kolmogorov-Smirnov statistic: .05 level: 0.054013. 
.Ol level: 0.064736. 

t, c(t), a(t), F(t), G(t), and D(t) are as in Table 1. 

aincludes three citations to the zero-year-old journals. 
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Fig. 3. Age distributions of journals in informetrics, social developments, and mathematics- 
frequency polygons. 

implying, using (8), that 

a’(t) < 0. 

(b) Suppose to < t < t,. Now c(t) > c(t + 1) > 0 and 0 > c’(t) > c’(t + 1) so that 
0 < -c’(t) < -c’( t + l), and hence 

Consequently, again 

-c(t)c’(t + 1) > -c(t + l)c’(l). 

a’(t) < 0. 

(c) Suppose that t > t,. Now c(t) > c(t + 1) > 0, but c’(t) < c’(t + 1) < 0, and 
hence there remain two cases: 

(i) Ic(t)c’(t + 1)) > Ic’(t)c(t + l)(. In this case 

c(t)c’(t + 1) c c’(t)c(t + l), 

and hence 

a’(t) < 0. 

(ii) jc( t)c’(t + 1)l < Ic’(t)c(t + 1)l. Now we have, evidently, 

u’(t) > 0. 



Citation age data and obsolescence 209 

In case (c)(i) u keeps decreasing and hence (since a > 0) must have a horizontal asymp- 
tote at value 

lima(t) L 0. 
I-ca 

We are now in the case of Fig. 4. 
In case (c)(ii), a’ changes sign; hence there is a tz > ti such that 

a’( f2) = 0. 

In this case we have described Fig. 5. 
This gives a full qualitative analysis of the form of the function a, based on the qual- 

itative assumptions on the function c. 
Of course, in practice, Fig. 4 can be considered as a special case of Fig. 5, where t2 is 

very high. We note, however, that almost all the citation data that we have investigated 
show a minimum for the aging function (as in Fig. 5). The reason for this will be explained 
in the next section. Note that our qualitative argument not only describes the form of 
Fig. 5 (as encountered in Tables 1,2,3), but also the fact that t2 > t, > to; that is, the max- 
imum of c is attained much earlier (in to) than the minimum of a (in t2). For Table 1 we 
have, for exmaple, to = 4 and t2 2: 22; for Table 2, to = 4 and t2 = 12; and for Table 3, 
t0=4andt2= 19. 

Based on these results, we might wonder what function c best represents (fits) the ci- 
tation data. This will be studied in the next section. 

III. THE CITATION DISTRIBUTION FUNCTION c: 

STATISTICAL FIT AND MATHEMATICAL EXPLANATION 

Based on the results of the previous section, we are now looking for a distribution 
function c that fits citation data, shows a graph as in Fig. 2, and agrees with the qualita- 
tive study of the aging function a of subsection 11.2. Especially, a probability distribution 
c that allows an aging function a of the form in Fig. 5 interests us since, as is clear from 
Tables 1, 2, and 3 (and most other examples not discussed here), Fig. 5 is encountered in 
most cases. 

Note that we combine two requirements here: (i) the statistical fit (including the be- 
havior of the c curve as in Fig. 2) and (ii) the behavior of the a curve as in Fig. 5 (where 
a is derived from c via formula (2)). Indeed, previous studies have indicated good statisti- 
cal fits of the exponential distribution (l), even in cases (as is most often so) where there 

a(t) 
t 

I 

01 
w 

t 

Fig. 4. a in case (c)(i). 
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0 
0 

0 
0 

i 
I I I I 

01 
c 

'2 t 

Fig. 5. a in case (c)(ii). The minimum occurs for f2 > f, > rO (r,, I, are the respective maximum and 
inflection point of the c curve). 

is an initial increase in c(t). So, requiring only (i) is not enough to guarantee that we deal 
with the right underlying function. 

Next we study a few candidates. 

III. 1 The model of Avramescu 
Avramescu (1973, 1979) proposes the following mathematical function: 

c(t) = c(eee’ - ewme’), (9) 

where m > 1 and c > 0 is a constant such that c is a probability distribution. Note the ex- 
tension of formula (l), which can be derived from (9) for t large: t large =) mt > t and so 

c(eeef _ emmet) 5: cc--e’ = cat. 

Only if t is small, the term e -met is important and is responsible for the initial increase. It 
can indeed be verified that c has the form of Fig. 2. The aging function a for (9) is then 

c(t + 1) e-e(t + I) _ ,-mect+l) 
a(t) = 

c(t) = e-et _ e-met * (10) 

Using (8) (or directly (lo)), it can readily be verified that 

a’(t) = 
(-0) [me-@(mt+t) te-e _ e-me) + e-ecmt+t)(e-me _ e-e)1 

(e-et _ e-met)2 

Since 0 > 0 and m > 1, we hence see that a’(t) c 0 for all t > 0, and hence a is of the form 
of Fig. 4 only. Hence, Avramescu’s function is not able to cover the most frequently oc- 
curring cases of Fig. 5. We therefore conclude that Avramescu’s model is not the right ci- 
tation age model. Note that function (1) can be regarded as a special case of (9) (as 
indicated above); here a is a constant. 

III.2 The Negative Binomial Distribution (NBD) 
Another “natural” candidate for c is the NBD. The mathematical form is 

c(t) = 
r(K+ t) 

r(K)r(t + 1) pKqtY (11) 
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t = 0,1,2,. . . ,0 d p, q S 1, and K > 0. Also here 

u(t) = (K + t)q 
t+1 
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(12) 

and 

r < 0 for K > 1 
q-Kq -- 

a’(t) - tt + 1)2 
>OforO<K<l 

=OforK=l 

for all t > 0, and hence NBD cannot be the citation age distribution (since Fig. 5 is not cov- 
ered except for K = 1, but this represents the exponential model (1) (discrete case), whose 
deficiencies were already mentioned in section I). 

III. 3 The Weibull distribution 
This distribution has the following mathematical form: 

ctC-’ 
c(t) =Fexp - $ 

c 

[ 01 
, (13) 

where c > 0. Now this function has the form of Fig. 2 on/y for c > 1; indeed c’(t) = 0 for 

That is the reason we include it in this paper, although we believe that this distribution is 
seldom (or never) used in informetrics. Now, if c > 1 we then see that 

is never zero. 
So, based on our model of section II, we are inclined to say that we are not likely to 

have an a function of the form of Fig. 5. R. Rousseau (oral communication) kindly in- 
formed us of some weak fits he was able to establish of a few cases with the Weibull dis- 
tribution but -as he admits- the results are not very convincing. It is furthermore well 
known that sometimes statistical fits are possible with models that are wrong (in a model- 
theoretic sense). Even the simple function (1) can fit citation data in some cases! 

III.4 The lognormal distribution 
111.4.1 Lkfinition. If z = log t is normally distributed, then the distribution of t is said 

to be lognormal. The probability density function of the lognormal distribution (of t) is 
given by 

The normal density function of log t is given by 

(16) 

met) = &exp(-~[logb-p]‘] (17) 
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where ~1 and CT are the mean and the standard deviation with respect to the variable log t. 
As is easily seen (and well known), function e (equation (16)) above has the required form 
as in Fig, 2. Indeed c’(t) = 0, for t = eP-“* > 0, lim,,, c(t) = 0 and lim,,pc(t) = 0 as 
can be easily seen. Now 

a(t) = 
c(t f 1) _ t 

c(t) t+1 
exp $ ttlogt - ~1’ - ( wmt+ 1) - PI21 * 1 

Hence 

log a(t) = (log t - logfr + 1)) 
( 

logt + log(t f 1) 

2a2 - ( 1) 
-- 
,“2 l - 

Hence 

yq a(t) = +m. 
> 

Furthermore 

lima(t) = 1 
,403 

(18) 

(19) 

as is seen by applying de I’Hospital’s rule three times to the expression 

(log t - pLf2 = (log(t + 1) - /.&)2 

= (log f(i + 1) - 2p)log -&. 

Finally, if we can show that a(t) < 1 for a certain t > 0, then we are sure of the fact that 
a has a minimum (based on our assumptions for c). Now the condition a(t) < 1 is equiv- 
alent to 

logt(r+ 1) > -2a2+2,& 

which is always true from a certain I > 0 on. Hence, Fig. 5 in this concrete situation is as 
in Fig. 6. 

That a( t ) can be larger than 1 is no surprise; a (t ) measures aging: high values imply 
no aging and low values imply high aging. Since, for low t,c increases we have the oppo- 
site of aging at that time, and hence a(t) > 1. a(t) = 1 means c( 1) = constant and a(t) < 1 
means c decreasing, Also a(C) J 1 for high t is logical; the obsolescence (aging) stops since 
the (low) use of old material remains more or less the same for different t (note again that 
c(t) z constant, for high t). 

These mathematical considerations are confirmed by very good statistical fits, as is 
seen in the next subsection. 

X11.4.2 Statistical fit of the lognormal distribution to the citation age data. We refer 
to our three large homogeneous data of section Ii. F(t) denotes the cumulative observed 
data and G(t) the cumulative normal distribution (w.r.t. log I): 

G(t) = s ,S’~exp[-l(log~~-P~]dlogr: GO) 

D(t) is then the absolute difference IF(t) - G (t )I, and we performed a Kolmogorov- 
Smirnov test of fit. In all cases we have a very good fit. Note also that we did not “cut 
away” any citation age data, and hence we worked with the full initial increase (t small) 
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0 t 

Fig. 6. The (I curve, in case of the lognormal distribution. 

and the long tail (t large) of c. Hence, log t follows a normal distribution (i.e., t follows 
a lognormal distribution). 

111.4.3 Explanation of the lognormal distribution. The following argument, which 
can be read in Bartholomew (1982), Matricciani (1991) and Rao (1988), can be used as an 
explanation why the lognormal distribution is the underlying “logical” distribution for ci- 
tation age data. 

The lognormal distribution may be derived from the law of proportionate effect. That 
is, the citation to a journal at any stage is a random proportion of the citations it received 
in the immediately previous stage. If the journal has received Xj citations at thejth inter- 
val, Xj+l (the citations at the (j + 1)th interval) is given by: 

-?j+l - Xj = EjXj. (21) 

The ej’s are mutually independent, and further they are all independent of all Xjs. After a 
sequence of n proportionate “random shocks,” citations to the journal will be 

x,=x0(1 + e,)(l + Ez)(l + Es). . . (1 + en) (22) 

where x0 is the initial number of citations at some arbitrary origin of time. By taking the 
logarithm in (22), we have: 

log X” = logxo + log(1 + 6,) + log(1 + E*) +. . . + log(1 + E,). (23) 

For sufficiently large n, from the Central Limit Theorem, it can be shown that logx, is 
normally distributed, as each of the terms on the right-hand side of the equation is an in- 
dependent random variable. This explains the lognormal distribution. 

IV. A NOTE ON THE UTILITY FUNCTIONS II (t ) AND TOTAL UTILITY CJ 

Practical informetrists are more interested in the “total utility” U of publications than 
in the “aging” of these documents. The two measures are, however, linked in a one-to-one 
way by a formula under the assumption that c(t) is an exponential distribution (1): 

(J=I 
l-a 

(24) 
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(see also Brookes, 1970a, 1970b, 1971; Rao, 1973). An attempt has been made here to de- 
rive a similar formula under the assumption that c(t) is a lognormal distribution. 

Let u(t) be the utility of a journal in the tth year (t = 1,2,. . . ). If a(t) is the aging 
factor at the tth year, u(t) may be defined as 

u(t) = u(t - l)a(t) =. . . = u(O)a(l). . .a(t), 

where u(0) is the initial utility of the journal (u(0) > 0 is a parameter whose definition is 
unclear, but we do not need it in the applications-see further on). u(t) is thus given by 
(for t = 1,2,. . . ) 

u(t) = U(O)@(l). . .a(t) = u(0) fia(i). (25) 
i=l 

This formula agrees with (24) in case c conforms with (1). Indeed, then, using (25) 

u(t) = u(O)a’, 

where a = a( t ) is the constant aging factor (0 < a < 1). Hence the total utility U is given by 

u_ u(O) 
- j-z-jp 

Putting u(0) = 1 (scale of measurement in case (l)), then we again find (24). 
Hence u (I) is an acceptable definition of “utility in the t th year.” A study of U will 

be done in the sequel. We commence with the study of u(t), for the lognormal function c. 
For the lognormal distribution, II:=, a(i) is given by (cf. section 111.4): 

1 
- exp & [p* - (log(t + 1) - cc)*] . 
t+1 I 1 

Hence, according to (25): 

u (0) 
u(t) = - 

t+l 
ew $ [CC* - (log(t + 1) - CC)*] r I 

(26) 

(27) 

fort=1,2,.... 
Now we study the total utility CJ. The total utility of the journal may be computed as: 

s 0 

U= u(i) di. 
0 

From (27), we thus have, 

S 
0 

u = U(0) 
1 

- exP $ [cr* - (log(i + 1) - p)*] 
o i+l t 

= u(0) & [2plog(i + 1) - log*(i + l)] di. 
1 

(28) 
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On substituting eX = i + 1 in (28), we have 

CJ = u(0) & (2px -x2) dx 1 
= u(0) 

The equation (29) is of the form 

where 

a2 
P=y and -y=-k, 

a* 
(31) 
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(29) 

(30) 

The solution of the integral (30) is given by Gradshteyn and Ryzhik (1%5, p. 307 (3.322.2)). 

I/= u(0)(&$e~~2[1 -@(r@)]]. (32) 

In (32), a(x) is the probability integral that is equal to 

cp(x) = 2 
s 

X 

fi0 

e -z2 dz. 

Thus, if 

1 x 
F(x) = E o 

s 
e-Y2’*dy + 0.5 = & 

s 

X 
e-Y2’* dy, _ 

P) 

then Q(x) = 2F(x@ - 1. 
The values of F(x) can be obtained from the tables of the normal distribution. Thus 

substituting for a(x) in (32), we have 

U=u(0)&$eP~*2(l -F(ym)). (33) 

Since y c 0 (from (31)), and since F( -x) = 1 - F(x), (33) can be rewritten as 

U = u(0) [ &$e8Y22F( --rvW)] , (34) 

(34) and (31) together yield: 

U= u(O)\iZ;oexp($)F(E). (35) 

There is an interesting alternative calculation of (35), as provided by Q. Burrell: 

s ca 

I/= u(i) di u(O) = - u=- 
s 

c(i+ 1)di - 
0 c(l) 0 

O” c(i)di - u= u(O) - P(T> l), 
c(l) 

IPM 28:2-E 
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where T is the “lifetime” random variable. Now 

F(T > 1) = P(log T > 0). 

Putting 2 = (log T - p)/u and remembering that 2 is normally distributed, we find 

and so. 

U= 
u(O) 

1 1 P2 -( 1 
FE. 

0 u 

aaexp -5 ;;i: 

Hence we again find (35). 
Now (35) can easily be calculated, using the table of the standard normal distribution. 

From our examples we find the estimates U = 21 u(0) for informetrics, U = 43 u(0) for 
mathematics, and U = 58 u(0) for social development (rounded off to the nearest whole 
number). These data are a real basis to compare the “lives” of the different disciplines (the 
dete~ination of u (0) is not needed here; U relates to the initial utility, which can be taken 
equal for all disciplines-for example, u (0) = 1; this is only a matter of standardization). 

That papers in social science have a longer “life” than mathematics, for instance, is 
well known but here we provide an example of how much longer. Here we estimate about 
z;r 1.35 times longer, based on our examples (which are indeed large samples of the to- 
tal population of citations in the respective subjects). Of course, many more data should 
be analyzed to verify whether the number 1.35 is a kind of constant in this comparison. 

We want to conclude with the philosophical argument that leads us back to the begin- 
ning: formula (l), the exponential decay. We think we have shown that the lognormal dis- 
tribution is good for describing obsolescence data (initial increase as weif as the decay later 
on). Yet, it is known that when we truncate the data so that they only show the decay, the 
exponential distribution (1) fits very well. Whether or not we should consider the increase 
and the decay as two separate phenomena (which then should be modelled separately) is 
unclear to us. If we do (as is for instance also the case for the Avramescu distribution), we 
keep the historically respected notion of “exponential decay.” Although, in our paper, we 
try to fit everything with one distribution, we are not promoting the “lognormal decay” to 
replace the “exponential decay” notion. We think the latter can still be used when looking 
only at the decay part; on the other hand, when we try to understand the complete process 
(increase plus decay) we advocate the lognormal distribution. 

These remarks could also be made for the “opposite” study-the study of growth pro- 
cesses. Here also one has the historically respected “law of exponential growth.” Yet, as in 
life, nothing can grow forever, and more sophisticated models are in order (see, for exam- 
ple, Egghe & Rao, 1991). Do we consider these more intricate models (e.g., the logistic 
curve) as one phenomenon or as composed of at least two components, to be described sep- 
arately? We think that both approaches have their value; it only depends on the topics one 
wants to study. 

Note-After this paper was written Prof. Dr. R. Rousseau (to whom we give our sincerest thanks) pointed out 
to us that a new article (Matricciani, 1991) confirmed our findings on the lognormal distribution. The experiments 
were made in the collections of some IEEE publications and comprehensive parts in the human sciences (see also 
the Cambridge Economic History of Europe, vol. VI, 1965). As in our study, the author hence has examined ho- 
mogeneous data and concludes the same way. 
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