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The expectation of left truncated Waxing and Pareto distributions is a linear function of the 
point of truncation. Based on this property, a characterization theorem and statistical tests can 
be constructed. 
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1. Introduction 

1.1. History 

The Waxing distribution was originally proposed by Irwin (1963) for modelling 
biological phenomena. Later on, it has found applications in accident statistics 
(Irwin, 1968), quantitative linguistics (Herdan, 1964) and information science 
(Tague, 1981) as well. A remarkable direction in its theoretical development was 
that oriented toward identifying the 'Generalized Waxing Distribution', a family of 
distributions, including a number of well-known and widely used distributions like 
Poisson, negative binomial, etc. (Irwin, 1975a, 1975b, 1975c; Xekalaki, 1981). A 
characteristic feature of the Waxing distribution is that with suitably chosen 
parameters it might be highly skewed, namely it may have an extremely long tail. 
This feature enables it to model all the above-mentioned phenomena; however, it 
also has some undesirable consequences in applying usual statistical tests, 
particularly the chl-squared test for establishing goodness of fit. On the practical 
side, the long tail manifests in empirical samples as a long sequence of small non- 
negative integers, which needs pooling before applying the test. Pooling is, however, 
always somewhat arbitrary and may lead to inconsequential results. (Some incon- 
sistencies of the chi-squared test as applied to a Waxing sample have already been 
pointed out by Herdan (1964, p. 88).) On theoretical side, depending on its 

0165-4896/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 



A. Telcs et al. / Characterization o f  skew distributions 171 

e ( n  + 1) - e ( n )  
r ( n )  = , n ~ N o, 

e (n  + 1) - n 

provided that both sides make sense. 

(1.5) 

2 .  P r o p e r t i e s  o f  t h e  W a l i n g  d i s t r i b u t i o n  

2.1. Definition 

We say that X has a Waring distribution with parameters a > 1 a n d  N > 0 (further 
on Wd(a, N)) if 

p(k) =pw(k; u, N) = 
k N + i -  1 
II k e  N 0, (2.1) 

a + N  ~=1 N+i+ct  ' 

or, equivalently, 

k N + i - 1  k e N o  ' 
P ( k ) = P w ( k ; a ' N ) = I I  +i-- 1 ' 

i=o N +  a 
(2.2) 

2.2. Remarks 

(i) Function pw(k;ot, N) obeys the recursion relation 

pw(k  + 1 ;~,N) = 
N + k  

N + a + k + l  
Pw(k;a,N), k~ N o, (2.3) 

(ii) Functions pw(k; a, N) and Pw(k; a, N) are related by the equation 

N + k - I  
Pw(k; a , N ) -  p w ( k -  1; a ,N),  k e n  0. (2.4)  

t~ 

2.3. Moments 

The expectation and the variance of Wd(a, N) are: 

N 
E(X; a, N ) =  

o t - l '  

provided that a >  1, otherwise it does not exist; and 

D 2 ( X ;  ct, N) = 
aN(or + N -  1 ) a 

( a  - 2 ) ( a  - 1)2 = a - 2 
E(x; ot,.N)(E(x; a, N ) +  1), 

provided that a > 2 ,  otherwise it does not exist. 

(2.5) 

(2.6) 

Lemma. Truncating Wd(a, N)  from the left by n results in Wd(a, N+ n). 
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parameters, the Waring .distribution may exhibit a non-Gaussian character, 
rendering Gaussian moment statistics inapplicable (Haitun, 1982a, 1982b, 1982c). 

1.2. A i m  o f  the paper  

In this paper a characterization theorem for the Waring distribution is presented. 
The theorem is based on truncated expectations and belongs to the family of 
representation theorems of Kotz and Shanbhag (1980). More specifically, the state- 
ment of the theorem is the discrete analog of the characterization of the Pareto 
distribution given by Morrison (1978) (in the proof we proceed on a completely 
different tack). The theorem may serve as a basis for a simple test to decide whether 
Waring distribution fits to a given empirical sample or to a set of such samples. 

1.3. Basic concepts and notations 

Let X be a non-negative integer valued random variable. The following notations 
will be used: 

p(k)  = Pr(X = k), 

P(k) = P r ( X _  k), 

k e N o, 

k e  llqo; 

r (k)=Pr(X=kJX>_k) ,  k e N o .  

The function r(k) so defined is called the hazard rate of X. Functions P(k) and r(k) 

uniquely determine each other: 

P (k+  1) 
r(k) = 1 P(k) ' k ~ No, (1.1) 

k - l  

P(k)=  II  ( l - r ( / ) ) ,  k~lH o. (1.2) 
i=0 

A given distribution can be truncated from the left by n resulting in the distribution: 

pn(k) = P r ( X =  k]  X z n ) ,  k e [n, co). 

The expectation of this truncated distribution will be denoted by 

e(n) = E(X[  X>_ n), n ~ N o. 

Obviously, 

pn(k ) = p(k) k [n, 0o), (1 .3 )  
/ ' ( n )  ' 

e(n) = , n ~ N o. (1.4) 
P(n) 

It can easily be shown from the above formulae that 
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P r o o f .  E q u a t i o n  ( 1 . 3 )  together with equations (2.1) through (2.4) leads to 

P~v(k; a, N) = p w ( k -  n; a, N +  n). (2.7) 

C o r o l l a r y .  From equation (2.7) it follows that 

E ( X - n I X >  n; a ,N)=E(X;  a ,N+ n). (2.8) 

Characterization theorem. Let X be a non-negative integer valued random variable 
and assume that the range o f  X is the whole No. Then, X has Wd(a, N) i f  and only 
i f  e(n) is a linear function of  n, namely 

a N 
e(n)-a- l n +  , a > l , N > 0 ,  n e N  o. (2.9) 

- a - 1  

Proof. Substituting equation (2.9) into equation (1.5) and the result into equation 
(1.2) we get 

k-, N + i  ]-[ 
i=o a + N + i  ' 

in accordance with equation (2.2). For the reverse case, from equations (2.5) and 
(2.8) we have 

e(n)=E(X I X>_ n; N )  

= n + E(X;  a, N +  n) 

a N 
= n + ~  

a - I  a - I  ' 

as stated by the theorem. 

2.4. Generalizations 

(i) The theorem is also valid in the case a_< - 1, provided that N is a negative in- 
teger. In this case a finite Waring distribution is obtained. Particularly, a = - 1 leads 
to the discrete uniform distribution. 

(ii) Let Y be a non-negative real valued random variable. The equation 

E(yiy>__y)= a B a 1 y + ~ '  a > l ,  f l>0 ,  y~IR 0, 
- a - 1  

analogous to equation (2.9), characterizes now the Pareto distribution, Pd(a,//): 

( Pr(r_> y) = Pp(y; a,/~) = 1 + , y e IR 0 

(see, for example, Johnson and Kotz, 1970), which can thus be regarded as the con- 
tinuous analog to Wd(a, N). 
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2.5. Asymptotic behaviour 

The tail of both Wd(a, N) and Pd(a, fl) is asymptotically proportional to x -a, 
i.e. 

lim XaPw(X; a, N)  = c, 
X--¢ Oo 

lim xaPp(x; a, f l ) -  ' ~ C ,  

c and c' being constants depending only on the parameters but independent of x. 
It can thus be seen that both distributions are Gaussian or non-Gaussian according 
as a > 2  or a e(0,2], respectively (see, for example, Feller, 1957). 

3.  Stat ist ical  appl i ca t ions  

3.1. Single-sample test 

Consider a sample of size N, whose elements take the values 0, 1, 2,... of a random 
variable with absolute frequencies N(0), N(I), N(2), ..., respectively. Obviously, 

N =  ~ N(k), (3.1) 
k=O 

and the relative frequencies are 

N(k) k ~ N o. (3 .2)  f ( k )=  N ' 

We shall also use the notation 

F(k) = ~, f( i) ,  k e N o. (3.3) 
i=k 

The nth truncated sample mean is defined as 

x(n) = ~'~=" kf(k) , n~l} , l  o. (3 .4)  
F(n) 

According to the Characterization Theorem given in the preceding section, in order 
to test whether the sample is from a Waring population, it is enough to check if a 
straight line can be fitted to the set of  points {(n, x(n))}. It should be taken into ac- 
count that the variance of x(n) is increasing with n, namely, 

D 2 ( x ( n ) )  - t~ e ( n ) ( e ( n ) + l )  , n ~ N  0, a > 2  (3 .5)  
a - 2 NF(n) 

(cf. equation (2.6)). Thus, it appears that 

NF(n) ~1/2 
w(n)= + I)) n E  No,  (3.6) 
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are proper weights in applying a weighted least squares fitting procedure. These 
weights can be calculated directly from the sample; in case of a > 2, they are inverse- 
ly proportional to the sample estimator of the standard error of the respective trun- 
cated mean (the unknown common factor a / ( a - 2 )  can be cancelled), and even in 
the non-Gaussian case of a ~ (1, 2] they properly assess the relative weights of the 
data points. 

The correlation coefficient provides information about the goodness of fit. 
Denoting the slope and the intercept of the fitted straight line by a and b, respective- 
ly, the expressions 

~ h a 
t~- and N=---:-- (3.7) 

a - 1  a - 1  

are unbiased estimators of the parameters, but no error estimation can be offered. 

3.2. Multi-sample test 

Consider a set of samples which are assumed to have a similar nature, namely 
their distribution is of the same type possibly with different parameters. It is always 
useful to have some information about the validity of this assumption without 
testing the samples one-by-one. If the assumed distribution is Waring, the following 
test is suggested by the Characterization Theorem. 

Let J be the number of samples and denote the characteristics of the single 
samples by indices j e [1, J];  xj(k) is thus the kth truncated sample mean of the j t h  
sample. We shall also use the notation 

X ( k ) =  E x j (k) ,  k E [N O . 
j=J 

If the conditions of the Characterization Theorem hold for all j ~  [1, J], the set of  
points {k,X(k))} should lie on a straight line if  all samples are from Waring 
distribution. Of course, the 'only if '  part of  the theorem cannot be saved. One can 
only say that if the points do not fit to a straight line, then the assumption that all 
samples are from Waring distributions does not hold. 

If the (2+e)th moments exist (i.e. if aj > 2 + e )  for all j E  [1, J] and a fixed e > 0 ,  
then the limiting distribution of the X(k)'s is normal for each k and Gaussian 
statistics can be applied for hypothesis testing. 

3.3. Empirical results 

Our results will be illustrated with the example of word frequency distributions. 
The samples tested are well known from the literature: the frequency distribution 
of nouns in Macaulay's essay on Bacon (four disjoint subsamples a, b, c and d) was 
originally reported by Yule (1944) and was analyzed among others by Herdan 
(1960); the word frequency statistics of Pushkin's  story The :Captain "s Daughter was 
compiled by Epstein and Josselson (1953) and was referred to in Herdan (1974). 
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Herdan (1960, p. 53) plotted the Macaulay data on a lognormal grid and got what 
he has called 'a sensibly straight line'. Passing his findings unchallenged, we only 
assert that the multi-sample test described in Section 3.2 results in a line (Fig. 1) 
likewise straight; thus, the single samples seem worth analyzing separately. Using 
the method of  Section 3.1, the parameters of the Waxing distribution were estimated 
for the four subsamples. The results are presented in Table 1 (parameters a and b 
are the slope and intercept of the fitted straight line; t~ and N were calculated accor- 
ding to equation (3.7)). As was expected, the parameters of the four subsamples are 
rather similar. 
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Fig. 1. Multi-sample test for the Macaulay data. 

In order to check the fit, the residuals, 

res(k) = x ( k )  - a k  - b ,  

were plotted against k (Fig. 2). In case of  proper fit, the residuals have to fluctuate 
randomly around zero, with an amplitude of  about the standard error of  the trun- 
cated mean, x(k). The standard error 'cornet' of  Fig. 2 was calculated using the 
average parameters a = 1.606,/~= 0.582 (t~ = 2.650, N'= 0.960). The residuals closely 
follow the required pattern. 

The Pushkin sample is just the one that Herdan (1964) modelled by the Waxing 
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Table 1 
Waxing parameters for subsamples a, b, c and d of  Macaulay's essay on Bacon 

Parameter a b a N 

Sample 

a 1.586 0.663 2.706 1.167 
b 1.660 0.508 2.515 0.770 
c 1.575 0. 624 2.739 1.085 
d 1.603 0.531 2.658 0.881 

6 
. .  i \~b 

4 - . ! 0 

2 -  ..a IAA/ "4' 
: 

_ 

- '  

0 2 4 6 8 10 12 1/, 16 18 20 k 

Fig. 2. Plot of  residuals vs. frequency values for the Macaulay samples. 

distribution (though even he had some reservations about the goodness of fit at 
higher frequencies (k > 30)). The parameters estimated by the weighted least squares 
method are a=4.064, b=2.211 (t~=1.326, 1V=0.722; Herdan's estimates were 
t~ = 1.213, A~= 1.211). The res(k) vs. k plot in Fig. 3 clearly demonstrates that there 
is a tendentious deviation from the straight line in this case; the residuals do not 
fluctuate randomly, but follow a concave pattern even for frequencies smaller than 
20. As a result, the postulate of a Waring distribution has to be refuted for this 
sample. 

It should be noted again that the Macaulay sample is based on the nouns only, 
while the Pushkin data refers to the complete text; this might be one source of the 
difference in the nature of the two samples. 
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Fig. 3. Plot of residuals vs. frequency values for the Pushkin data. 

3.4. Efficiency of parameter estimation 

Maximum-likelihood estimation of the Waxing parameters is well known from the 
literature (Irwin, 1975). There is no exact formula, however, for the error of  the 
estimated parameters, therefore efficiency of parameter estimation based on 
weighted least squares cannot be determined. 

We assessed the efficiency of  estimation of  parameters for the Macaulay samples 
with the aid of  a simulation experiment. One hundred Waxing samples, each con- 
taining 1000 elements, were generated via a simulated urn model (Xekalaki, 1981) 
(the average parameters ~=1.606,  /~=0.582 were used), and parameters were 
estimated both by maximum-likelihood and weighted least squares methods. Em- 
pirical mean and standard error of  the estimators over the 100 samples were then 
calculated and efficiencies of  weighted least squares estimators relative to 
maximum-likelihood estimators were determined. The results are presented in Table 
2. 

Table 2 

Comparison of weighted least squares and maximum-likelihood parameter estimation 

Parameter a 

Method Mean Std.err. Mean Std.err. 

Maximum-likelihood 
Weighted least squares 
Relative efficiency 

1.604 0.0162 0.578 0.0109 
1.582 0.0400 0.605 0.0286 

0.636 0.618 
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Note added in proof 

A result similar to our Characterization Theorem was published recently by 
Xekalaki (1983) in terms of the hazard function. 
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