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This  article  raises  concerns  about  the advantages  of using  statistical  significance  tests  in
research assessments  as  has  recently  been  suggested  in  the  debate  about  proper  normal-
ization  procedures  for citation  indicators  by  Opthof  and  Leydesdorff  (2010).  Statistical
significance  tests  are  highly  controversial  and  numerous  criticisms  have  been  leveled
against  their  use.  Based  on  examples  from  articles  by  proponents  of  the  use  statistical
significance  tests  in  research  assessments,  we  address  some  of  the  numerous  problems
with  such  tests.  The  issues  specifically  discussed  are  the  ritual  practice  of  such  tests,  their
dichotomous  application  in decision  making,  the difference  between  statistical  and  sub-
stantive significance,  the  implausibility  of most  null  hypotheses,  the  crucial  assumption  of
randomness,  as  well  as the  utility  of  standard  errors  and  confidence  intervals  for inferential
purposes.  We  argue  that applying  statistical  significance  tests  and  mechanically  adhering
to their  results  are  highly  problematic  and  detrimental  to  critical  thinking.  We  claim  that
the use  of  such  tests  do  not  provide  any  advantages  in  relation  to  deciding  whether  differ-
ences  between  citation  indicators  are  important  or  not.  On  the contrary  their  use may  be
harmful.  Like  many  other  critics,  we  generally  believe  that  statistical  significance  tests  are
over-  and  misused  in the  empirical  sciences  including  scientometrics  and  we  encourage  a
reform  on  these  matters.

© 2012 Elsevier Ltd. All rights reserved.
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. Introduction

In a recent article Opthof and Leydesdorff (2010; hereafter O&L) make several claims against the validity of journal and
eld normalization procedures applied in the so called “crown indicator” developed by the Center for Science and Technology
tudies (CWTS) at Leiden University in the Netherlands. Like Lundberg (2007) before them, O&L suggest a normalization
rocedure based on a sum of ratios instead of a ratio of sums as used in the “crown indicator”. While Lundberg (2007) and
&L give different reasons for such a normalization approach, they do commonly argue that it is a more sound statistical
rocedure. O&L for their part argue that, contrary to the “crown indicator”, their proposed normalization procedure, which
ollows the arithmetic order of operations, provides a distribution with statistics that can be applied for statistical significance
ests. This claim is repeated in Leydesdorff and Opthof (2010a, 2010b), as well as Leydesdorff, Bornmann, Mutz, and Opthof
2011); indeed in all these articles, Leydesdorff and co-authors distinctly indicate that significance tests are important,
dvantageous and somewhat necessary in order to detect “significant” differences between the units assessed.

O&L’s critique and proposals are interesting and they have raised a heated but needed debate in the community (e.g.,
ornmann, 2010; Gingras & Larivière, 2011; Larivière & Gingras, 2011; Moed, 2010; Spaan, 2010; van Raan, van Leeuwen,
isser, van Eck, & Waltman, 2010; Waltman, van Eck, Leeuwen, Visser, & van Raan, 2011a).  We  are sympathetic to the claims

hat sums of ratios are advantageous, nevertheless, on at least one important point we think that O&L’s claims are flawed,
nd that is the role of statistical significance tests.

The authors seem to ignore the numerous criticisms raised against statistical significance tests throughout various decades
n numerous empirical fields within the social, behavioral, medical and life sciences, for example in psychology and education
Bakan, 1966; Carver, 1978; Cohen, 1990, 1994; Gigerenzer, 1993; Meehl, 1978, 1990; Oakes, 1986; Rozeboom, 1960; Schmidt

 Hunter, 1997), sociology (Morrison & Henkel, 1969), economics (McCloskey, 1985; McCloskey & Ziliak, 1996), clinical
edicine and epidemiology (Goodman, 1993, 2008; Rothman, 1986; Stang, Poole & Kuss, 2010), as well as statistics proper

Berkson, 1938; Cox et al., 1977; Guttman, 1985; Krantz, 1999; Kruskal, 1978; Tukey, 1991), and recently Marsh, Jayasinghe
nd Bond (2011) in this journal, to name just a few non-Bayesian critical works out of literally hundreds. Unawareness of
he criticisms leveled against significance tests seems to be the standard in many empirical disciplines (e.g., Huberty & Pike,
999). For many decades the substantial criticisms have been neglected. A fact Rozeboom (1997) has called a “sociology-of-
cience wonderment” (p. 335). Only recently, at least in some disciplines, e.g., medicine, psychology and ecology, has the
riticism slowly begun to have an effect on some researchers, journal editors, and in guidelines and textbooks, but the effect
s still scanty (e.g., Fidler & Cumming, 2007; Wilkinson et al., 1999).

Statistical significance tests are highly controversial. They are surrounded by myths. They are overused and are very
ften misunderstood and misused (for a fine overview, see Kline, 2004). Criticisms are numerous. Some point to the
nherently logical flaws in statistical significance tests (e.g., Cohen, 1994). Others claim that such tests have no sci-
ntific relevance; in fact they may  be harmful (e.g., Armstrong, 2007). Others have documented a whole catalogue of
isinterpretations of statistical significance tests and especially the p value (e.g., Goodman, 2008; Oakes, 1986). Still

thers have documented various different misuses, such as neglecting statistical power, indifference to randomness,
dherence to a mechanical ritual, arbitrary significance levels forcing dichotomous decision making, and implausi-
le nil null hypotheses, to name some (e.g., Gigerenzer, 1993; Shaver, 1993). Rothman (1986) exemplifies the critical
erspective:

Testing for statistical significance today continues not on its merits as a methodological tool but on the momentum of
tradition. Rather than serving as a thinker’s tool, it has become for some a clumsy substitute for thought, subverting
what should be a contemplate exercise into an algorithm prone to error (p. 445).

Alternatives and supplements to significance tests have been suggested; among these for example effect size estimations
nd confidence intervals, power analyses, and study replications (e.g., Kirk, 1996). Interestingly, relatively few have defended
tatistical significance tests and those who have, agree with many of the criticisms leveled against such tests (e.g., Abelson,
997a, 1997b; Chow, 1998; Cortina & Dunlap, 1997; Wainer, 1999). The defenders do however claim that most of these
ailings are due to humans and that significance tests can play a role, albeit a limited one, in research. Critics will have none
f this, as history testifies that the so-called limited role is not practicable, people continue to overuse, misunderstand and
isuse such tests. To critics, statistical significance tests have let the social sciences astray and scientific research can and

hould live without them (e.g., Armstrong, 2007; Carver, 1978).
The aim of the present article is to warn against what Gigerenzer (2004) calls “mindless statistics” and the “null ritual”. We

rgue that applying statistical significance tests and mechanically adhering to their results in research and more specifically
n research assessments, as suggested by O&L, is highly problematic and detrimental to critical (scientific) thinking. We
laim that the use of such tests do not provide any advantages in relation to deciding whether differences between citation
ndicators are important or not. On the contrary their use may  be harmful. Like many other critics, we generally believe that
tatistical significance tests are so problematic that reform is urgently needed (see for example, Cumming, 2012).

Centered on examples mainly from O&L (Opthof & Leydesdorff, 2010), we address some of the numerous problems of

uch tests. It is important to emphasize that the fallacies we  discuss here are extremely common in the social sciences
nd not distinctive for the particular article by O&L we scrutinize. To emphasize this we  provide further brief examples
aphazardly retrieved from the recent scientometric literature. The reason we  specifically respond to O&L’s article is a grave
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concern that such a flawed “ritual” should be used in relation to the already sensitive issue of research assessment based on
citation indicators, as well as a reaction to the argument that such tests are supposed to be advantageous in that respect.
But this article is not an exhaustive review of all problems and criticisms leveled at statistical significance tests; we simple
do not have the space for that and several such reviews already exist (e.g., Kline, 2004; Nickerson, 2000; Oakes, 1986). Thus
we only address some of the problems and controversies due to their appearance in the article by O&L. They do not come
in any natural order and are intrinsically related. We  have organized the article according to the problems addressed. First
we outline our understanding of how O&L approach significance tests in their article. In the second section, we  proceed
with some of the caveats related to the use of statistical significance tests. We  outline the practice of significance tests, and
we discuss some of the misconceptions and misuses, including the assumption of randomness and the utility of standard
errors and confidence intervals. We  conclude with a summary and some recommendations for best practice, to inspiration
for authors, reviewers and editors.

2. The conception and application of significance tests in the article by O&L

In this section we outline how O&L employ significance tests in their article, and how they seemingly consider “signifi-
cance” and present their arguments for the supposed advantages of such tests. Notice, O&L’s reasoning based upon statistical
significance tests have briefly been criticized in Waltman, van Eck, van Leeuwen, Visser, & van Raan (2011b). In the present
article we elaborate on these matters.

O&L state that if we average over the aggregate then we  can “test for the significance of the deviation of the test set
from the reference set” (2010, p. 424). O&L thus claim that the normalization procedure they suggest (i.e., sum of ratios)
enable statistical significance testing and that the latter can decide whether citation scores deviate “significantly” from the
baseline. According to O&L this is a clear advantage, and we  assume that they consider this process somewhat objective. In
order to compare their normalization procedure to that of CWTS, and to demonstrate the claimed advantages of significance
tests, O&L produce a number of empirical examples combined with test statistics. Differences in journal normalizations are
first explored in a smaller data set. Next a “real-life” data set from the Academic Medical Centre (AMC) in the Netherlands
is used to compare the relative citation scores for one scientist based on the two different normalization procedures, and
subsequently to compare the effects of the different normalizations on values and ranks for 232 scholars at AMC.1 The AMC
data set is further explored in Leydesdorff and Opthof (2010a, 2010b). O&L use p values in connection with Pearson and
Spearman correlation coefficients, as well as the Kruskal–Wallis test used with Bonferroni corrections. In the latter case the
significance level is given as 5%, whereas 1% and 5% are used with the correlation statistics. Also, citation scores based on
O&L’s normalization approach come with standard errors of the mean in the articles. It is a central point in O&L’s argument
that their normalization approach produces a statistic where uncertainty (i.e., random error) can be estimated by providing
standard errors and the argument goes “[i]f the normalization is performed as proposed by us, the score is 0.91 (±0.11) and
therewith not significantly different” (p. 426). This quote is exemplary for O&L’s treatment of statistical significance tests and
the apparent implicit or explicit view upon “significance”. First, O&L consider the question of “significance” as a dichotomous
decision, either a result is significant or not. Second, their rhetoric suggest that “significance” implies importance or rather
lack of importance in this case, as the “world average” citation score of 1 is treated as a point null hypothesis, and since
1 is located within the confidence limits they cannot reject the null hypothesis, concluding that there is no “significant
difference” from the “world average”. Notice also that O&L use standard errors as a surrogate for tests for significance by
determining whether the estimated interval subsumes the “world average” citation score or not.

We claim that the approach to statistical significance testing described above is common among social scientist. Never-
theless, it requires some critical comments because it is deeply entangled in the quagmire of problems relating to significance
tests and if applied as suggested by O&L in research assessments, it may  distort the decision making process and have serious
consequences for those assessed. The next section addresses some of these problems and controversies.

3. Some caveats related to statistical significance tests

In this section we address some important problems in relation to statistical significance tests on the basis
of practice, arguments and claims in O&L. First we  briefly discuss what statistical significance tests are and
outline their ritualistic practice. Second we  define effect size and statistical power. Subsequently we  address
some common misinterpretations of statistical significance tests, and closely related to this, we discuss the
mechanical dichotomous decision process that significance tests usually lead to. The following subsection dis-
cusses some misuses of statistical significance test, especially the implausibility of most nil null hypotheses.

This leads to a discussion of one of the crucial assumptions behind such tests, randomness; and finally, we
address the issue of standard errors and confidence intervals and their supposed advantages compared to p
values.

1 Using the Academic Medical Centre for the demonstration is interesting since CWTS has produced and delivered relative citation indicators in a previous
evaluation of the centre.
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.1. The purpose and practice of statistical significance test

The dominant approach to statistical significance testing is an unusual hybrid of two fundamentally different frequentist
pproaches to statistical inference, Ronald. A. Fisher’s “inductive inference” and Jerzy Neyman and Egon Pearson’s “inductive
ehavior” (Gigerenzer et al., 1989). According to Gigerenzer (2004, p. 588), most hybrid significance tests are performed as

 “null ritual”, where:

A statistical null hypothesis of “no difference” or “zero correlation” in the population is set up, sometimes called a nil null
hypothesis. Predictions of the research hypothesis or any alternative substantive hypotheses are not specified. Notice,
other hypotheses to be nullified, such a directional, non-zero or interval estimates, are possible but seldom used, hence
the “null ritual”.
An arbitrary but conventional 5% significance level (or lower) is used for rejecting the null hypothesis. If the result is
“significant” the research hypothesis is accepted. Results are reported as p < .05, p < .01, or p < .001 (whichever comes next
to the obtained p value). Notice, other significance levels can be used.
This procedure is always performed.

While the “null ritual” has refined aspects, these do not change the essence of the ritual, which is identical for all statistical
significance tests in the frequentist tradition. Statistical significance tests in this hybrid tradition are also popularly known
as null hypothesis significance tests (NHST). NHST produces a probability value (p value). The definition of the p value is
as follows:
The probability of the observed data, plus more extreme data across all possible random samples, if the null hypothesis is
true, given randomness2 and a sample size of n (i.e., the sample size used in the particular study), and all assumptions of
the test statistic are satisfied (e.g., Goodman, 2008, p. 136).

The general form can be written as p (Data | H0). While the mathematical definition of the p value is rather simple,
ts meaning has shown to be very difficult to interpret correctly. Carver (1978), Kline (2004) and Goodman (2008) list

any misconceptions about p values. For example, the incorrect interpretation that if p = .05, the null hypothesis has only
 5% chance of being true. As the p value is calculated under the assumption that the null hypothesis is true, it cannot
imultaneously be a probability that the null hypothesis is false. We are not to blame for this confusion. Fisher himself could
ot explain the inferential meaning of his own invention (Goodman, 2008).

The individual elements of the above statement about NHST are very important, though often neglected or ignored. First,
t is important to realize that p values are conditional probabilities that should be interpreted from an objective frequentist
hilosophy of probability, i.e., a relative frequency “in-the-long-run” perspective (von Mises, 1928). Because the “long-run”
elative frequency is a property of all events in the collective,3 it follows that a probability applies to a collective and not

 single event (Dines, 2008). Neither do probabilities apply to the truth of hypotheses as a hypothesis is not a collective.
onsequently, a p value is not a probability of a single result; it is a conditional probability “in the long run”. This can also
e inferred from the definition above “. . . the observed data, plus more extreme data across all possible random samples”.
ore extreme data actually refer to results that have not happened. Thus, if we repeat the study many times by drawing

andom samples from the same population(s), what would happen? In reality we sample only once and relate the p value
o the actual result!

Second, the p value is a conditional probability of the data based on the assumption that the null hypothesis is true in
he population, i.e., p (Data | H0), and therefore not the inverse probability p (H0 | Data) as often believed (Cohen, 1994). The
heoretical sampling distribution against which results are compared (e.g., t, F, �2 distributions) are generated by assuming
hat sampling occurs from a population(s) in which the null hypothesis is exactly true. Third, randomness is a fundamental
ssumption, it is the raison d’être of NHST. Without randomness, NHST become meaningless as we  cannot address sampling
rror, the sole purpose of such tests (Shaver, 1993). Fourth, sample size is a crucial consideration, because the p value is a
unction of effect and sample sizes, as well as spread in data (Cohen, 1990). Fifth, the result of NHST is a probability statement,
ften expressed as a dichotomy in terms of whether the probability was less or more than the significance level (˛). Notice
hat p values and  ̨ levels are two different theoretical entities. To Fisher p values are a property of the data and his notion
f probability relating to the study. To Neyman–Pearson  ̨ is a fixed property of the test not the data and their conception
f error rate in the “long-run” that strikes a balance between ˛, ˇ (the probability of making a Type II error), and sample

ize n (Gigerenzer et al., 1989). The conventional 5% is due to Fisher (1925).  Later, in his bitter arguments with Neyman and
earson, he would discard the conventional level and argue for reporting exact p values.

2 We use randomness to include both random sampling and random assignment.
3 The set of events that an objective probability – understood as a relative long-run frequency – applies to. Technically, the set should be infinite, but this

equirement is often relaxed in practice.



54 J.W. Schneider / Journal of Informetrics 7 (2013) 50– 62

3.2. Effect size and statistical power

In this context, two important concepts should briefly be clarified before we  continue, effect size and statistical power.
An effect size is a statistic that estimates the magnitude of the result in the population (e.g., Kirk, 1996). Measures of effect
size can be classified as standardized or unstandardized. Standardized measures are scale-free because they are defined in
terms of the variability in the data. Some well-known standardized measures include Cohen’s d, r, R2 and odds ratios (e.g.,
Grissom & Kim, 2005; Kirk, 1996). Unstandardized measures are expressed in the original units or in terms of percentages
or proportions. Effect sizes are important for at least three reasons: (1) they provide crucial information for judging the
importance of a result; (2) they are important for accumulation of evidence over time and thus for meta-analysis and theory
building; and (3) prior to a study, estimates of anticipated effect sizes can be used in power analyses to project adequate
sample size for detecting statistically significant results (e.g., Ellis, 2010; Kirk, 1996; Kline, 2004).

The statistical power of a significance tests is the probability of rejecting the null hypothesis when it is false (Cohen, 1988).
Power is the complement of  ̌ (1 − ˇ). A statistical power analysis involves four variables: significance level (˛), sample size
(n), effect size and power. For any statistical model, these relationships are such that each is a function of the other three.
Statistical power is affected chiefly by the size of the effect and the size of the sample used to detect it (Cohen, 1988, 1990).
Bigger effects are easier to detect than smaller effects, while large samples offer greater test sensitivity than small samples.
Given  ̨ and the anticipated effect size, we can determine the sample size needed for detecting a statistically significant
effect with a certain likelihood (i.e., power) when there is an effect there to be detected. Statistical power is particularly
important when there is a true difference or association in the population. The test must be powerful enough to detect such
differences or associations. Otherwise, a non-significant result would simply mean that a Type II error has been committed.

3.3. Some common misinterpretations of statistical significance tests

Despite frequent warnings in the literature, statistical significance is too often conflated with the practical or theoret-
ical importance of empirical results. In a recent survey of management research, Seth, Carlson, Hatfield, and Lan (2009, p.
7–8) found that 90% of the papers did not distinguished between statistical significance and practical importance. Statis-
tical significance is often used as the sole criterion of importance leading to ritualistic dichotomous decision behavior and
thereby deemphasizing interpretations of effect sizes (e.g., Scarr, 1997). A clear distinction must be made because statistically
significant results are not necessarily important.

Statistical significance leads simply to a conclusion that A is different from B, or, at best, that A is greater than B, or that
insufficient evidence has been found for a difference. Typically when we  reject a null hypothesis of zero effect we conclude
that there is a “significant” effect in the population. When we fail to reject we  conclude that there is no effect. Many critics
argue, however, that such mere binary decisions provide an impoverished view of what science seeks or can achieve. Kirk
asks “[h]ow far would physics have progressed if their researches had focused on discovering ordinal relationships?” (1996,
p. 754). What we appear to forget, however, is that statistical significance is a function of sample size and the magnitude of the
actual effect (e.g., Rosenthal, 1994, p. 232). Large effect size and small sample size as well as small effect size and large sample
size can both bring about statistical significance with matching p values, but more disturbingly, such “significant effects”
are most often treated the same way. Effect and sample sizes are rarely considered, but they should. Consider the following
example from Schubert and Glänzel (1983) who suggest the w statistic as a statistical significance test for differences between
journal impact factors (JIF). In their example they compare two  journals with impact factors 0.611 and 0.913. The w statistic
of 1.98 is larger than 1.96, the value corresponding to the 5% significance level, hence the authors conclude that “. . . the
impact factors of the two journals differ significantly . . .”  (Schubert & Glänzel, 1983, p. 65). The important question, however,
is whether this difference is important? Informed human judgment is needed for such a decision. “Human judgment” refers
to the fact that decision-making in statistical inference is basically subjective, context depended and goal oriented (e.g.,
Bakan, 1966; Carver, 1978; Tukey, 1991). “Informed” refers to the fundamental premise of providing a sound basis upon
which one can make a decision about importance. In that respect, we need to focus on effect sizes and confidence intervals,
consider the research design, and perhaps most important, relate the result to former empirical findings and theoretical
insights (e.g., Kirk, 1996). But when it comes to research assessments, such an intellectual base is virtually absent. It is a
fundamental problem in relation to the application of statistical significance tests for comparison between citation indicators
in research assessments that we basically do not know a priori what differences would be important. Obviously importance
depends on context and goal of the assessment, as well as costs and benefits. But we do not have a substantial empirical
and theoretical literature that can guide us with some anticipatory effect sizes to look for. Thus, in this example, for lack of
anything better, we judge the standardized effect size in relation to Cohen’s benchmarks for “small”, “medium” and “large”
effect sizes (Cohen, 1988). Cohen reluctantly proposed his benchmarks for statistical power analyses to help researchers
guess on effect size when no other sources for estimation exist. Using his conventional definitions to interpret observed
effect sizes in general is problematic and could easily lead to yet another form for “mindless” statistics. Cohen himself urged
to interpret effect sizes based on the context of the data and his benchmarks should be seen as a last resort. Returning to the

JIF example above, Cohen’s d, a standardized mean difference effect size, yield an effect size around .24. According to Cohen
(1988), “small” effect sizes begin around .20 for mean differences. Effect sizes lower than this are considered trivial and the
benchmark for “medium-sized” effects is set to .50. Is the apparently “small” but statistically significant effect between the
two journal impact factors important? The confidence interval for the effect size is −.01 to .48, which is from zero effect to
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lmost a medium effect, can we base our decision on this level of uncertainty? Important effect sizes, those we determine
ould make a difference, and accepted levels of uncertainty, should be defined before the study commences. But beware, big

ffects are not necessarily important effects, neither are small effects necessarily unimportant. Now the question of course
s “how big is big?” Obviously the question is relative to the actual study and certainly not easy to answer. A relative citation
mpact of 1.05 can be “statistically significant” above the world average of 1, but we  would probably not consider this result
mportant or rather it depends on the context.

.4. Misuse of the term “significance” and the practice of dichotomous decisions

One of the reasons for the widespread use of the null ritual may  well be the false belief that statistical significance tests
an decide for us whether results are important or not. By relying on the ritual we are conveniently relived of further pains of
ard thinking about differences that make a difference (Gigerenzer, 2004). An overwhelming number of tests are produced

n this mechanical fashion. But the truth is that most of them do not scrutinize the statistically significant differences found
nd it is likely that most differences are trivial despite the implied rhetoric (e.g., Webster & Starbuck, 1988). The rhetorical
ractice is often to drop the qualifier “statistical” and speak instead of “significant differences”. Using the term “significance”
ithout the qualifier certainly gives an impression of importance, but “significance” in its statistical sense means something

uite different. It has a very limited interpretation specifically related to sampling error. Reporting that a result is “highly
ignificant” simply means a “long-run” interpretation of how strong the data, or more extreme data, contradict the null
ypothesis that the effect is zero in the population, given repeated random sampling with the same sample size. Whether
he result is “highly important” is another question still not answered.

Nowhere in their articles do O&L use the qualifier “statistical”. They continuously speak of “significance”, “significantly
ifferent” or “not significantly different”. For example, they emphasize that such a procedure (sum of ratios) “. . .allows us
o test for significance of the deviation of the test set from the reference set” (2010, p. 424), or “. . . the researcher under
tudy would show as performing significantly below the world average in his reference group, both with (0.71) or without
elf-citations (0.58)” (2010, p. 426). To us at least, it seems evident that “significance” to O&L somehow is conceived of as

 criterion of importance and used as a dichotomous decision making tool in relation to research assessment, i.e., either
he results are “significant” or not. There are countless examples in the scientometric literature of similar practice, where
tatistical significance is treated as the binary criterion for importance of results. For example in regression analysis, the
mportance of predictor variables or the fit of the model usually comes down to whether t or F statistics are “significant” or
ot at the conventional alpha levels (e.g., Haslam et al., 2008; Mingers & Xu, 2010 and Stremersch, Verniers & Verhoef, 2007
o name just a few studies that try to identify variables that predict citation impact).

Now it may  be that O&L do in fact mean “statistical significance” in its limited frequentist sense relating to sampling
rror, which this quote could indicate “[t]he significance of differences depends on the shape of the underlying distributions
nd the size of the samples” (2010, p. 428); but if so, they explicitly fail to attend to it in a proper and unambiguous manner.
nd this merely raises new concerns, such as the plausibility of the null hypothesis, the assumption of randomness and the
ctual statistical power involved. We  will address these questions in the following subsections.

Dichotomous decisions based on arbitrary significance levels are uninformed. Consider Table 1 in Leydesdorff and Opthof
2010a, p. 645), were the Spearman rank correlation between field normalized sum of ratios versus ratio of sums is not
ignificant in this particular study (we assume at the 5% level). A calculation of the exact p value, with n = 7, gives a probability
f .052. To quote Rosnow and Rosenthal, “surely, God loves the .06 nearly as much as the .05” (1989, p. 1277). A rhetorical
ariant of this example is found in the following quote from Jacob, Lehrl and Henkel (2007, p. 125) “. . . citation rates in
o-authorships almost reach significance (p = 0.059) pointing to a trend to support this assumption”. Surely, the practical
ifference between .049 and .059 is miniscule but the quote also reveals a very common and serious misunderstanding, the
o-called “inverse probability fallacy” (e.g., Carver, 1978). The p value provides no direct information about the truth or falsity
f the null hypothesis, conditional or otherwise. To recapture, NHST provides the p(Data | H0) and not p(H0 | Data). The latter
owever is usually what researchers want to know. According to Cohen “[NHST] does not tell us what we want to know, and
e so much want to know what we want to know that, out of desperation, we  nevertheless believe that it does! What we
ant to know is ‘Given these data, what is the probability that H0 is true?’ But as most of us know, what it tells us is ‘Given

hat H0 is true, what is the probability of these (or more extreme) data?” (p. 997). We  think it is unsophisticated to treat the
truth” as a clear-cut binary variable and ironic that a decision that makes no allowance for uncertainty occurs in a domain
hat purports to describe degrees of uncertainty. Remember also that frequentists are concerned with collectives not the
ruth of a single event. The ritualistic use of the arbitrary 5% or 1% levels induces researchers to neglect critical examination of
he relevance and importance of the findings. Researchers must always report not merely statistical significance but also the
ctual statistics and reflect upon the practical or theoretical importance of the results. This is also true for citation indicators
nd differences in performance rankings. To become more quantitative, precise, and theoretically rich, we  need to move
eyond dichotomous decision making.
.5. The misuse of nil null hypotheses and the neglect of Type II errors

Significance tests are computed based on the assumption that the null hypothesis is true in the population. This is hardly
ver the fact in the social sciences. Nil null hypotheses are almost always implausible, at least in observational studies
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(e.g., Anderson, Burnham, & Thompson, 2000; Berkson, 1938; Cohen, 1990; Lykken, 1968; Meehl, 1978). A nil null hypothesis
is one which posits, in an absolute sense, no difference or no association in a parameter, and it is almost universally applied
(Cohen, 1994). There will always be uncontrolled spurious factors in observational studies and it is even questionable
whether randomization can be expected to exactly balance out the effects of all extraneous factors in experiments (Meehl,
1978). As a result, the observed correlation between any two  variables or the difference between any two means will
seldom be exactly 0.0000 to the nth decimal. A null hypothesis of no difference is therefore most probably implausible,
and if so, disproving it is both unimpressive and uninformative (Cohen, 1994; Lykken, 1968). Add to this the sample size
sensitivity of NHST (e.g., Cohen, 1990; Mayo, 2006). For example, an observed effect of r = .25 is statistically significant
if n = 63 but not if n = 61 in a two-tailed test. A large enough sample can reject any nil null hypotheses. This property
of NHST follows directly from the fact that a nil null hypothesis defines an infinitesimal point on a continuum. As the
sample size increases, the confidence interval shrinks and become less and less likely to include the point corresponding
to the null hypothesis. Given a large enough sample size, many relationships can emerge as being statistically significant
because “everything correlates to some extent with everything else” (Meehl, 1990, p. 204).” These correlations exist for a
combination of interesting and trivial reasons. Meehl (1990) referred to the tendency to reject null hypotheses when the
true relationships are trivial as the “crud factor”. And Tukey (1991) piercingly wrote that “. . . it is foolish to ask’are the
effects of A and B different?’ They are always different – for some decimal place” (p. 100). What we  want to know is the
size of the difference between A and B and the error associated with our estimate. Consequently, a difference of trivial effect
size or even a totally spurious one will eventually be statistically significant in an overpowered study. Similarly, important
differences can fail to reach statistical significance in poorly designed, underpowered studies. Notice, that it is a fallacy to
treat a statistically non-significant result as having no difference or no effect. For example, O&L (2010, p. 426) state that “[i]f
the normalization is performed as proposed by us, the score is 0.91 (±0.11) and therewith not significantly different from
the world average”. Without considering statistical power and effect sizes, statistically non-significant results are virtually
uninterpretable.

Consider another example. In a study on determinants of faculty research productivity, Long et al. (2009, p. 245) conclude
that they cannot support their research hypothesis that doctoral students in information systems with high-status academic
origins exhibit greater research productivity in terms of both quantity and quality than doctoral graduates with moderate- or
low status academic origins. An F test indicated that differences in mean citation counts across academic origins (i.e., 108.82,
95.26 and 37.08 respectively) were not statistically significant (p = .09). Likewise, no “significant pairwise differences” were
found. But p = .09 does not mean that the assumption of equality between mean citation counts exist. It does mean that
the data were not inconsistent with the assumed nil null statistical hypothesis at the conventional 5% alpha level, given
the actual sample size. Again we see the misconception p(H0 | Data). Though often emphasized that failing to reject the
null hypothesis does not mean that the null hypothesis is true, when it comes to a decision this is a distinction without a
difference. The practical consequence is that we  act as if there was no difference in citation counts between high-status,
moderate-status and low-status graduates. We  suspect that similar differences in mean citation counts at p = .05 would have
lead the authors to a supportive conclusion. But perhaps the nil null hypothesis was  implausible to begin with? As in the
previous example, considerations of power and effect sizes are also needed in this case in order to say anything concerning
the research hypothesis.

It is important to note that Type I errors can only occur when the null hypothesis is actually true. The p value only exists
assuming the null hypothesis to be true. Accordingly, with implausible null hypotheses, the effective rate of Type I errors in
many studies may  essentially be zero and the only kind of decision errors are Type II. If the nil null hypothesis is unlikely to
be true, testing it is unlikely to advance our knowledge. It is more realistic to assume non-zero population associations or
differences, but we seldom do that in our statistical hypotheses. In fact we seldom reflect upon the plausibility of our null
hypotheses, or for that matter adequately address other underlying assumptions associated with NHST (e.g., Keselman et al.,
1998). O&L do not reflect upon the plausibility of their various unstated nil null hypotheses. As far as we  understand O&L,
they apply Kruskal–Wallis tests in order to decide whether the citation scores of their AMC  researchers are “significantly
different” from unity (the world average of 1). Is the null hypothesis of exactly no difference to the nth decimal in the
population plausible and in a technical sense true? We  question that. Surely citation scores deviate from 1 at some level of
precision (e.g., Berkson, 1942). Sample sizes in O&L are generally small. In the particular case of AMC  researchers #117 and
#118 (p. 427), their citation scores of 1.50 and .93 turns out to be not “significantly different” from the world average of 1.
But the results are a consequence of low statistical power, i.e., small sample sizes combined with Bonferroni procedures,
and we are more likely dealing with a Type II error, a failure to reject a false null hypothesis of no absolute difference. If
sample sizes could be enlarged randomly, then the statistical power of the studies would be strengthened. However, if the
null hypothesis is false anyway, then it is just a question of finding a sufficiently large sample to reject the null hypothesis.
Sooner or later the citation scores of AMC  researchers #117 and #118 will be “significantly different” from the world average.
The question of course is whether such a deviation is trivial or important? Informed human judgment is needed for such
decisions.

Whether the actual AMC  samples are probability samples and whether they could be enlarged randomly is a delicate
question which we return to in Section 3.7. But consider this, if the samples are not probability samples addressing sampling
error becomes meaningless, and the samples should be considered as convenience samples or apparent populations. In both

cases, NHST would be irrelevant and the citation scores as they are would do, for example 1.50 and .93. Are these deviations
from 1 trivial or important? Again, we are left with informed human judgment for such decisions.
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.6. Overpowered studies

Larivière and Gingras (2011) is generally supportive of O&L, but contrary to O&L, their analyses of the differences between
he two normalization approaches are for most of them overpowered with very low p values. Wilcoxon-signed rank tests
re used to decide whether the distributions are “statistically different” (p. 395). Like O&L, Larivière and Gingras (2011) do
ot reflect upon the assumptions associated with NHST, such as randomness or the plausibility of their null hypotheses. It

s indeed questionable whether these crucial assumptions are met. A null hypothesis of a common median equal to zero is
uestionable and a (plausible) stochastic data generation mechanism is not presented. Not surprisingly, given the sample
izes involved, the differences between the two  distributions are “statistically different” or “significantly different” in the
ords of Larivière and Gingras (2011, p. 395). The more interesting question is to what extent the results are important

r, conversely, an example of the “crud factor”. Wilcoxon-signed rank tests alone cannot tell us whether the differences
etween the two distributions are noteworthy, especially not in high-powered studies with implausible nil null hypothesis.
ore information is needed. Larivière and Gingras (2011) do in fact address the importance for some of their results with

nformation extrinsic from the Wilcoxon-signed rank tests. Scores for the sum of ratios, for example, seem to be generally
igher than those of the ratio of sums, and the authors reflect upon some of the potential consequences of these findings (p.
95). This is commendable. Again effect sizes and informed human judgment are needed for such inferential purposes, and

t seems that Larivière and Gingras (2011) indeed use differences in descriptive statistics to address the importance of the
esults. Why  then use Wilcoxon-signed rank tests? As a mechanical ritual that can decide upon importance? As argued this
s untenable. Or as an inferential tool? In that case we should focus upon the assumption of randomness and whether this
s satisfied. This is questionable. As always, sufficient power guarantees falsification of implausible null hypothesis, and this
eems to be the case in Larivière and Gingras (2011).  Interestingly, prior to Larivière and Gingras (2011),  Waltman, van Eck,
an Leeuwen, Visser, and van Raan (2011c) obtained similar empirical results comparing the two  normalization approaches,
lbeit without involving the null ritual.

.7. The assumption of randomness and its potential misuse

Statistical significance tests concern sampling error and we sample in order to make statistical inferences, either descrip-
ive inferences from sample to population or causal claims (Greenland, 1990). Statistical inference relies on probability
heory. In order for probability theory and statistical tests to work randomness is required (e.g., Cox, 2006). This is a mathemat-
cal necessity as standard errors and p values are estimated in distributions that assume random sampling from well-defined
opulations (Berk & Freedman, 2003). Information on how data is generated becomes critical when we  go beyond descrip-
ion. In other words, when we make statistical inferences we assume that data are generated by a stochastic mechanism
nd/or that data are assigned to treatments randomly. The empirical world has a structure that typically negates the pos-
ibility of random selection unless random sampling is imposed. Ideally, random sampling ensures that sample units are
elected independently and with a known nonzero chance of being selected (Shaver, 1993). As a consequence, random sam-
les should come from well-defined finite populations, not “imaginary” or “super-populations” (Berk & Freedman, 2003).
ith random sampling an important empirical matter is resolved. Without random sampling, we must legitimate that the

ature or the social world produced the equivalent of a random sample or constructed the data in a manner that can be
ccurately represented by a convenient and well-understood model. Redner (2005),  for example, suggest that citation data
ave a stochastic nature generated by a linear preferential attachment mechanism. Perhaps, but we  are skeptical about
reating social processes as genuine stochastic processes that generates the equivalent of random samples like, for example,

 model of radioactive decay does in the physical world (Berk, Western, & Weiss, 1995a). The social world is the domain
f man-made laws, social regulations, customs, the particulars of a specific culture and the spontaneous actions of people
Winkler, 2009, p. 190–104). Also, there seems to be some debate in our community as to what theoretical distribution that
est approximates a citation distribution (e.g., Vieira & Gomes, 2010). We  believe that randomness is best obtained through
n appropriate probability sample with a well-defined population. Alternatively, data may  constitute a convenience sample
r an apparent population (or a census from a population) (Berk, Western, & Weiss, 1995a).

.7.1. Convenience samples, apparent populations and “super-populations”
Very few observational studies using inferential statistics in the social sciences clarify how data are generated, what

hance mechanism is assumed, if any, or define the population to which results are generalized, whether explicitly or
mplicitly. Presumably, most observational studies, also in our field, are based on convenience and not probability samples
Kline, 2004). Albeit many social scientists do it, it is nevertheless a category mistake to make statistical inferences based
pon samples of convenience. With convenience samples, bias is to be expected and independence becomes problematic
Copas & Li, 1997). When independence is lacking conventional estimation procedures will likely provide incorrect standard
rrors and p values can be grossly misleading. Berk and Freedman (2003) suggest that standard errors and p values will be
oo small, and that many research results are held to be statistically significant when they are the mere product of chance

ariation. Indeed, there really is no point in addressing sampling error when there is no random mechanism to ensure that
he probability and mathematical theory behind the calibration is working consistently.

Turning to O&L, it is not at all clear in what way  they assume that their samples are a product of a chance mechanism and
rom what well-defined populations they may  have been drawn? For example, one of the cases studied in O&L concern one
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principal investigator (PI) from AMC. Sampling units are 65 publications affiliated with the PI for the period 1997–2006. The
questions are: (a) in what sense does this data set comprise a probability sample?; and (b) how is the population defined?
We assume that O&L have tried to identify all eligible publications in the database for the PI in question for the given period.
Most likely, data constitutes all the available observations from the “apparent” population of publications affiliated with the
PI. If so, frequentist inference based on a long-run interpretation of some repeatable data mechanism is not appropriate.
There is no uncertainty due to variation in repeated sampling from the population. A counter argument could be that “the
data are just one of many possible data sets that could have been generated if the PI’s career were to be replayed many times
over”. But this does not clarify what sampling mechanism selected the career we happened to observe. No one knows, or
can know. It is simply not relevant for the problem at hand to think of observations as draws from a random process when
further realizations are impossible in practice and lack meaning even as abstract propositions. Adhering to a frequentist
conception of probability in the face of non-repeatable data and in a non-stochastic setting seems dubious.

Neither can the set of publications identified by O&L in the specific citation database be considered a random draw
from the finite population of all papers affiliated with the PI, including those external to the database. It is unlikely that
the data generation mechanism can be stochastic when governed by indexing policies in one database. Most likely, the
data set constitutes a convenience sample of specific publication types coincidentally indexed in the specific database.
Convenience samples are often treated as if they were a random realization from some large, poorly defined population.
This unsupported assumption is sometimes called the “super-population model” (Cochran, 1953). While some authors argue
that “super-populations” are justifiable for statistical significance test (e.g., Bollen, 1995), we  do not find such arguments
convincing for frequentist statistics with non-experimental data (see for example, Berk, Western and Weiss (1995a, 1995b)
and Western and Jackman (1994) for similar views). “Super-populations” are defined in a circular way as the population
from which the data would have come if the data were a random sample (Berk & Freedman, 2003). “Super-populations” are
imaginary with no empirical existence, as a consequence, they do not generate real statistics and inferences to them do not
directly answer any empirical questions. What draw from an “imaginary super-population” does the real-world sample we
have in hand represent? We  simply cannot know. Inferences to imaginary populations are also imaginary (Berk & Freedman,
2003).4

One could of course treat data as an apparent population. In this non-stochastic setting statistical inference is unnecessary
because all the available information is collected. Nonetheless, we often still produce standard errors and significance tests
for such settings, but their contextual meaning is obscure. There is no sampling error, means and variances are population
parameters. Notice, population parameters can still be inaccurate due to measurement error, an issue seldom discussed in
relation to citation indicators. Leaving measurement error aside for a moment, what we  are left with is the citation indicator,
the actual parameter, what used to be the estimated statistic. In the AMC  case the indicator for the PI is .91which is below
the world average of one. Is it an important deviation from the world average – maybe not?

It is somehow absurd to address standard errors, p values and confidence intervals with strict adherence as if these
numbers and intervals were precise, when they are not. Consider the bibliometric data used for indicator calculations.
They are selective, packed with potential errors that influence amongst other things the matching process of citing-cited
documents (Moed, 2002). Obviously, the best possible data should be used, but this actually means that a high workload
should be invested to improve bibliometric data quality. It is more than likely that the measurements that go into indicators
are biased or at least not “precise” (see Adler, Ewing, & Taylor (2009) for a critical review of citation data and the statistics
derived from them). Notwithstanding the basic violation of assumptions, we think it is questionable to put so must trust
in significance tests with sharp margins of failure when our data and measurements most likely at best are imprecise. In
practice sampling is complicated and because even well-designed probability samples are usually implemented imperfectly,
the usefulness of statistical inference will usually be a matter of degree. Nevertheless, this is rarely reflected upon. In practice
sampling assumptions are most often left unconsidered. We believe that the reason why the assumption of randomness
is often ignored is the widespread and indiscriminate misuse of statistical significance tests which may  have created a
cognitive illusion where assumptions behind such tests have “elapsed” from our minds and their results are thought to be
something they are not, namely decision statements about the importance of the findings. One can always make inferences
but statistical inferences come with restrictive assumptions and frequentist inference is not applicable in non-stochastic
settings.

3.8. Standard errors and confidence intervals permit, but do not guarantee, better inference

It is generally accepted among critics of statistical significance tests that interval estimates such as standard errors (SE) and

confidence intervals (CI) are superior to p values and should replace them as a means of describing variability in estimators. If
used properly, SE and CI are certainly more informative than p values and should replace them. They focus on uncertainty and
interval estimation and simultaneously provide an idea of the likely direction and magnitude of the underlying difference

4 Notice, there is an important difference between imaginary populations that plausibly could exist and those that could not. An imaginary population
is  produced by some real and well-defined stochastic process. The conditioning circumstances and stochastic processes are clearly articulated often in
mathematical terms. In the natural sciences such imaginary populations are common. This is not the case in the social sciences, yet super-populations are
very  often assumed, but seldom justified.
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nd the random variability of the point estimate (e.g., Coulson, Healey, Fidler, & Cumming, 2010; Cumming, Fidler & Vaux,
007). But as inferential tools, they are bound to the same frequentist theory of probability, meaning “in-the-long-run”

nterpretations, and riddled with assumptions such as randomness and a “correct” statistical model used to construct the
imits. A CI derived from a valid test will, over unlimited repetitions of the study, contain the true parameter with a frequency
o less than its confidence level. This definition specifies the coverage property of the method used to generate the interval,
ot the probability that the true parameter value lies within the interval, it either does or does not. Thus, frequentist inference
akes only pre-sample probability assertions. A 95% CI contains the true parameter value with probability .95 only before

ne has seen the data. After the data has been seen, the probability is zero or one. Yet CIs are universally interpreted in
ractice as guides to post-sample uncertainty. As Abelson puts it: “[u]nder the Law of the Diffusion of Idiocy, every foolish
pplication of significance testing is sooner or later going to be translated into a corresponding foolish practice for confidence
imits” (1997, p. 130). When a SE or CI is only used to check whether the interval subsumes the point null hypothesis, the
rocedure is no different from checking whether a test statistic is statistically significant or not. It is a covertly NHST.

O&L provide SE for the citation indicators in their study. These roughly correspond to 68% CI.5 Thus, in a perfect world,
he interpretation should be that under repeated realizations, the interval would cover the true citation score 68% of the
ime. But we have no way of knowing whether the current interval is one of the fortunate 68%, and we  probably have no
ossibility for further replications. In addition, as pointed out in the previous section, it is indeed questionable whether
he samples in O&L are genuine probability samples. If they are not, interpretation of SE becomes confused. According to
reedman (2003),  “an SE for a convenience sample is best viewed as a de minimis error estimate: if this were – contrary to
act – a simple random sample, the uncertainty due to randomness would be something like the SE”.

In the case of O&L, what seems at first to be a more informative analysis with interval estimates turns out to be a genuine
ignificance test with dichotomous decision behavior and questionable fulfillment of crucial assumptions. SEs are used as

 surrogate for NHST: “[i]f the normalization is performed as proposed by us, the score is 0.91 (±0.11) and therewith not
ignificantly different from the world average” (p. 426). We  can see from this quote, and others, that their main interest is
o check whether the interval subsumes the world average of 1. In this case, it does, and consequently the implicit nil null
ypothesis is not rejected. This is the null ritual and it is highly problematic.

. Summary and recommendations

Opthof and Leydesdorff (2010) provide at least one sound reason for altering the normalization procedures in relation
o citation indicators, however, it is certainly not statistical significance testing. As we  have discussed in the present article,
tatistical significance tests are highly problematic. They are logically flawed, misunderstood, ritualistically misused, and
oremost mechanically overused. They only address sampling error, not necessarily the most important issue. They should be
nterpreted from a frequentist theory of probability and their use is conditional on restrictive assumptions, most pertinent,
hat the null hypothesis must be true and data generation is the result of a plausible stochastic process. These assumptions
re seldom met  rendering such tests virtually meaningless. The problems sketched here are well known. Criticisms and
isenchantments are mounting, but changing mentality and practice in the social sciences is a slow affair, given the evidence,

ndeed a “sociology-of-science wonderment” as Rozeboom (1997, p. 335) phrased it.
The use of significance tests by O&L is probably within “normal science” and their practice is not necessarily more inferior

o those of most others, the other examples testify to that. What has caused our response in this article is a grave ethical
oncern about the ritualistic use of statistical significance testing in connection with research assessments. Assessments
nd their byproducts, funding, promotion, hiring or sacking, should not be based on a mechanical tool known to be deeply
ontroversial. Whether differences in rankings or impact factors between units, are important should be based on human
udgment informed by numbers not by mechanical decisions based on tests that are logically flawed and very seldom based
n the assumptions they are supposed to. Indeed, in their argument for changing the normalization procedures, O&L point
o, what they see as flawed assessments and the real consequences they have had for individual researchers at AMC. This is
audable, but then arguing that statistical significance tests is an advancement for such assessments are problematic in our
iew. As we have argued, it hardly brings more objectivity or fairness to research assessments, on the contrary.

Suggested alternatives to significance tests include the use of CIs and SEs. They do provide more information and are
uperior to statistical significance tests and should as such be preferred. But neither CIs or SEs are a panacea for the problems
utlined in this article. They are based on the same frequentist foundation as NHST.

Resampling techniques (e.g., bootstrap, jackknife and randomization) are considered by some to be a suitable alterna-
ive to statistical significance tests (Diaconis & Efron, 1983). Resampling techniques are basically internal replications that
ecombine the observations in a data set in different ways to estimate precision, often with fewer assumptions about under-
ying population distributions compared to traditional methods (Lunneborg, 2000). Resampling techniques are versatile and

ertainly have merits. The bootstrap technique seems especially well suited for interval estimation if we are unwilling or
nable to make a lot of assumptions about population distributions. A potential application in this area is the estimation
f CIs for effect sizes and for sensitivity analyses (e.g., Colliander & Ahlgren, 2011). In the 2011 Leiden Ranking by CWTS,

5 A CI of 95% is roughly 2 SE. SE bars around point estimates that represent means in graphs are typically one SE wide, which corresponds roughly to a
2%  significance level and a 68% CI.
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such interval estimations seem to have been implemented in the form of “stability intervals” for the various indicators.
Notice, they are used for uncertainty estimation, not statistical inference. Indeed, the statistical inferential capabilities of
resampling techniques are highly questionable. Basically, one is simulating the frequentist “in-the-long-run” interpretation
but using only the data set on hand as if it were the population. If this data set is small, unrepresentative, biased, non-random
or the observations are not independent, resampling from it will not somehow fix these problems. In fact resampling can
magnify the effects of unusual features in a data set. Consequently, resampling does not entirely free us from having to
make assumptions about the population distribution and it is not a substitute for external replication, which is always more
preferable.

Other statistical tools that could inform a decision-making process when it comes to comparison and importance of
results are, for example, exploratory data analyses, such as box-whiskers plot. But there are more satisfactory inferential
alternatives, which contrary to NHST, do assess the degree of support that data provide for hypotheses, e.g., Bayesian inference
(e.g., Gelman, Carlin, Stern, & Rubin, 2004), model-based inference based on information theory (e.g., Anderson, 2008) and
likelihood inference (e.g., Royall, 1997).

4.1. Some recommendations for best practice

Some researchers have called for a ban on NHST (e.g., Hunter, 1997). Censoring is not the way forward, but neither
is status quo. What we need is statistical reforms as suggested for example by Wilkinson et al. (1999),  Kline (2004) and
Cumming (2012).  Here emphasis is on parameter estimation, i.e., effect size estimation with confidence intervals. Important
publication guidelines such as APA (2010) still sanction the use of NHST, albeit with strong recommendations to report
measures of effect size and confidence intervals around them (e.g., APA, 2010, p. 34).

Based on the aforementioned sources on statistical reform, here are some recommendations on data analysis practices
from the frequentist perspective: (1) statistical inference only makes sense when data come from a probability sample or have
been randomly assigned to treatment and control groups; (2) whenever possible take an estimation framework, starting
with the formulation of research aims such as “how much?” or “to what extent?”; (3) interpretation of research results
should be based on point and interval estimates; (4) calculate effect size estimates and confidence intervals to answer those
questions, then interpret results based on informed judgment; (5) if statistical significance tests are used, (a) information on
power must be reported, and (b) the null hypothesis should be plausible; (6) effect sizes and confidence intervals must be
reported whenever possible for all effects studied, whether large or small, statistically significant or not; (7) exact p values
should be reported; (8) it is unacceptable to describe results solely in terms of statistical significance; (9) use the word
“significant” without the qualifier “statistically” only to describe results that are truly noteworthy; (10) it is the researcher’s
responsibility to explain why the results have substantive significance; statistical tests are inadequate for this purpose; (11)
replication is the best way to deal with sampling error.

Finally, it is important to emphasize what significance tests, or CIs and SEs used for the same purpose, are not,  and what
they cannot do for us. They do not make a decision for us. Standard limits for retaining or rejecting our null hypothesis have
no mathematical or empirical relevance, they are arbitrary thresholds. There can and should be no universal standard. Each
case must be judged on its merits. Significance tests are based on unrealistic assumptions giving them limited applicability
in practice. They relate only to the assessment of the role of chance and they are not very informative at that if at all. They
tell us nothing about the impact of errors, and do not help decide whether any plausible substantive result is true. First and
foremost, there are no magical solutions besides informed human judgment. Like the current debate on field normalization, it
is time to start a debate concerning the (mis)use of statistical significance testing within our field. We  encourage quantitative
and statistical thinking, not mindless statistics. We  do not think that the null ritual has much if anything that speaks for it.
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