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a b s t r a c t

We study the link between a laboratory’s personnel composition, its number and types of graduate
students and postdocs, and the laboratory’s productive output. Building upon a fine-grained dataset with
full personnel lists from the MIT Department of Biology from 1966–2000, we find that while postdocs
account for the large majority of publication outputs, graduate students and postdocs with external
funding contribute equally to breakthrough publications. Moreover, technicians are key contributors to
breakthrough publications, but not to overall productivity. Taken together, this study contributes to our
understanding of knowledge work, as well as reinforcing the importance of a laboratory’s personnel
composition.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

“. . . if the scientists we shadow go inside laboratories, then
we too have to go there, no matter how difficult the journey.”
(Latour, 1988, p. 63)

The past two decades have witnessed an unprecedented
advancement in a researcher’s ability to collect and analyze large
datasets. An exponential rise in computer storage and power, cou-
pled with ready access to an ever increasing array of online data
sources has enabled researchers to analyze datasets numbering
in the millions of data points. Large-scale patent data have been
used to study knowledge spillovers (Jaffe et al., 1993; Audretsch
and Feldman, 1996; Breschi and Lissoni, 2001), inventor mobil-
ity (Marx et al., 2009; Singh and Agrawal, 2011), and inventor
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networks (Fleming and Sorenson, 2004), to name a few recent
examples. More recently, a parallel easing of access to data on aca-
demic publications (e.g., Azoulay et al., 2006) has enabled the study
of collaborative teams (Wuchty et al., 2007) and spillovers across
individuals (Azoulay et al., 2010). Whether using patent or publica-
tion data, large-scale datasets allow the documentation of temporal
trends across multiple fields, as well as the discovery of exogenous
variation or the use of matched samples to aid in causal inference.
Lastly, these empirical changes have been particularly pertinent for
scholarship focused on the innovation economy, where the highly
skewed distribution of productive individuals has been recognized
for some time (Lotka, 1926). In short, the ability to access large
datasets has engendered a revolution in the social studies of inno-
vation, changing what questions social scientists might ask, as well
as the way in which these new questions might be answered.

Despite the incontrovertible advantages of larger datasets (we
doubt that any scholars would argue for fewer, rather than more
data points), we fear that during this shift in the size and scope
of data, critical supporting structures that underpin scientific pro-
ductivity – in the context of this paper, the scientific laboratory –
have fallen by the wayside. This oversight is remarkable given the
central role of the laboratory in foundational studies ranging from
the social construction of technology (Latour and Woolgar, 1979),
mentorship and training (Zuckerman, 1977; Dasgupta and David,
1994), organizational structure and boundary spanning (Allen,
1984), as well as the coordination of innovative activities (Pelz
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and Andrews, 1976). More recently, burgeoning literatures on dif-
ferences across scientists (Roach and Sauermann, 2010; Pezzoni
et al., 2012) and incentive structures within firms (Cockburn et al.,
1999; Liu and Stuart, 2014), as well as scientific careers and dif-
ferences between graduate and postdoctoral stages (Stephan and
Levin, 1992; Azoulay et al., 2009) reinforce the notion that there
is considerable heterogeneity across scientists. As Stephan (2012)
notes in her recent book, “Collaboration in science often occurs in a
lab. The lab environment not only facilitates the exchange of ideas.
It also encourages specialization. . .” (p. 67).

This paper’s central goal is not to overturn laudable advances
in data collection and analysis, but to urge greater attention to the
study of scientific laboratories. As one avenue of motivation, in this
paper we examine the personnel composition within laboratories.
Specifically, we focus on laboratory members of varying character-
istics and link changes in the number of these personnel types to the
laboratory’s scientific output. In particular, we ask the following set
of related questions. First, in the biological sciences, how have lab-
oratory personnel compositions changed as this field has grown in
prominence through the twentieth century? Second, to what extent
do laboratory members with different scientific experience (e.g.,
graduate students vs. postdocs), funding, or position (e.g., trainee
vs. technician) affect the laboratory’s scientific output? And in our
examination of the laboratory’s personnel composition, what might
we learn about how different types of personnel members affect
incremental versus breakthrough publications?

To answer these questions, we examine the laboratory compo-
sitions and scientific outputs for one elite set of scientists: principal
investigators (PIs) running laboratories at the MIT Department
of Biology. Using a complete personnel roster, we document an
increase in the prevalence of postdoctoral scientists for the period
1966–2000, while the number of graduate students and techni-
cians remained largely constant. Consistent with prior research,
our analysis suggests that personnel are a critical determinant of
laboratory productivity: larger laboratories have more publication
outputs. Moreover, we find that experienced scientists (i.e., post-
docs), particularly those with external funding (i.e., postdocs with
fellowships), make greater contributions to the laboratory’s publi-
cation outcomes, suggesting that both experience and funding are
critical determinants of laboratory productivity.

However, when we focus solely on high-profile publications (i.e.,
publications in Science, Nature, or Cell), we present three unex-
pected findings. First, graduate students, who make only nominal
contributions to overall publication counts, contribute as much to
breakthroughs as postdocs with external funding. Second, postdocs
without fellowships have no observable impact on breakthrough
publications. In a final intriguing finding, technicians are instru-
mental to high-profile publications, but have no observable impact
on lower impact publication output.

These results speak to the importance of composition, not
just size, in a laboratory manager’s consideration of potential
laboratory members. Although larger laboratories result in more
publications, only a subset of these personnel types appears to con-
tribute to breakthrough publications. Moreover, our results have
implications for the use of large-scale bibliometric data to study
productivity. Our results suggest that the sole use of publication
author lists to construct laboratory size may lead to severe biases
in estimating a laboratory’s productive resources. Coupled with
recent, exponential advances in the collection of large datasets, our
findings on laboratory composition provide motivation to revisit
these ubiquitous social groups. We believe that the time is ripe for
a large-scale examination of scientific laboratories.

This paper proceeds as follows. Section 2 reviews the literature
on laboratories and their importance to knowledge production, as
well as posing our research questions. In Section 3, we describe
our setting and data, and Section 4 describes our measures and

empirical strategy. Section 5 presents our findings. A final section
concludes and discusses the implications of our findings for the
current trend toward large bibliometric datasets.

2. Background and research questions

2.1. History of industrial and academic laboratories

Across both commerce and the academe, laboratories are central
organizational structures in the production of knowledge. Labora-
tories enable the division of scientific labor (e.g., Jones, 2009), serve
as repositories of scientific materials (Furman and Stern, 2011), and
transmit tacit knowledge to scientific novitiates (Latour, 1988), to
name a few roles among many. Historically, laboratories have been
physical spaces that serve both to separate potentially dangerous
chemicals and reagents away from the general population, as well
as providing a controlled environment to foster reproducibility.
From Leeuwenhoek’s construction of microscope lenses in the 17th
century through Marie Curie’s toil to isolate radium in the early
1900s, work in a laboratory was often a solitary affair.

Only with the advent of the dye industry and advances in organic
chemistry in late 19th century Germany did industrial laborato-
ries, as we now conceive of them, first begin to appear (Mowery
and Rosenberg, 1999; Murmann, 2003). Ranging from Thomas Edi-
son’s invention factory at Menlo Park, New Jersey to laboratories
at General Electric, AT&T, or Dupont, industrial laboratories have
been a wellspring of new ideas and technologies (Mowery, 1990).
In the pharmaceutical industry, a large number of industrial lab-
oratories were founded in the early 20th century, and have been
linked to spillovers from geographically proximate university labs
(Furman and MacGarvie, 2007), primarily in the corridor between
Philadelphia and New York City (Feldman & Schreuder, 1996). In
turn, large firms, and the R&D resources embodied in these firms,
may “anchor” knowledge in the local community, resulting in local-
ized knowledge spillovers (Agrawal & Cockburn, 2003; Feldman,
2003).

On the flip side, university research is responsible for a large
percentage of industrial innovations (Jaffe, 1989; Mansfield, 1998).
Academic laboratories are often thought of as a complement to
industrial research, and access to academic laboratories is an essen-
tial component to the development of absorptive capacity (Cohen
and Levinthal, 1990; Cockburn and Henderson, 1998). As a con-
sequence, both academic and industry science are thought to be
the twin engines that drive technological change and, ultimately,
economic growth (Romer, 1990). For the biotechnology indus-
try, university linkages were a critical component of success (cf.,
Kenney, 1986). There are often tight linkages between academic
and industrial scientists (e.g., Balconi et al., 2004; Murray, 2004),
and these linkages often occur through geographic collocation
(e.g. Zucker et al., 1998; Breschi and Lissoni, 2001; Audretsch and
Feldman, 1996).

Academia not only serves as a source of early-stage innova-
tive ideas, it also serves as a source of knowledge workers for the
industry. University labs are the major venue for training scientists,
especially for positions that require specialized, tacit skills (e.g.,
a Ph.D.). Moreover, it has been proposed that universities serve
a critical function in screening potential employees. As Dasgupta
and David (2004; p. 511) suggest, “disclosure and peer evaluations
make available, at very low cost to managers of company R&D labo-
ratories, a great deal of information about the qualities of scientists
who they might want to recruit as employees.”

Both the scale and the scope of university research have changed
dramatically throughout the 20th century. For example, Stephan
(2013) notes that US research expenditures in 1940 were at less
than one percent of current (i.e., year 2010) levels. In 1930, just 895
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doctorates were awarded across all the sciences and engineering,
and much of this was directed at basic research.

By comparison, in the life sciences alone, more than 8000 doc-
torates were awarded in 2010. The bulk of this growth has been
driven by the post-war recognition of the importance of science
and technology in innovative growth, and a push by Vannevar
Bush’s Endless Frontier campaign to “build research capacity by
training new researchers” (Stephan, 2013, p. 32). Although a signif-
icant body of research is done by industry scientists, a report by the
National Science Board (2008) has noted that university researchers
are responsible for more than 70% of all scientific articles.

2.2. Laboratory studies

Given the central role that laboratories play in the production of
knowledge, it comes as no surprise that there is significant inter-
est in laboratories in the social sciences. In recent years, much
of this work has bifurcated across methodological lines, with one
body of work emphasizing depth through a series of qualitative
case studies, and a second stream of work tapping into large bib-
liometric datasets. One of the goals of this paper is to provide an
intermediary approach, bridging the benefits of large-scale quan-
titative approaches with the contextual nuances within laboratory
structures.

Much of our fine-grained knowledge of laboratories comes
through a series of case studies, primarily conducted from the
1970s. In a groundbreaking study, Bruno Latour conducted a deep
ethnography to examine the social construction of knowledge
within the context of an endocrinology laboratory (Latour and
Woolgar, 1979; Latour, 1988). Over the course of a year, Latour
illuminated the social environment within which data is collected
and “facts” are established. Although not the central element in his
examination of communication patterns, Allen (1984) also devoted
a significant amount of effort to R&D laboratories. More recently,
scholars have used qualitative analyses of laboratories to examine
expert systems (Knorr-Cetina, 1999; Conti et al., 2014), managerial
control (Owen-Smith, 2001), interactions with technology licens-
ing offices (Colyvas, 2007), reward structures (Liu and Stuart, 2014),
and geographic layouts (Kabo et al., 2014; Liu, 2014).

By contrast, large-scale quantitative studies of university lab-
oratories have traded depth for breadth. These studies primarily
focus on the laboratory head (i.e., professor or PI) and relationships
between PIs rather than the microanalysis of laboratory structures.
Building on the growing availability of bibliometric data sources
(e.g., Azoulay et al., 2006), social scientists have begun to examine
differences across PIs, often in studies across thousands of labora-
tory heads.

It comes as no surprise that a small number of scientists
make a disproportionately large contribution to knowledge pro-
duction (Lotka, 1926). As a consequent of this skewed distribution,
researchers have typically focused on “stars”, rather than the
median scientist (Zuckerman, 1977). With the advent of larger
databases, it has been possible to increase sample sizes, exam-
ining a more representative sample of scientists. Consistent with
a skewed distribution, there is considerable heterogeneity across
scientists, whether this heterogeneity is across individuals’ ori-
entation to commercial endeavors (Azoulay et al., 2009), their
preferences (Roach and Sauermann, 2010), their institutional status
(Azoulay et al., 2014), or their helpfulness to others (Oettl, 2012).

Moreover, the collection of sufficiently large datasets has
enabled researchers to illustrate that the social context within
which a university scientist works is a critical determinant of their
rate and direction of innovative activity. For example, individuals
with university colleagues and coauthors who have transitioned
to entrepreneurship (Stuart and Ding, 2006) are more likely to
transition to entrepreneurship themselves. Although Waldinger

(2012), in examining the dismissal of scientists in Nazi Germany,
did not find evidence for peer effects, Mairesse and Turner (2005)
have shown that increases in the publication output of an indi-
vidual’s colleagues lead to higher productivity on the part of the
focal individual. More recently, it has been shown that evolution-
ary biology departments who hire “stars” get nearly a 50% boost to
departmental productivity, after accounting for the direct contri-
bution of the star (Agrawal et al., 2013). In a study of geographic
proximity, Catalini (2012) draws from over fifty thousand publi-
cations at a French university to examine how collocation drives
innovative outcomes. As a final example, scholars have also mined
hundreds of thousands of articles to examine how a scientist’s death
affects his or her peers (Azoulay et al., 2010; Oettl, 2012). Taken
together, these studies have leveraged the availability of large-scale
bibliometric data to provide more precise answers to important
questions on knowledge production.

At the same time, left behind are the laboratory structures that
case studies emphasize are critical determinants of productivity.
Undergirding the thousands of scientists (i.e., professors) examined
in these studies are tens, if not hundreds of thousands of laboratory
members. Thus, we complement the quantitative body of work on
scientific productivity by “bringing back in” the academic labora-
tory. As we have noted, one of the most robust patterns in social
studies of science is the skewed distribution of productive workers.
Our suspicion is that this skewed distribution applies not just to lab-
oratories as a whole, but permeates into the laboratory itself: some
laboratory members contribute more to laboratory productivity
than others (also see Section 6). As a consequence, we examine
the personnel composition of laboratories, and link how personnel
with different characteristics have divergent effects on laboratory
productivity.

2.3. Experience, funding, and positions in laboratory personnel

To link different types of personnel to laboratory output, we
examine laboratory members across three dimensions: their expe-
rience, their external funding structure, and the positions the
individuals occupy within the laboratory. We focus on these three
dimensions because we believe that they are both salient and that
they map onto characteristics of the lab members in our dataset.
We do not suggest that these dimensions are exhaustive.

2.3.1. Experience
One of the central theories in the social studies of science is

that knowledge production is a craft (Fujimura, 1996; Simonton,
2004). Given its tacit nature, the practice of science is most often
acquired through hands-on apprenticeships to masters of the craft
(Zuckerman, 1977). Consistent with the notion that there is a sig-
nificant learning component to the mastery of science, scientific
productivity increases over time, reaching an apex at mid career
(Levin and Stephan, 1991).

In the life sciences, training commonly occurs across two stages:
graduate, and then postdoctoral training (Nerad and Cerny, 1999),
and the duration of these stages is increasing (Stephan and Ma,
2005; Conti and Liu, 2014). One explanation is that, to become
active contributors, budding scientists need to accrue a signifi-
cant amount of knowledge before they reach the scientific frontier
(Jones, 2009). Alternatively, increasing competition for a limited
number of positions may require longer resumes. Regardless of the
mechanism, there is reason to suspect that laboratory members
with greater age and experience may be positively correlated with
the laboratory’s research output.

2.3.2. Funding
A second dimension is the funding status of the laboratory mem-

ber. Although many laboratory members receive funding (e.g., a
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salary stipend, conference travel, etc.) directly from the laboratory
head’s grants, a number of individuals receive significant funding
from external sources. In the life sciences, the presence of external
funding agencies (e.g., the Helen Hay Whitney Foundation) that
want to identify and support scientists-in-training, particularly at
the postdoctoral stage of their careers are common. These founda-
tions want to identify promising young individuals, to mediate the
cross-fertilization of ideas across sub-disciplines, and to promote
greater autonomy and risk-taking on the part of trainees (Owen-
Smith, 2001).

For postdocs, and most external funding within the laboratory
occurs at the postdoctoral stage of training, gaining a fellowship is
an important milestone. Funding provides external validation of the
individual’s research potential, as well as the individual’s ability to
write a grant and to raise external funds. Moreover, funding often
enables the funded individual to take on riskier projects. Lastly,
from the laboratory’s perspective, the gain of external funding by
a postdoc may spillover to free up financial resources for other
purposes (e.g., hiring another postdoc), linking external funding to
laboratory productivity.

2.3.3. Positions
A final dimension that may differentiate laboratory members

is the position that the individuals occupy within the laboratory
(Liu and Stuart, 2014). We focus on laboratory positions because
of the divergence in roles expected from trainees (i.e., graduate
students and postdocs) and permanent, salaried employees (i.e.,
technicians).

Graduate students and postdocs are apprentices within the
laboratory. During their stay, they are expected to carry out inde-
pendent research, striving to acquire the research skills of the
master (i.e., laboratory head). Freeman et al. (2001) have charac-
terized the career structure of these trainees as a tournament, with
“winner-take-all” competition where the most successful candi-
dates at one training stage advance to the next. Framed in this light,
graduate students strive to advance to be postdocs, and postdocs
strive for more permanent employment (e.g., tenure-track profes-
sorships). Thus, the primary role of a trainee is to conduct primary
research, preparing him or her for a successful transition out of the
current laboratory toward the next career stage.

By contrast, the roles undertaken by graduate students and
postdocs diverge dramatically from individuals in the position of
technicians. The role of the technician is to provide support (Barley,
1996; Kaplan et al., 2012). Technicians are not seen as researchers
conducting independent work but, as Shapin (1989) states in his
examination of Boyle’s laboratory, “at one extreme, technicians
might be seen as mere sources of physical energy and as muscu-
lar extensions of their master’s will.” Consistent with this view,
technicians may also serve to ease and accelerate the workload for
individuals in trainee positions, and technicians often lack auton-
omy within the laboratory (Owen-Smith, 2001). Lastly, technicians
may act as knowledge repositories within the laboratory (Furman
and Stern, 2011).

Taken together, there is strong reason to suspect that different
types of laboratory members may make differential contributions
to the knowledge output of the laboratory. The perspectives out-
lined above lead us to the first research question addressed in this
paper: to what extent do laboratory members who differ in their expe-
rience, funding, and positions contribute to the publication output of
an academic laboratory?

2.4. Incremental vs. breakthrough publications

However, not all scientific outputs are equal, and experience,
funding, and positions may have varying effects across different
segments of the scientific impact distribution. Just as a minority of

individuals dominate the knowledge production function, a minor-
ity of publications have disproportionate impact, and it is plausible
that a different subset of laboratory personnel are correlated with
these high-impact outcomes. For example, in an examination of
patent outliers, Singh and Fleming (2010) suggest that teams are
more likely to result in highly cited patents than lone inventors.
Lone inventors are disproportionately represented in the tails of
the creativity distribution (Dahlin et al., 2004), while others have
suggested that teams result in greater variation in outcomes (Taylor
and Greve, 2006).

Although a positive relationship between experience and over-
all scientific output should come as no surprise, there is more
doubt about a positive relationship between experience and out-
lier publications. For breakthroughs, a healthy dose of naiveté
may be useful. For example, inexperienced graduate students
may elect different projects than their more experienced counter-
parts. In Knorr-Cetina’s words “Compared with postdocs and senior
researchers, they [grad students] are (still) under less pressure to
publish quickly, copiously, and in good journals. . .Also, doctoral
students were considered to be more willing to take risks – out
of sheer lack of knowledge about the kinds of trouble they would
encounter, and perhaps out of greater confidence in a laboratory
leader who tends to be enthusiastic about risky research.” (Knorr-
Cetina, 1999, p 230).

By contrast, we suspect that the link between external (postdoc-
toral) funding and breakthrough publications is likely to be positive.
If funding agencies have the ability to identify talented individuals,
and we suspect that talent is correlated with breakthroughs, funded
researchers are more likely to achieve breakthroughs. Moreover, as
noted above, external funding may give greater autonomy, enabling
postdocs to engage in riskier types of research (Owen-Smith, 2001).

Lastly, laboratory technicians may also enable breakthroughs.
Given their lack of independent projects, we equate technicians to
“slack” resources, and their efforts can be brought to bear on par-
ticularly competitive projects. Defined by Nohria and Gulati (1996)
as “the pool of resources in an organization that is in excess of the
minimum necessary to produce a given level of organizational out-
put,” Cyert and March (1963) also state that, “organizational slack
absorbs a substantial share of the potential variability in the firm’s
environment. As a result, it plays both a stabilizing and an adaptive
role (p. 43).” As winning a competitive race often enables a paper
to be published in a prominent journal, a laboratory’s ability to
rapidly mobilize technician resources may equate to breakthrough
publications. Lastly, it is also probable that the impact of techni-
cians may proxy for capital equipment, which has been found to
mediate breakthroughs (Barley, 1996; Stephan, 2012). And, to the
extent that technicians have different “hands-on experiences” from
trainees, their contextual understanding of materials, instruments,
and techniques may lead to different publication outcomes (Barley
and Bechky, 1994).

This discussion leads us to ask a second, interrelated question: to
what extent do laboratory members who differ in their experience,
funding, and positions contribute to breakthrough publications?

3. Setting and data

To address these topics, this paper presents a quantitative
case study examining a dataset comprised of laboratories at the
Massachusetts Institute of Technology (MIT) Department of Biol-
ogy between 1966 and 2000. Although focused on one scientific
department at a specific university, this setting has a number of
advantages. First, it is an elite biology department that has con-
sistently contributed to scientific breakthroughs since the 1960s.
Mirroring other studies that focus on scientific elites (Zuckerman,
1977; Azoulay et al., 2010), this set of laboratories is particularly
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Fig. 1. Representative example of MIT Biology Annual Report. Note: A representative personnel list from David Baltimore’s laboratory. Within our study, we excluded visiting
scientists and undergraduate students, as there was evidence that the reporting of these laboratory personnel types was incomplete.

important: their scientific discoveries have been critical to the
emergence of the biotechnology industry. As an illustration, our
dataset, which encompasses 119 laboratories in total, contains six
Nobel Laureates and 43 members of the National Academy of Sci-
ences. Second, within this elite cohort of scientists, we have access
to a particularly rich data source: the department’s internal Annual
Report, which provides an unparalleled window into laboratory
structures over the course of almost four decades. These Annual
Reports present both a fine-grained illustration of the laboratory’s
internal activities and, perhaps even more importantly, a complete
one. Lastly, a member of our research team received a doctorate
from this department, providing rich insight into technical and
organizational aspects of this particular department.

The centerpiece of our dataset is data culled from the Annual
Reports. The purpose of these reports was to foster the internal
dissemination of information between laboratories. As a conse-
quence, from 1966, when the current departmental structure was
adopted, through the year 2000, when the Annual Reports were
moved online, a yearly report of the department’s internal activi-
ties was compiled, printed and distributed to each member of the
department.1 The Annual Reports carefully documented a com-
plete list of laboratory members, including their professional role
in the department (i.e., graduate student, postdoctoral associate,
technician, etc.) (Figure 1). We use the reports to measure the year
in which an individual began working in a specific laboratory, in
addition to the date (if applicable) when he or she left. Moreover,
from the years 1966 through 1989, the reports included project
level data documenting each individual’s projects-in-progress. In
1989, the reports became so cumbersome, in excess of 650 pages,
that each laboratories’ activities were limited to a two-page sum-
mary. Although we do not use the project level data in this paper,
the annual reports allow us to generate a complete roster of each
laboratory’s members, as well as their membership type.

We supplemented these personnel rosters with a hand-
collected dataset of each laboratory’s publication outputs, compiled
from the Medline database (Azoulay et al., 2006). This collection
resulted in a dataset of 7848 scientific papers. We supplemented

1 See http://libraries.mit.edu/mithistory/research/schools-and-departments/
school-of-science/department-of-biology/; accessed November 20, 2013.

this bibliometric data with a listing of all NIH funding awarded to
the professors in our dataset.

4. Measures and empirical strategy

4.1. Publication outcomes

In this paper, we link a laboratory’s personnel composition to
its publication output. To do so, we examined two dependent vari-
ables. The first variable is simply a laboratory’s yearly number of
publications. An alternative measure of overall productivity, the
impact-factor weighted publication count, did not affect this set of
results.

A second set of regressions examines a laboratory’s likelihood
of achieving a “breakthrough” discovery. Specifically, we chose
to focus on publications in Science, Nature, or Cell for three rea-
sons. First, in multiple conversations with life scientists, these
three venues were cited as the most prestigious journals. Second,
excluding journals that don’t publish original research (e.g., Annual
Reviews of Biochemistry), these journals have the highest journal-
impact factors. Lastly, as our dataset begins in the 1960s, these
journals were publishing articles throughout the timeframe of our
data. One exception is Cell, which began publishing only in 1974.
Using just Science and Nature publications yielded similar results.2

Thus, for our second set of regressions, we generate an indicator
variable set to 1 if a publication occurred in Science, Nature, or Cell
and 0 otherwise. We did not use a publication count as fewer than
20% of laboratories published more than one article in the journals
within a given year.

4.2. Laboratory composition

Our key independent variables are the number of different per-
sonnel types that populate the laboratory. For these measures,
we did not consider undergraduates or visiting scientists, as there
was evidence that these personnel types were both infrequent and
idiosyncratically underreported. As an initial point of entry, we

2 Another plausible journal to include is PNAS. However, given the large number
of National Academy of Science members in our dataset, many laboratories have
direct submission privileges to this journal. Thus, the competitiveness of this journal
is diluted for our sample population.

http://libraries.mit.edu/mithistory/research/schools-and-departments/school-of-science/department-of-biology/
http://libraries.mit.edu/mithistory/research/schools-and-departments/school-of-science/department-of-biology/
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simply generated the total number of personnel in the laboratory,
a measure we call laboratory size. We also included the square of
this measure, as well as of the personnel counts described below,
to account for the possibility that our variables have a non-linear
impact on a laboratory’s output.

To distinguish between personnel types, we broke laboratory
members into the following categories: (a) postdoctoral scientists
with external funding, (b) postdoctoral scientists without external
funding, (c) graduate students, and (d) technicians.3

In the life sciences, almost all scientists-in-training undergo two
training stages: graduate education to obtain a doctorate, and then
one or more postdoctoral appointments. This two-stage training
is almost unavoidable if the trainee wishes to practice research,
whether in the public or private sector. For “alternative” careers,
such as management consulting or patent law, a postdoctoral stage
can sometimes be bypassed. For the timeframe of our dataset, alter-
native career paths were not very prevalent. Lastly, given the elite
nature of our setting, the vast majority of postdocs are doing their
first postdoc.

Unlike many graduate programs in Europe, life science graduate
students in elite US programs apply to the university program, not
directly to a professor. After a year or two of coursework, concurrent
with sequential apprenticeships (called rotations) in different lab-
oratories, junior graduate students and professors simultaneously
choose one another in a two-sided match. In the (exclusive) case
of MIT Biology, graduate students attend a seminar by each and
every professor in January of their first year (i.e., the Inter-Activities
Period), and choose a laboratory at the end of their first year. Thus,
graduate students at MIT are able to choose from a diverse array of
laboratories, and only begin specialized training within one labo-
ratory at the end of their first year.

Unlike graduate training, postdocs apply for a training position
directly with the laboratory head. As the graduate student finishes
doctoral training, strong disciplinary norms encourage the student
to choose a new laboratory for postdoctoral training. Often, the
graduate student will use postdoctoral training to shift research
trajectories to complement his or her existing skills.4 For the typi-
cal graduate student, a Ph.D. defense only occurs after matching to
a postdoc position. Only after a postdoctoral laboratory is selected,
does the graduating student apply for external funding. The exter-
nal funding application requires the nomination of the trainee’s
postdoctoral advisor, as the “suitability” of the postdoc training
environment is a key determinant of funding success. Many fellow-
ships come with a boost to the postdoc’s salary, as well as nominal
research funds (e.g., to buy a laptop). For universities, postdoc-
toral fellowships are salient enough that postdocs are separated
into those with external funding, called fellows, and those without,
called associates, within our dataset.

A last category of laboratory personnel is technicians. Tech-
nicians are salaried staff that have an important role in
supplementing the research efforts of trainees, and in providing all
of the required technical support that enables a laboratory to func-
tion effectively. As Barley (1996; p. 430) states, “graduate students
and postdoctoral fellows in the molecular biology labs we studied
learned empirical procedures largely from technicians.” In general,
technicians do not have a doctorate. They are often overseers of
essential equipment (e.g., a Nuclear Magnetic Resonance machine)
or skills that are only acquired over time (e.g., tissue sectioning).

3 We excluded staff scientists because their numbers were few and limited to the
latter years of our dataset.

4 The major determinants of postdoc laboratory selection are research focus, as
well as geographic proximity to the graduate laboratory. For a detailed examination
of these selection factors, including both quantitative and qualitative evidence, see
Azoulay et al. (2009).

As a control variable, we include the amount of NIH funding
a laboratory has received within a given year, deflated to 1982
dollars. Conditioned on the number of each laboratory’s person-
nel types, NIH funding captures the residual impact of financial
capital, net of salaries, on the productivity of the laboratory. As
we have each laboratory professor’s complete publishing history,
including when he or she was a trainee, we include the years since
first publication to proxy for the laboratory’s “age”.

4.3. Empirical strategy

To test our hypotheses that different personnel types have a
differential impact on a laboratory’s productive output, we esti-
mate a dynamic panel model that follows a methodology proposed
by Wooldridge (2005). We use a Poisson specification with robust
standard errors, which takes into account the fact that the depend-
ent variable, the number of articles per laboratory, can only take
discrete and positive values. This model has several desirable prop-
erties, including consistency in the coefficient estimates and in
the standard errors (Griliches and Hausman, 1986). Formally, our
regression equation can be expressed as:

E[yit+2|yit−1, yi0, zit, ci] = ci exp(zit� + yit−1�+) (1)

where our dependent variable, yit+2, is the number of articles per
laboratory i. Using a count of laboratory articles that were pub-
lished in t + 2 accounts for the lags between the time at which an
individual joins the laboratory and the time at which the result-
ing findings are published (Levin and Stephan, 1991).5 Wooldridge
(2005) suggests that we include yit−1, the number of laboratory arti-
cles lagged by one year to control for omitted variable bias. As one
example, productive labs might attract a different set of individuals
than less productive laboratories. Lastly, a dynamic panel model
allows, at least partially, to address problems of reverse causality,
that laboratory productivity may drive laboratory structure.6

In the equation, zit is a vector which includes the following
covariates: the number of (a) postdoctoral scientists with exter-
nal funding, (b) postdoctoral scientists without external funding,
(c) graduate students, and (d) technicians, as well as the square
of each term to control for nonlinearities. In addition, as controls,
we include the amount of NIH funding (deflated to 1982 US dol-
lars). We control for the experience of a principal investigator with
the number of years since she published her first scientific article.
Finally, we use year-fixed effects to capture dynamics unrelated to
the personnel composition of the laboratory.

Lastly, we also include the pre-sample value of the dependent
variable in our regressions, yi0, because the unobserved effect ci is
conditioned on (yi0, zit) in Eqs. (1) and (2).7 Note that with a lagged
dependent variable as a regressor, the usual within estimator (i.e.,
laboratory fixed effects) would be inconsistent and severely biased
(Wooldridge, 2005). Thus, we opt for a random effect model, which
allows the unobserved effect to be correlated with the initial con-
dition, yi0, and zit. Although not our preferred model, regressions
with laboratory fixed effects yield similar results (not shown).

To evaluate the likelihood that a laboratory made a “break-
through” discovery, we estimate a probit model, in which the
dependent variable is a dummy that takes on the value of one if
the laboratory has published either in Science, Nature, or Cell in a

5 The results remain invariant if the dependent variable is observed in t + 1 rather
than in t + 2.

6 Summary statistics indicate considerable variability in our dependent vari-
able, confirming the importance of estimating a dynamic panel model. Indeed, the
between (i.e., 3.2) and the within (i.e., 2.9) standard deviation of a laboratory’s
publication output are large and similar to one another.

7 The pre-sample value of the dependent variables is measured in the year pre-
ceding the moment in which a laboratory is observed for the first time.
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Table 1
Descriptive statistics.

Variable Mean Std. dev. Min. Max.

Dependent variables
Laboratory’s publication count (t + 2) 5.293 4.432 0 24
Laboratory published one or more articles in Science, Nature or Cell (t + 2) 0.392 0.448 0 1

Independent variables
Number of postdocs with fellowships 2.794 3.193 0 17
Number of postdocs w/o fellowships 1.890 2.199 0 13
Number of graduate students 3.357 2.615 0 15
Number of technicians 1.561 1.488 0 6
NIH grant dollars (in ‘000s) 340.7 495.1 0 7790
Number of laboratory publications (t − 1) 4.867 4.387 0 24
Number of laboratory publications (in the pre-sample year) 2.685 2.329 0 17
Laboratory published one or more articles in Science, Nature or Cell (t − 1) 0.391 0.488 0 1
Laboratory published one or more articles in Science, Nature or Cell (pre-sample) 0.323 0.468 0 1
Number of years elapsed since a principal investigator published his/her first article 19.318 11.103 0 51

Note: 1482 observations.
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Fig. 2. Laboratory personnel-by type. Note: These are each laboratory’s number of personnel by type (on the left axis). We also include the year amount of NIH grants (in
1982 US Dollars) on the right axis.

given year. As before, we estimate a dynamic panel model, which
includes the one-year lagged value of the dependent variable as a
regressor. Formally, the probability that a laboratory published a
breakthrough can be expressed as:

P[yit+2 = 1|yit−1, yi0, zit, ci, ] = F(zit� + yit−1� + ci) (2)

where the dependent variable, yit+2 is a dummy set to 1 if a labo-
ratory publishes either in Science, Nature, or Cell in t + 2. As before,
we include yit−1, the one-year lagged value of the dependent vari-
able, and yi0, the dependent variable measured in the pre-sample
year. The coefficients we report for the probit models are marginal
effects, evaluated at the means of the regressors.

5. Results

We begin our results section with a description of the dataset
(Table 1). Overall, our dataset includes 1482 laboratory-year
observations, and 20,324 laboratory member-years that span
1966–2000.8 Within this dataset, there are 119 principal inves-
tigators and 5694 laboratory members, which include 1798

8 We excluded Eric Lander’s laboratory, which was working on the Human
Genome Project, as it was an extreme outlier.

postdocs with fellowships, 1328 postdocs without fellowships,
1395 graduate students, and 1173 technicians. Over this time
period, the laboratories resulted in 7844 journal publications,
of which approximately 15% are breakthrough publications in
Science, Nature or Cell.

From the 1960s to the year 2000, the number of laboratories
in MIT Department of Biology grew from 27 to 49. Concomitantly,
the number of incumbent graduate students increased from 42 to
86 and the number of postdoctoral assistants increased from 59 to
146. Finally, the overall number of technicians increased from 24
to 119 in total.

Not only did the overall size of the department increase over this
decade, the average laboratory size increased as well (see Fig. 2).
Over the thirty-five years encompassed in our dataset, laboratory
size increased from 6 to 12 individuals (excluding the laboratory’s
head). This size increase was primarily driven by greater numbers of
postdocs, particularly postdocs with external funds, although both
types of postdocs increased steadily over the years. This rise in the
number of postdocs parallels an increase in NIH funding per lab,
which rose from 220 to 473 thousand dollars (in constant, 1982
dollars) over the course of the dataset. By contrast, the number
of graduate students and technicians were largely stable over this
time period.
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Table 2
Laboratory composition determinants of publication count (Poisson models).

1 2 3 4 5

Number of publications (lag 1) 0.019** (0.005) 0.012** (0.004) 0.012* (0.005) 0.011* (0.004) 0.011** (0.004)
Number of publications (pre-sample) 0.092** (0.016) 0.080** (0.014) 0.084** (0.014) 0.082** (0.013) 0.082** (0.014)
NIH grant dollars (log) 0.017* (0.008) 0.006 (0.007) 0.006 (0.007) 0.009 (0.008) 0.011 (0.008)
Elapsed years since first publication (log) 0.460** (0.104) 0.150* (0.072) 0.158* (0.073) 0.107 (0.071) 0.148* (0.073)
Lab size 0.101** (0.014)
Lab size2̂ −0.002** (0.000)
Technicians 0.011 (0.022) 0.009 (0.021) 0.008 (0.021)
Technicians2̂ −0.000 (0.002) −0.000 (0.002) −0.000 (0.002)
Trainees (postdocs + graduate students) 0.102** (0.016)
Trainees2̂ (postdoc + graduate students) −0.003** (0.001)
Postdocs 0.108** (0.015)
Postdocs2̂ −0.004** (0.001)
Postdocs with fellowship 0.094** (0.015)
Postdocs with fellowship2̂ −0.004** (0.001)
Postdocs without fellowship 0.057** (0.021)
Postdocs without fellowship2̂ −0.002 (0.002)
Graduate students 0.035+ (0.021) 0.029 (0.022)
Graduate students2̂ 0.000 (0.002) 0.001 (0.002)

Year FE YES YES YES YES YES
Observations 1482 1482 1482 1482 1482
No. of lab clusters 119 119 119 119 119
Log-likelihood −3423.33 −3346.70 −3346.54 −3346.37 −3352.90

Notes: All personnel types are count variables. The pre-sample number of publications is included, but not shown. Robust standard errors are in parentheses; +significant at
10%, *significant at 5%; **significant at 1%.

On average we observe a laboratory over twelve years. In a
typical laboratory-year, the laboratory published 5.3 publications,
although the range in this output varies widely (Table 1). Each lab-
oratory’s scientific output has steadily increased over time, from
an average of three papers per laboratory-year in the 1960s to six
papers per laboratory-year in the 1990s. By contrast, the yearly
number of breakthrough papers has held steady over our studied
timeframe, with a possible dip appearing in the 1970s (Fig. 3).

Within our dataset, the average laboratory has ten members, of
which 5 are postdoctoral scientists, 3 are graduate students, and 2
are technicians. However, laboratories vary greatly in their compo-
sition of personnel types. For example, the average laboratory has
5 postdoctoral scientists, although this number ranges from zero to
30. Although the average laboratory received 341 thousand dollars
from the NIH, the most highly funded laboratory received nearly
eight million dollars.

To examine the links between different personnel types and lab-
oratory productivity, we first turn our attention to a laboratory’s

Fig. 3. Laboratory publication output-over time. Note: The year number of publica-
tions (on the left axis) and the yearly count of publications in Science, Nature or Cell
(on the right axis) over the time period of our dataset.

yearly publication count (Table 2). In a baseline regression (Model
1), we see that a lagged publication count has a positive correla-
tion with subsequent laboratory productivity, consistent with the
notion of inertia in laboratory productivity. NIH funding also has a
positive, significant effect on laboratory output. When we include
laboratory size, a composite measure of laboratory personnel types,
in our regressions, we observe a positive, significant effect (Model
2). The relationship between a laboratory’s size and its productivity
is characterized by diminishing returns, consistent with a negative
and highly significant coefficient on the squared term of laboratory
size. For the average-sized laboratory, adding one additional mem-
ber is correlated with an increase in the number of a laboratory’s
publications by 0.24.9 Given the magnitude of the laboratory size
coefficients, the inflection point is reached at 25 members and thus
lies in the 98th percentile of the distribution of laboratories by their
size.

In Models 3–5, we decompose the laboratory size measure into
its constituent parts. In Model 3, we see that the bulk of personnel
effects is due to the presence of laboratory trainees (i.e., postdocs
and graduate students). Surprisingly, technicians do not have a sig-
nificant impact on a laboratory’s publication count, reinforcing the
importance of positions and roles within the laboratory. This result
is particularly noteworthy as the cost of a technician to the lab-
oratory, in terms of salary and compensation, is comparable to a
trainee. Digging deeper into trainee types (Model 4), the magni-
tude of the coefficients indicates that adding one member to the
mean count of postdocs and graduates students increases a labora-
tory’s publication output by 0.31 and 0.14, respectively. In line with
the results from the previous Models, the relationship between
the number of postdocs and a laboratory’s output is concave. The
inflection point is reached at 13 postdocs and thus lies in the 95th
percentile of the distribution of laboratories by their postdoc count.

In Model 5, we distinguish between postdocs with and with-
out external funding. Adding one member to the mean number of
postdocs with external funding increases a laboratory’s publication
count by 0.29. Adding one member to the mean number of postdocs
without external funding increases a laboratory’s publication count

9 This value was computed holding constant at the means the remaining controls.
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Table 3
Laboratory composition determinants of the likelihood of publishing in Science, Nature, or Cell (Probit models).

6 7 8 9 10

Published in Science, Nature, or Cell (lag 1) 0.123** (0.041) 0.095** (0.037) 0.094** (0.037) 0.094** (0.035) 0.091** (0.035)
Published in Science, Nature, or Cell (pre-sample) 0.249** (0.059) 0.174** (0.052) 0.173** (0.050) 0.175** (0.048) 0.162** (0.046)
NIH grant dollars (log) 0.011** (0.004) 0.003 (0.004) 0.003 (0.004) 0.003 (0.004) 0.005 (0.004)
Elapsed years since first publication (log) −0.051 (0.040) −0.113** (0.033) −0.108** (0.032) −0.106** (0.033) −0.082* (0.032)
Lab size 0.048** (0.011)
Lab size2̂ −0.001* (0.000)
Technicians 0.054** (0.019) 0.054** (0.019) 0.058**

Technicians2̂ −0.007* (0.003) −0.006* (0.003) −0.007*

Trainees (postdocs + graduate students) 0.049** (0.011)
Trainees2̂ (postdocs + graduate students) −0.001* (0.001)
Postdocs 0.049** (0.014)
Postdocs2̂ −0.002* (0.001)
Postdocs with fellowships 0.046** (0.015)
Postdocs with fellowships2̂ −0.002 (0.001)
Postdocs without fellowships −0.001 (0.020)
Postdocs without fellowships2̂ −0.000 (0.002)
Graduate students 0.044* (0.018) 0.040* (0.018)
Graduate students2̂ −0.001 (0.002) −0.001 (0.002)

Year FE YES YES YES YES YES
Observations 1482 1482 1482 1482 1482
No. of lab clusters 119 119 119 119 119
Log-likelihood −757.28 −733.49 −730.20 −726.57 −721.80

Notes: Coefficients are marginal effects evaluated at the means of the independent variables. All personnel types are count variables. Robust standard errors are in parentheses
below; +significant at 10%, *significant at 5%; **significant at 1%.

by only 0.19. Postdocs, regardless of their external funding status,
are greater contributors to laboratory productivity than graduate
students.

The effects of laboratory personnel types change considerably
when we consider only “breakthrough” publications in the journals
Science, Nature, or Cell (Table 3). In our baseline (Model 6), we
find a significant role of NIH funding in breakthrough publications,
although this effect does not hold with the inclusion of laboratory
personnel. As before, larger laboratories have more breakthroughs,
although, once again, there is evidence for diminishing returns to
scale (Model 7). Adding one member to the mean laboratory’s size
increases the likelihood of breakthroughs by 0.03. Considering that
the average probability of breakthroughs is 0.39, an increment by
0.03 of this value corresponds to an 8% increase. The inflection point
is reached at 22 members and thus, it is similar to the one we found
for the total publication count.

When we parse laboratory members into multiple personnel
types, we see, contrary to the results with overall publication
counts, that both technicians and trainees make contributions to
breakthrough output (Model 8). Most surprisingly, the effect size
of these two personnel types is significant and of equal magnitude.
Adding one member to the mean number of trainees or technicians
increases a laboratory’s publication count by about 0.03, regardless
of the laboratory member’s position. The inflection point is reached
at 19 members in the case of trainees and at 4 members in the case
of technicians.

Moreover, our results on breakthrough pubs also diverge from
our results on overall publication counts when we consider gradu-
ate students (Model 9). Mirroring our results with technicians, we
find that graduate students make substantial contributions to lab-
oratory breakthroughs, on par with postdocs, while only making
marginal contributions to overall productivity. In a final finding,
we find no correlation between postdoctoral scientists without
external funding and the likelihood of breakthrough publications,
suggesting that external funding is a key correlate of a postdoc’s
contribution to laboratory productivity (Model 10).

Two further aspects of our results are worth noting. First, we
note that older vintage laboratories, while having greater over-
all publication output (Table 2, Model 2), appear to have fewer
breakthroughs (Table 3, Model 2), consistent with a link between

organizational age and obsolescence (Sorenson and Stuart, 2000).
Second, consistently across both Table 2 and Table 3, we find, after
controlling for the number and types of laboratory personnel, no
effect on the level of NIH funding to a laboratory. This suggests, to
our eyes, that a significant role of NIH funding is to allow the recruit-
ment of laboratory personnel, presumably through the hiring of
postdocs. First, this is a stark illustration of how the NIH funding
structure is intimately intertwined with the market for scientists-
in-training (Stephan, 2012). Second, this suggests that NIH funding
is effective only to the extent by which a professor has the ability
to recruit talented individuals into the lab. We discuss this in more
detail in later sections.

6. Discussion and conclusion

This study links the number of personnel types with vary-
ing experience, external funding, and positions to a laboratory’s
publication output. We suggest that for incremental publications,
postdocs (i.e., those with experience), regardless of their funding
level, dominate. However, for breakthrough publications, graduate
students and postdocs with external funding make equally signif-
icant contributions. By contrast, postdocs without fellowships do
not correlate with breakthroughs. Lastly, we suggest that techni-
cians, who have no observable effect on overall publication counts,
are correlated with a laboratory’s likelihood of breakthrough publi-
cations. Taken together, this study provides motivation for moving
beyond aggregate measures of laboratory size, to suggest that the
personnel composition of laboratories is an important determinant
of laboratory productivity.

Three implications of our results are worthy of further elab-
oration. First, our results speak to the importance of personnel
composition, and not just size, in a principal investigator’s consider-
ation of potential laboratory members. Although larger laboratories
result in more publications, individuals with different levels of
experience contribute differently to overall laboratory productiv-
ity. Moreover, only a subset of laboratory members contributes
to breakthrough publications. Our analysis illustrates the critical
importance to a laboratory of attracting personnel, especially post-
docs that are able to garner external funding, who contribute not
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Fig. 4. Laboratory publication author numbers-over time. Note: For each year in our
dataset, we tabulate the total number of authors on each paper.

only to the volume of a laboratory’s publications but also to the
laboratory’s ability to foster breakthrough publications.

Second, our results suggest that the necessary personnel inputs
for incremental versus breakthrough publications may be differ-
ent. Although experienced personnel are a critical input for doing
normal science, they are a less perfect correlate for the generation
of breakthroughs, at least in this setting. Coupled with Singh and
Fleming’s (2010) finding that collaborations yield a greater likeli-
hood of breakthroughs, it may be especially interesting to move
from laboratory-level productivity down to the project-level (i.e.,
paper-level) of analysis. Our initial analysis of paper co-authorship
patterns suggests two findings. First, the number of coauthors per
project has increased over time (Fig. 4), but the proportion of papers
that are coauthored with other laboratories, measured as the ratio
of papers with the focal professor (i.e., one of 119 laboratory heads
in our dataset) as last author to laboratory papers with a differ-
ent last author, has not changed dramatically (Fig. 5). This finding,
counter to Jones et al. (2008) finding of greater cross-laboratory col-
laboration for “typical” laboratories may reinforce the notion that
laboratories operating at different positions in the status hierarchy
have different resource constraints. Alternatively, MIT laboratories
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Fig. 5. Cross-laboratory collaboration patterns-over time. Note: Strong norms
within the life sciences dictate that laboratory heads (PIs) are the last authors on
publications. For the publications in our dataset, we parsed each laboratory’s pub-
lication count into those with the laboratory head as the last author, as well as
those where a different individual was the last author. This plot presents the ratio
of the two counts, over time, which we interpret as an indicator of the extent of
cross-laboratory collaboration. A line indicates the predicted linear trendline.

may be collaborating more over time, but using their superior
(relative to their collaborator) negotiating position to extract a
greater and unequal proportion of prestigious last author positions.
Although preliminary, these findings reinforce the promise of a
more fine-grained analysis of laboratories.

Lastly, our results juxtapose the role of technicians with that
of trainees. In contrast to trainees, we are not able to pick up the
impact of technicians (i.e., permanent staff) on overall laboratory
publication counts. At first blush, this would suggest that a recent
push for the creation of research scientist positions (e.g., a perma-
nent “postdoc”) would be both costly and non-productive for the
laboratories, counter to policy implications called for by a number
of prominent scholars (e.g., Stephan, 2013). However, although the
number of technicians is small, we are able to link technical staff
to breakthrough publications, and this effect appears to be signifi-
cant in magnitude. In the ongoing conversation about the changing
scientific workforce, a greater understanding of the relationship
between attributes of different personnel types and the volume
and kinds of scientific output is critical to shaping future policy
changes.

Although our results are suggestive, there remain multiple
caveats. For example, there are reasons to avoid a direct comparison
between graduate students and postdocs in the dataset. First, post-
docs may be of different quality than graduate students. Although
MIT is an elite graduate institution with high-quality Ph.D. stu-
dents, postdocs are, by definition, graduate students who have
successfully made it through their dissertation. Moreover, given the
mission surrounding university training, graduate students may be
treated differently from postdocs and may receive greater supervi-
sion than postdocs. As we can not separate out these explanations
in this paper, we urge caution in the mechanisms that may under-
lie differential contributions of graduate and postdoc personnel to
overall laboratory productivity. Nonetheless, a closer examination
of these mechanisms may also be a particularly fruitful avenue of
future study.

This paper is not without empirical concerns. First, we empha-
size that our results are suggestive correlations, and are not
dispositive. To the extent possible, we have chosen an empirical
approach that minimizes the likelihood of reverse causality (i.e.,
personnel members drawn to laboratories in anticipation of future
output). Alternatively, the inclusion of laboratory fixed effects
regressions, which correct for (time-invariant) unobservable char-
acteristics of laboratories but do not address reverse causality,
yielded consistent results. However, our analysis falls short of a
natural experiment, such as an (truly) unexpected funding windfall
or random assignment of fellowships to some postdocs and not to
others. One possibility, if the goal is to examine comparable post-
docs with and without fellowships, is to obtain the “scorecards”
of fellowship applications and adopt a regression discontinuity
approach (for an empirical example on grant applications, see Li,
2012). However, the identification of random variation, especially
in elite contexts such as the one examined in this paper, is few and
far between. Thus, a central goal of this paper is to motivate fur-
ther work by the corpus of scholars interested in innovation and
productivity.

We have chosen to study the MIT Department of Biology because
it is an elite setting that has repeatedly made important contrib-
utions to modern biology. Although our results are likely to be
relevant to other elite biology departments, it is not possible to
predict how far down the status hierarchy of life science depart-
ments our results will extend. At less elite universities, it is more
difficult to recruit top-level graduate students and postdocs. As a
consequence, one might expect to find significant attenuation of
our coefficients for these settings, but we cannot speculate as to
the magnitude of this attenuation or on whether this attenuation
would vary across different personnel types at this time. Lastly,
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given significant differences across knowledge production disci-
plines, parallels between our setting and others, such as physics
laboratories, are tenuous (Knorr-Cetina, 1999).

This study also has significant implications for laboratory man-
agers. Of little surprise is that experienced trainees make significant
contributions to laboratory productivity. As a consequence, labs
with a greater number of postdocs, particularly those able to garner
external funding, correlate with greater productive output. More
surprising are our results concerning breakthroughs. To the extent
that the number of postdocs able to attract external funding are
limited in number (and a quick perusal of fellowship websites
suggests a strong correlation between fellowships and elite institu-
tions), this result suggests that the skewed distribution of resources
permeates not only across the professorial ranks, but also into each
professor’s access to skilled labor. For laboratories at less elite sett-
ings than MIT, we have little doubt that the ability to tap into
productive personnel members is severely circumscribed. Rather
than status hierarchical arguments for the stratification of labo-
ratories, and Merton’s (1968) Matthew effect comes to mind, we
speculate that the lack of personnel resources may serve to limit
the productivity of peripheral laboratories, even when they are able
to obtain funding from NIH.

From the perspective of a central funding agency, the skewed
distribution of talent also suggests that there is a limit to the
productive expansion of the scientific training enterprise in the
United States. Although Stephan (2013) has emphasized the lack
of demand, in the form of academic jobs for students as they fin-
ish training, this paper suggests that there are limits to the supply
of potentially productive applicants, especially those who hope to
make breakthrough discoveries. Looking toward new sources of
talent, such as emerging economies, may mitigate this constraint.

Although this paper has focused on the internal context (e.g.,
personnel composition) of laboratories, the external context within
which the laboratory is situated is no doubt important (cf Autio
et al., 2014). Laboratories are almost never standalone entities and
may be embedded within universities, for-profit firms of varying
types (e.g., small entrepreneurial firm, large biotech firm, industry
consortium) or government entities (e.g., NIH). A future avenue of
study may be to examine not only the effects of personnel com-
position in these varying context, but also the interactions and fit
between different external contexts and the internal characteristics
of laboratories.

We began this paper by urging greater attention to the study
of scientific laboratories, organizational structures that underpin
almost every facet of modern scientific work. It is our belief that
insufficient attention to laboratories is not due to intellectual over-
sight, but rather the limited availability of fine-grained data. Indeed,
collection of the dataset utilized in this paper only came about
through many years of hand-coding, coupled with technological
advances such as optical character recognition (OCR) software.
Replicating this process to generate other datasets of comparable
detail and quality is a non-trivial exercise.

And yet, circa 2015, we believe that the pieces may be in place
for the large-scale reconstruction and examination of laboratory
profiles. For example, over the past 10 years, there have been aston-
ishing advances in curated, large, bibliometric datasets focused on
scientists (e.g., Azoulay et al., 2006). Building upon these advances,
scholars have used machine-learning techniques (Smalheiser and
Torvik, 2009), structural equivalence ideas from network analy-
sis (Tang and Walsh, 2010), or atypical citation patterns (Agrawal
et al., 2013) to disambiguate seemingly equivalent names from the
corpus of scientific authors. In the life sciences, coupling name
disambiguation advances with NIH grant-funding (Li, 2012) or
the scraping of university websites (Sheltzer and Smith, 2014),
may yield the identification of a discrete set of primary investi-
gators, or laboratory heads. And, coupled with strong norms to list

laboratory heads as the last-author, publication coauthorships may
enable the reconstruction of laboratory personnel lists (Bercovitz
and Feldman, 2011). Once time-varying personnel lists are derived,
and here we enter uncharted waters, it may be possible to use
the ProQuest Dissertation Database and transitions from one lab to
another to track graduate students as they transition to postdocs
and, ultimately, to last-author, grant-holding positions as labora-
tory heads.

The laboratory reconstruction strategy sketched out above is
both nontrivial and imperfect. Thus, the goal of this perambulation
is not to provide a definitive roadmap toward the reconstruc-
tion of laboratories, but merely to suggest that the large-scale
reconstruction of laboratories, at least for those built upon the
Medline database, appears plausible at this point in time. Regard-
less of the technical manner in which it is executed, it is our
strongly held belief that the large-scale analysis of laboratories
and their constituent personnel types would serve as an impor-
tant resource in the social studies of science. Even limited to fields
with well-organized bibliometric sources (i.e., the life sciences), a
more comprehensive examination of the universe of laboratories
would be an important complement to existing ethnographic work
(e.g., Owen-Smith, 2001).

Moreover, just as the study of individual scientists work-
ing in the knowledge economy has lent insights into broader
phenomena, such as stratification processes (Merton, 1968), geo-
graphic spillovers (Zucker et al., 1998), and social construction
(Latour and Woolgar, 1979), we suspect that the examination of sci-
entific laboratories may yield insights into broader organizational
phenomena. For example, we could imagine laboratory studies
yielding insights into demographic studies of personnel turnover
(Pfeffer, 1983), the integration of newcomers (Moreland et al.,
2002), the management of knowledge scope and scale (Henderson
and Cockburn, 1996) to name a few examples among myriad pos-
sibilities.

Ultimately, the goal of this paper has been to peer deeper into
the social structures that underlie the productivity of individual PIs.
And in so doing, we present a series of results that have implications
for laboratory managers, policy makers, as well as social scientists
studying scientists. We see our contribution as a complement to
existing bibliometric studies, and hope to “bring laboratories back
in”, reinforcing the importance of individuals on the laboratory
shop floor.

References

Agrawal, A., Cockburn, I.M., 2003. The anchor tenant hypothesis: exploring the role
of large, local, R&D-intensive firms in regional innovation systems. Int. J. Ind.
Organ. 21, 1227–1253.

Agrawal, A., McHale, J., Oettl, A., 2013. Collaboration, Stars, and the Changing Orga-
niation of Science: Evidence From Evolutionary Biology. NBER Working Paper
Series #19653.

Allen, T.J., 1984. Managing the Flow of Technology. The MIT Press, Cambridge, MA.
Audretsch, D.B., Feldman, M.P., 1996. R&D spillovers and the geography of innovation

and production. Am. Econ. Rev. 86, 630–640.
Autio, E., Kenney, M., Mustar, P., Siegel, D., Wright, M., 2014. Entrepreneurial inno-

vation: the importance of context. Res. Policy 43, 1097–1108.
Azoulay, P., Graff Zivin, J.S., Wang, J., 2010. Superstar extinction. Q. J. Econ. 25,

549–589.
Azoulay, P., Liu, C.C., Stuart, T.E., 2009. Social Influence Given (Partially) Deliberate

Matching: Career Imprints in the Creation of Academic Entrepreneurs. Harvard
Business School Working Paper 09-136.

Azoulay, P., Stellman, A., Graff Zivin, J.S., 2006. Publication Harvester: an open-source
software tool for science policy research. Res. Policy 35, 970–974.

Azoulay, P., Stuart, T.E., Wang, Y., 2014. Matthew: effect or fable? Manag. Sci. 60,
92–109.

Balconi, M., Breschi, S., Lissoni, F., 2004. Networks of inventors and the role of
academia: an exploration of Italian patent data. Res. Policy 33, 127–145.

Barley, S.R., 1996. Technicians in the workplace: ethnographic evidence for bringing
work into organizational studies. Adm. Sci. Q. 41, 404–441.

Barley, S.R., Bechky, B.A., 1994. In the backrooms of science: the work of technicians
in science labs. Work Occup. 21, 85–126.



1644 A. Conti, C.C. Liu / Research Policy 44 (2015) 1633–1644

Bercovitz, J., Feldman, M.P., 2011. The mechanisms of collaboration in inventive
teams: composition, social networks, and geography. Res. Policy 40, 81–93.

Breschi, S., Lissoni, F., 2001. Knowledge spillovers and local innovation systems: a
critical survey. Ind. Corpor. Change 10, 975–1005.

Catalini, C., 2012. Microgeography and the Direction of Inventive Activity. Working
Paper.

Cockburn, I.M., Henderson, R.M., 1998. Absorptive capacity, coauthoring behav-
ior, and the organization of research in drug discovery. J. Ind. Econ. 46,
157–182.

Cockburn, I.M., Henderson, R.M., Stern, S., 1999. Balancing Incentives: The Tension
Between Basic and Applied Research. NBER Working Paper Series w6882.

Cohen, W.M., Levinthal, D.A., 1990. Absorptive capacity: a new perspective on learn-
ing and innovation. Adm. Sci. Q. 35, 128–152.

Colyvas, J.A., 2007. From divergent meanings to common practices: the early insti-
tutionalization of technology transfer in the life scences at Stanford University.
Res. Policy 36, 456–476.

Conti, A., Liu, C.C., 2014. The (changing) knowledge production function: evidence
from the MIT Department of Biology 1966–2000. In: Jones, B., Jaffe, A.B. (Eds.),
NBER Changing Frontiers Volume. NBER, Cambridge, MA.

Conti, A., Denas, O., Visentin, F., 2014. Knowledge specialization in PhD student
groups. IEEE Trans. Eng. Manage. 61, 52–67.

Cyert, R.M., March, J.M., 1963. A Behavioral Theory of the Firm. Blackwell Publishing,
Englewood Cliffs, NJ.

Dahlin, K., Taylor, M., Fichman, M., 2004. Today’s Edisons or weekend hobbyists:
technical merit and success of inventions by independent inventors. Res. Policy
33, 1167–1183.

Dasgupta, P., David, P.A., 1994. Toward a new ecoomics of science. Res. Policy 23,
487–521.

Feldman, M.P., 2003. The locational dynamics of the US biotech industry: knowledge
externalities and the anchor hypothesis. Ind. Innov. 10, 311–329.

Feldman, M.P., Schreuder, Y., 1996. Initial advantage: the origis of the geographic
concentration of the pharmaceutical industry in the mid-Atlantic region. Ind.
Corp. Change 5, 839–862.

Fleming, L., Sorenson, O., 2004. Science as a map in technological search. Strateg.
Manag. J. 25, 909–928.

Freeman, R., Weinstein, E., Marincola, E., Rosenbaum, J., Solomon, F., 2001. Compe-
tition and careers in biosciences. Science 294, 2293–2294.

Fujimura, J.H., 1996. Crafting Science: A Sociohistory of the Quest for the Genetics
of Cancer. Harvard University Press, Cambridge, MA.

Furman, J.L., MacGarvie, M.J., 2007. Academic science and the birth of industrial
research laboratories in the U.S. pharmaceutical industry. J. Econ. Behav. Organ.
63, 756–776.

Furman, J.L., Stern, S., 2011. Climbing atop the shoulders of giants: the impact of
institutions on cumulative research. Am. Econ. Rev. 101, 1933–1963.

Griliches, Z., Hausman, J.A., 1986. Errors in variables in panel data. J. Econom. 31,
93–118.

Henderson, R.M., Cockburn, I.M., 1996. Scale, scope, and spillovers: the determinants
of research productivity in drug discovery. RAND J. Econ. 27, 32–59.

Jaffe, A.B., 1989. Real effects of academic research. Am. Econ. Rev. 79, 957–970.
Jaffe, A.B., Trajtenberg, M., Henderson, R.M., 1993. Geographic localization of

knowledge spillovers as evidenced by patent citations. Q. J. Econ. 108,
577–598.

Jones, B.F., 2009. The burden of knowledge and the “death of the renaissance man”:
is innovation getting harder? Rev. Econ. Stud. 76, 283–317.

Jones, B.F., Wuchty, S., Uzzi, B., 2008. Multi-university research teams: shifting
impact, geography, and stratification in science. Science 322, 1259–1262.

Kabo, F.W., Cotton-Nessler, N., Hwang, Y., Levenstein, M.C., Owen-Smith, J., 2014.
Proximity effects on the dynamics and outcomes of scientific collaborations.
Res. Policy 43, 1469–1485.

Kaplan, S., Milde, J., Cowan, R.S., 2012. Interdisciplinarity in Practice: A Case of a
Nanotechnology Research Center. Working Paper.

Kenney, M., 1986. The University-Industrial Complex. Yale University Press, New
Haven, CT.

Knorr-Cetina, K., 1999. Epistemic Cultures: How the Sciences Make Knowledge.
Harvard University Press, Cambridge, MA.

Latour, B., 1988. Science in Action: How to Follow Scientists and Engineers Through
Society. Harvard University Press, Cambridge, MA.

Latour, B., Woolgar, S., 1979. Laboratory Life: The Construction of Scientific Facts.
Princeton University Press, Princeton, NJ.

Levin, S.G., Stephan, P.E., 1991. Research productivity over the life cycle: evidence
for academic scientists. Am. Econ. Rev. 81, 114–132.

Li, D., 2012. Expertise vs. Bias in Evaluation: Evidence from the NIH. Working Paper.
Liu, C.C., 2014. Brokerage by Design: Formal Struture, Geography, and Crosscutting

Ties. Working Paper.
Liu, C.C., Stuart, T.E., 2014. Positions and rewards: the allocation of resources within

a science-based entrepreneurial firm. Res. Policy 43, 1134–1143.
Lotka, A.J., 1926. The frequency distribution of scientific productivity. J. Wash. Acad.

Sci. 16, 317–323.

Mairesse, J., Turner, L., 2005. Measurement and Explanation of the Intensity of Co-
publication in Scientific Research: An Analysis at the Laboratory Level. NBER
Working Paper Series #11172.

Mansfield, E., 1998. Academic research and industrial innovation: an update of
empirical findings. Res. Policy 26, 773–776.

Marx, M., Strumsky, D., Fleming, L., 2009. Mobility, skills, and the Michigan non-
compete experiment. Manag. Sci. 55, 875–889.

Merton, R.K., 1968. The Matthew effect in science. Science 159, 56–63.
Moreland, R.L., Argote, L., Krishnan, R., 2002. Training people to work in groups.

Theory and Research on Small Groups, vol. 4., pp. 37–60.
Mowery, D.C., 1990. The development of industrial research in US manufacturing.

Am. Econ. Rev. 80, 345–349.
Mowery, D.C., Rosenberg, N., 1999. Paths of Innovation: Technological Change in

20th Century America. Cambridge University Press, Cambridge, UK.
Murmann, J.P., 2003. Knowledge and Competitive Advantage: The Coevolution

of Firms, Technology, and National Institutions. Cambridge University Press,
Cambridge, UK.

Murray, F., 2004. The role of academic inventors in entrepreneurial firms: sharing
the laboratory life. Res. Policy 33, 643–659.

Nerad, M., Cerny, J., 1999. Postdoctoral patterns, career advancement, and problems.
Science 285, 1533–1535.

Nohria, N., Gulati, J., 1996. Is slcak good or bad for innovation? Acad. Manag. J. 39,
1245–1264.

Oettl, A., 2012. Reconceptualizing stars: scientist helpfulness and peer performance.
Manag. Sci. 58, 1122–1140.

Owen-Smith, J., 2001. Managing laboratory work through skepticism: processes of
evaluation and control. Am. Sociol. Rev., 66.

Pelz, D.C., Andrews, F.M., 1976. Scientists in Organization. University of Michigan
Press, Ann Arbor, MI.

Pezzoni, M., Sterzi, V., Lissoni, F., 2012. Career progress in centralized academic sys-
tems: social capital and institutions in France and Italy. Res. Policy 41, 704–719.

Pfeffer, J., 1983. Organizational demography. Res. Organ. Behav. 5, 299–357.
Roach, M., Sauermann, H., 2010. A taste for science? PhD scientists’ academic ori-

entation and self-selection into research careers in industry. Res. Policy 39,
422–434.

Romer, P.M., 1990. Endogeneous technological change. J. Polit. Econ., S71–S102.
Shapin, S., 1989. The invisible technician. Am. Sci. 77, 554–563.
Sheltzer, J.M., Smith, J.C., 2014. Elite male faculty in the life sciences employ fewer

women. PNAS 111, 10107–10112.
Simonton, D.K., 2004. Creativity in Science: Change, Logic, Genius, and Zeitgeist.

Cambridge University Press, Cambridge, UK.
Singh, J., Agrawal, A., 2011. Recruiting for ideas: how firms exploit the prior inven-

tions of new hires. Manag. Sci. 57, 129–150.
Singh, J., Fleming, L., 2010. Long inventors as sources of breakthroughs: myth or

reality? Manag. Sci. 56, 41–56.
Smalheiser, N.R., Torvik, V.I., 2009. Author name disambiguation. Annu. Rev. Inf. Sci.

Technol. 43, 1–43.
Sorenson, J.B., Stuart, T.E., 2000. Aging, obsolescence, and organizational innovation.

Adm. Sci. Q. 45, 81–112.
Stephan, P.E., 2012. How Economics Shapes Science. Harvard University Press,

Cambridge, MA.
Stephan, P.E., 2013. The Endless Frontier: Reaping What Bush Sowerd? NBER Work-

ing Paper Series #19687.
Stephan, P.E., Levin, S.G., 1992. Striking the mother lode in science. The importance

of age, place and time. Oxford University Press, Oxford, UK.
Stephan, P.E., Ma, J., 2005. The increased frequency and duration of the postdoctorate

career stage. Am. Econ. Rev. 95, 71–75.
Stuart, T.E., Ding, W.W., 2006. When do scientists become entrepreneurs? The social

structural antecedents of commercial activity in the academic life sciences. Am.
J. Sociol. 112, 97–144.

Tang, L., Walsh, J.P., 2010. Bibliometric fingerprints: name disambiguation based
on approximate structure equivalence of cognitive maps. Scientometrics 84,
763–784.

Taylor, A., Greve, H.R., 2006. Superman or the fantastic four? Knowledge combina-
tion and experience in innovative teams. Acad. Manag. J. 49, 723–740.

Waldinger, F., 2012. Peer effects in science: evidence from the dismissal of scientists
in Nazi Germany. Rev. Econ. Stud. 79, 838–861.

Wooldridge, J.M., 2005. Simple solutions to the initial conditions problem in
dynamic, nonlinear panel data models with unobserved heterogeneity. J. Appl.
Econom. 20, 39–54.

Wuchty, S., Jones, B.F., Uzzi, B., 2007. The increasing dominance of teams in produc-
tion of knowledge. Science 316, 1036–1039.

Zucker, L.G., Darby, M.R., Brewer, M.B., 1998. Intellectual human capital and the birth
of U.S. Biotechnology Enterprises. Am. Econ. Rev. 88, 290–306.

Zuckerman, H., 1977. Scientific Elite: Nobel Laureates in the United States. The Free
Press, New York City, NY.


	Bringing the lab back in: Personnel composition and scientific output at the MIT Department of Biology
	1 Introduction
	2 Background and research questions
	2.1 History of industrial and academic laboratories
	2.2 Laboratory studies
	2.3 Experience, funding, and positions in laboratory personnel
	2.3.1 Experience
	2.3.2 Funding
	2.3.3 Positions

	2.4 Incremental vs. breakthrough publications

	3 Setting and data
	4 Measures and empirical strategy
	4.1 Publication outcomes
	4.2 Laboratory composition
	4.3 Empirical strategy

	5 Results
	6 Discussion and conclusion
	References


