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Biochar application to soil is a potentially scalable carbon

management strategy with the capability of achieving negative

greenhouse gas emissions. In addition, biochar is also linked to

the water-energy-food nexus (WEFN) through its potential to

modify soil properties to improve agricultural productivity.

Potential benefits include increased yield and reduced demand

for water, fertilizers and other inputs. However, the current

literature on biochar is highly fragmented, with a significant

research gap in system-level analysis to synchronize

production, logistics and application into a sustainable carbon

management strategy. Process systems engineering (PSE) can

provide a framework to allow the potential benefits of biochar

systems to be optimized. This article gives an overview of

biochar as a strategy to address carbon management and

WEFN issues, reviews relevant scientific literature, analyzes

bibliometric trends, and maps potential areas for the application

of PSE to the planning of large-scale biochar systems.
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Introduction
Steady population growth coupled with rising standards

of living is increasing the global consumption of food,

water and energy, which in turn contributes to the rising

CO2 concentration in the atmosphere [1,2�,3,4]. These

trends have placed pressure on the planet’s sustainability

limits, especially with respect to the interdependent

issues of climate change, water stress, land use and
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nutrient cycles [5]. These issues raise the significance

that negative emissions technologies (NETs) can play in

the water-energy-food nexus (WEFN) [6�,7�]. Integrated

biochar systems are among the NETs that have potential

for scale up due to their reliance on mature technologies.

Furthermore, its inherent connection with agro-industrial

systems places biochar firmly within the WEFN context

[8]. The nexus approach promotes sustainability by con-

sidering resources in an integrated manner [9]. The focus

of this review is to show how biochar systems can support

these three highly interdependent issues in addressing

the planet’s growing demand for water, food and energy,

and help in mitigating climate risks.

Adoption of biochar for environmental management still

faces techno-economic challenges and knowledge gaps

which hinder deployment. The area of process systems

engineering (PSE) can provide quantitative decision-

support to aid in the planning of commercial-scale biochar

systems [10��]. PSE has evolved from early applications in

process design to cover large-scale systems [11�]. The

focus on opportunities and challenges for using PSE to

plan biochar systems is the distinctive feature of this

paper, in contrast to previous reviews which have focused

on valorization of biochar for various applications [12];

pyrolysis platforms [13]; effects of feedstock and produc-

tion conditions on biochar properties [14]; technologies

and processing conditions to improve biochar quality for

agricultural use [15]; and effects of biochar application on

crop productivity [16,17]. This paper, on the other hand,

discusses recent trends and future prospects on the role of

PSE for planning biochar systems to address WEFN issues.

Biochar is the carbon-rich solid co-product of thermo-

chemical biomass conversion. It consists of labile (de-

gradable) and recalcitrant (unreactive) fractions. The

carbon in biochar is derived from atmospheric CO2 fixed

in biomass via photosynthesis. The primary sequestration

mechanism of biochar is the stable storage of biochar in

soils [18], which makes it a significant carbon manage-

ment strategy [19].

Biochar can be produced from biomass feedstocks via a

range of thermochemical conversion pathways that yield

different proportions of biochar, bio-oil and syngas. The

properties of these products are dependent on both

feedstock and process conditions [20]. Pyrolysis and

gasification involve the heating of biomass feedstocks
www.sciencedirect.com
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under oxygen-deficient environment, with process con-

ditions optimized to favor formation of desired products

[21,22]. Pyrolysis processes are classified into fast and

slow pyrolysis [7�]. Slow pyrolysis typically favors the

yield of biochar [13,22], while fast pyrolysis generates

more bio-oil [7�]. Gasification on the other hand yields

syngas that can be used for power generation or as a

chemical feedstock for a biorefinery [23].

Benefits of biochar to climate and WEFN
Biochar offers several environmental benefits such as

carbon sequestration, reduction in greenhouse gas emis-

sions, soil amelioration and crop productivity, water con-

servation, and supply of green energy. The following

subsections describe how biochar systems are linked to

the WEFN as illustrated in Figure 1. They also highlight
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the relevant and recent research findings as summarized

in Table 1.

Carbon sequestration and reduction in GHG emissions

Significant interactions exist between water, energy, ag-

riculture and climate [24]. For example, production and

use of synthetic fertilizers, which is necessary to secure

global food supply, is highly energy intensive and results

in significant GHG emissions [5,25]. The production of

some staple crops has already been affected by changes in

climatic conditions, for example through changes in pre-

cipitation patterns, rising sea levels or infestation by new

pests and diseases. Energy production and use will be

affected by a temperature increase, extreme weather

events and changing precipitation patterns [26]. Recent

works suggest that it is necessary to approach near-zero
 climate
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Table 1

Relevant research on biochar with direct or indirect link to WEFN.

Environmental benefits Relevant findings/concepts References

Climate change mitigation MSTP of biochar is estimated at 130 Gt CO2-Ce until 2100. [7�]

Global emissions reduction potential of biochar for the period 2030–2050 is estimated

to be 0.9–3.0 Gt-CO2/year, at a cost of $8–300/t-CO2.

[6�]

Soil GHG fluxes are suppressed by biochar application. [31]

Soil amelioration and crop productivity Biochar application results in increase soil pH and reduced fertilizer requirement. [33]

Biochar application on average increased crop productivity. [17]

Effect of biochar on crop productivity was more pronounced in acidic soils. [16]

Biochar can be customized for specific sink requirements purposes. [37��]

Water conservation and remediation Wastewater treated with biochar for the removal of cadmium and lead was utilized for

irrigation.

[44]

Biochar application enhances soil water retention and reduces irrigation requirement. [42]

Bioenergy production Unutilized crop waste globally can yield 1.65 GtC/year in biochar. [52]

Net negative carbon footprint can be obtained from a polygeneration system with

integrated biochar production.

[55]
future carbon emissions in order to stabilize global tem-

peratures [27–29]. Thus, eventually it may become nec-

essary to achieve negative emissions, rather than just

reduce existing positive emissions. Woolf et al. [7�] eval-

uate the maximum sustainable technical potential

(MSTP) of biochar to mitigate carbon at 130 Gt CO2-

Ce until 2100, wherein 60% is due to direct carbon

sequestration. McLaren [6�] estimates the global emis-

sions reduction potential of biochar for the period 2030–
2050 to be 0.9–3.0 Gt-CO2/year, at a projected cost of $8–
300/t-CO2. Life cycle assessments (LCAs) consistently

predict negative carbon footprint per unit of biomass

feedstock [19,30]. In addition, soil GHG (i.e. CH4 and

N2O) fluxes were suppressed when biochar was added to

fertilized soils [31,32].

Crop productivity

Biochar can improve global food security through gains in

agricultural productivity [17]. Such gains result from

modification of soil properties, such as increase in soil–
water and nutrient holding capacities that result in im-

proved crop yields [16,33]. A meta-analysis shows that the

effect is often due to increase in pH [16]. Other effects

include improvement of mechanical properties of hard

soils leading to improved plant growth [34]. Synergistic

interaction also exists between biochar and chemical

fertilizers [35,36]. Despite the positive reports, the effects

of biochar on crop yield responses are variable. Pyrolysis

conditions and feedstock type also affect the properties of

biochar, which can thus be tailored to suit soil conditions

[15,37��]. For instance, the production of potassium-

enriched biochar through plasma processing of waste

biomass has additional advantages of liming, conditioning

and carbon sequestration [38]. Examples of properties

that can be controlled in this manner are the concentra-

tion of selected elements, or the cation exchange capacity

(CEC) [37��,38,39,40].
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Water conservation and remediation

With population growth and erratic rainfall patterns,

provision of clean water becomes increasingly challeng-

ing. Biochar has a role to play in the conservation of water

resources and wastewater treatment. For instance, apply-

ing biochar is the most effective way of increasing the

carbon content of soils which in turn increases the water

holding capacity, thus, decreasing the need for irrigation

[41–43]. In addition, biochar can also be used for purifi-

cation of water before use [44–46].

Bioenergy production

Production of bioenergy through pyrolysis of waste bio-

mass is becoming more important due to the limitations of

first generation biofuels [47,48]. Integrated systems can

use biogas and bio-oil for energy purposes while the

biochar can be applied to soil [49–51]. The global annual

unused crop waste could potentially produce biochar of

about 1.65 GtC/year along with biofuels [52]. There are

also studies that show the possibility of producing bio-oils

as engine fuels and biochar as a by-product [53,54].

Biochar production systems that export deliverable ener-

gy are considered to be a carbon-negative energy system

[55–57].

Barriers to biochar application
Technical and economic issues exist which can poten-

tially hinder the application of biochar. Adverse unin-

tended consequences and techno-economic challenges

are considered barriers to the adoption of biochar for

environmental management. These issues are discussed

further in the following subsections.

Risk of applying biochar to soil

Published results on long-term biochar amendment stud-

ies at field scale, in particular, are vital to assess the long-

term implications of biochar application [58�]. Unintend-
www.sciencedirect.com
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ed consequences of biochar application include oversup-

ply of nutrients, excessive pH elevation, adverse impacts

on germination and soil biological processes, and binding

of agrochemicals. Since biochars are often prepared from a

variety of feedstocks including waste materials, the po-

tential release of contaminants needs to be adequately

addressed before land application. Contaminants that

may be present in biochar include salts, heavy metals,

polycyclic aromatic hydrocarbons (PAHs), chlorinated

hydrocarbons, and dioxins [59,60]. These agronomic

and environmental risks thus necessitate the need to

strategically match biochar sources with biochar sinks

in order to minimize adverse effects [10��].

Techno-economic assessment of biochar systems

Economic benefits for biochar producers and farmers

must come along with social and environmental advan-

tages if biochar is to be implemented globally. Galinato

et al. [61] suggests that biochar soil application can be

economically feasible if the market price is low enough

and a carbon market exists. Economic viability can be

improved through economies of scale or simultaneous

generation of valuable co-products [62–64]. However,

alternative end uses of biochar compete with soil amend-

ment [65]. Governments can facilitate its use for carbon

management via carbon trading schemes, tax incentives

and financing support [66].

Systems perspective on biochar and WEFN
The number of related documents to biochar published in

the Scopus database has been increasing over the years.

This trend suggests that biochar remains to be an inter-

esting topic because it has been receiving growing atten-

tion in the scientific world. Most studies focused on

agronomic aspects (6.66%), potential to combat climate

change (26.53%), or biochar characterization (59.38%). A

refined search was further conducted to narrow the topic

down to ‘Energy’ and ‘Chemical Engineering’ areas. To

date, the filtered search generated around 146 papers and

among these papers, only nine of them deal with lifecycle

assessment and modeling of biochar systems. Only one

article [10��] explicitly deals with PSE to aid in planning

of biochar-based systems for large-scale carbon seques-

tration. This result therefore reveals a research gap in

decision-making, planning and implementation of bio-

char systems.

Modeling of integrated biochar systems for carbon se-

questration is still in its infancy. Examples include LCA

of pyrolysis biochar system (PBS) which reveals higher

mitigation potential than direct biomass combustion,

subject to economic conditions mentioned previously

[67�,68]. The LCA of the GHG balance of the biochar

supply chain indicates that the gasification stage had the

highest impact in the supply chain [69]. On the other

hand, the LCA of bioenergy system using pyrolysis or

direct combustion shows that direct combustion has
www.sciencedirect.com 
higher energy efficiency [49]. Optimization models have

been developed for the integration of biochar production

in a polygeneration system with net negative carbon

footprint [55] and for the biochar allocation networks

for carbon sequestration [10��].

It is clear that systems optimization would be necessary

to facilitate careful planning of biochar-based systems.

To make biochar amendments more beneficial, biochar

properties can be customized in order to suit soil con-

ditions [37��]. This can also minimize the potential for

adverse unintended consequences. These approaches

can also guide policy formulation and recommenda-

tions concerning biochar production and subsequent

application to soil.

Conclusions and prospects for future
research
Biochar technology can enhance global food security,

conserve water resources, and supply green energy.

These advantages link biochar to the WEFN and

provide a platform for PSE in modeling integrated

biochar systems to yield benefits at a significant scale

in the future. Future PSE aspects of biochar research

include techno-economic analysis via lifecycle costing

(LCC) to fully assess the economic viability of biochar

production for soil amendment and carbon sequestra-

tion, taking into account economic externalities for

decision-making [70]. There will be a need for an

optimization framework to facilitate planning and im-

plementation of biochar-based  systems on a globally

significant scale. Optimal design of industrial-scale

PBSs is another PSE application area; for example,

feedstock and process conditions can be selected to

match the biochar sink requirements [37��]. Balancing

biochar and bioenergy production along with energy

efficiency enhancements in biochar production is an-

other avenue for PSE tools. These measures will be

necessary to improve the system-level energy balance

profile. Biochar-based networks can be synthesized

wherein biochar could be customized in order to fit

certain soil conditions; this capability can be integrated

as an extension of a previously developed allocation

model [10��]. Future work can further put emphasis on

the development of multiple-objective extensions tak-

ing into account economic aspects as well as various

supply chain sustainability metrics [71]. PSE is indeed

critical for scaling up biochar systems to become a

global strategy that will address the WEFN.
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