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Abstract-A rudimentary description of Markov chains is presented in order to 
introduce its use to describe and to predict authors’ movements among subareas of 
a discipline. Other possible applications are suggested. 

INTRODUCTION 

Bibliometric techniques have been used to describe stationary distributions of authors, 
citations and other observables in literature. Much progress has also been made in 
utilizing associative measures such as citations and coauthors to establish communi- 
cation and/or subject relationship in the study of the structure of knowledge and the 
sociology of science. Fairthorne noted in 1969 that the study of the dynamic processes 
in scholarly communication had not enjoyed as much success in bibliometric re- 
search[l]. He cited Goffman’s epidemic model as an exception. In 1971, Goffman made 
another important contribution in the study of the dynamics of literature[2]. He used 
the theory of Markov chains to describe and predict the movement of authors in sub- 
topics in symbolic logic. Zunde and Slamecka also modeled the process of science 
development as a Markov chain[3]. In a recent monograph, Goffman analyzes the 
authors in schistosomiasis and in mast cells[4]. The Markov theory in recent decades 
has found many applications in the physical and social sciences, and in engineering 
and business. It has been recognized as an important technique to characterize many 
non-deterministic processes. In this paper, we present the rudimentary knowledge 
needed to use this technique, to illustrate the method with the results of an experiment, 
and to suggest other useful areas of bibliometric applications using the Markov chains. 

A physical stoclzmstic pr-oc~~~.ss is any process governed by probabilistic laws. An 
example that comes to mind is the succession of heads or tails at repeated tossings of 
a coin. For example, having obtained two heads followed by two tails, the outcome of 
the fifth throw is completely independent of any or all of the previous throws. In 
mathematics, there are several types of stochastic processes. Of special interest to this 
paper is an important type known as the Markov process. It is named after a Russian 
mathematician, Andrei Andreevich Markov, who laid the foundation of the Markov 
theory in a series of papers starting in 1907. Its importance has been much enhanced 
in recent years by the many practical applications found in the sciences, engineering 
and commerce. 

A MLIP~OI~ proc~rss is a simple form of stochastic process with the property that 
the conditional probability of an outcome depends only on its immediately preceding 
outcome, and not on any of the previous outcomes. That is, in running an experiment 
with the Markov property, as long as the results of the present experiment is known, 
the chance of the next experiment can be estimated. Data from any previous experi- 
ments can be ignored. It is also usual to think of this process as a sequence of positions 
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Table 1. History of the movement of researchers among three institutes in the last four years. 

States: a b C 

Al Cl 81 

c2 D, D2 

A, B2 D3 

A3 B3 % 

c3 % A,* 

c4 

* Examples of State Transitions: Researcher C started in institute h; moved to Institute (I in the 
second year: and remained there for the third and fourth years. Researcher A started in Institute u; 
remained there for the second and third years; and moved to Institute (’ in the fourth year. 

occupied by a moving particle. It is as though the process is being observed by a 
bystander at a fixed position. The successive times at which a particular position is 
visited by the moving particle gives enough information that by taking all the available 
positions, we can learn about the system as a whole from such fragmentary data[5]. 

Let us illustrate with an example. Suppose there are only three cancer research 
institutes in existence, and there are only four researchers working in this area of 
endeavor. Let us further suppose that each individual can be employed by any one of 
the three institutions, and at the beginning of each year, there is an opportunity to 
change jobs among the three institutes. We denote the institutes by cz, h, c’, and the 
individuals by A, B, C, D. The researchers are free to move from one location to either 
of the other two locations directly. Table 1 gives information of the movement of the 
researchers among these institutes. At any given year, we are able to distinguish a 
distribution of researchers among the three institutes. Since there is a limited way of 
shuffling the four individuals among these three locations, we can specify all possible 
combinations. For example, one possibility would be that all researchers are employed 
at Institute LI. Another would be that A and B are at CI, C and D are at h, leaving no 
one at c’. 

Some definitions will be presented in terms of an example. We speak of the distinct 
values the process can assume as states, and the totality of states is the state .spuce[6]. 
There are two states each for the coin toss example. There are three states that our 
researchers can move into. If the state space of a stochastic process is finite or count- 
able, the process is called a chuin. This assumes that the set of states is exhaustive. 
By exhaustivity, we mean that the set of states consists of a complete set of alternatives 
and that we have enumerated all the possible states that our researchers can move into. 
Moreover, at any given time, one and only one of these states must be occupied by 
each researcher. Strictly speaking, we are ignoring the possibility that our researchers 
may elect to retire from this area of employment. If the boundary of each state does 
not overlap with any other state, they are said to be mutually exclusive. Each particle 
can be in only one state at each chosen unit of time. In our example, we do not allow 
for the possibility that an individual can be partly employed by both LI and h at the 
same time, since this blending of two states does not constitute a distinct state in our 
set of states. Each researcher can only enter one of the three institutes. Elements that 
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can assume one of the possible values of the state space are referred to as particles. 
In our experiment, there are a total of four particles. Thus with three institutes as all 
possible states, and four particles that can assume any one of these three states, there 
is a finite number of ways these two parameters can be combined. Each combination 
is known as an mtcomc, or a spcrcc> point. A sarnpl~ spncc is a set consisting of all 
possible outcomes of an experiment. An event is any subset of the sample space. 
Although an event may have only one outcome, it may consist of more than one. For 
example, the event that each of any two institutes has exactly two researchers would 
consist of the following six outcomes: 

Outcome Institute a Institute b Institute c 

I a(A, B) b(C. D) c(O) 
2 alA. B) b(O) c(C. D) 
3 a(C. D) HA. B) c(O) 
4 a(C. D) b(O) ctA, B) 
5 ai01 b(A. B) c(C. D) 
6 a(O) NC. D) c(A, Bl 

For example, in Outcome #I. researchers A and B are employed at institution a; re- 
searchers C and D at institution h. Unfortunately, some confusion exists in the common 
usage of the two terms “event” and “outcome”. 

It is customary to say “the process is in statej at time t”. Thus we are regarding 
these components as a system evolving in time. If the state space is finite the process 
is known as a finite Markov process. One may define the unit of one step as one throw, 
one year, or the time between the publication of two successive papers. Thus a Markov 
process is a special type of stochastic process. 

A discrete-time or finite Markov chain is a special stochastic process with three 
restrictions[6]: 

1. The process must be a discrete-time process, that is, the movement of the 
particles among the states occur at finite intervals. In our experiment, the 
observations may be made at a yearly interval. 

2. The process must have a set of finite states. 
3. The process must possess the Markov property, that is, the estimated prob- 

ability of each outcome relies only on the outcome of its immediate 
predecessor. 

In our example, although employers may consider one’s long term experience, we can 
make a convincing case that in a rapidly developing field such as cancer research, one’s 
present performance is the sole consideration for hiring. A regular Markov chain is 
one in which every state can be reached from every other state. For example, our 
researchers are free to move to any institute from any of the three institutes. 

If all these conditions are met, the theory of Markov chains states that given that 
the initial probabilities of the states are known, and given that the conditional proba- 
bilities of transition from any state i to any statej are known, the Markov process for 
this experiment has been completely described. By this we mean that if we are satisfied 
that our researcher’s experiment met all the conditions for a Markov chain, to describe 
all the movements of our system, we need (1) a reasonable assumption of the per- 
centages of researchers at each institute as we start our experiment and (2) estimate 
of the chance that any researcher can move from one institute to any one of the three 
institutes. Notice that the possibility that one remains in the same location is also 
included. The pr~~bability of transition from state i to state i is a distinct outcome or 
space point. Thus for (1) we are referring to an initial probability distribution of the 
three states. an example of which would be that initially, each institute probably starts 
off with one of the four researchers. For (2) we must have data for the conditional 
probabilities of moving from state i to state ,j. A conditionul yiwhuhi/ity is explained 
as the probability of event .Y given that event _Y has occurred. In our example, the 
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conditional probability of PC,,, means the probability of moving to state h given that the 
previous state is a. Or Ptj is the conditional pmhcthility of transition from state i to state 
j. Thus there are altogether nine transition probabilities for our example. 

a PI;, 

b 

P.,h PI 
b Ph;, Phh Ph 
c P,,, P,h p,, 

Transition tnutri.r 
It is convenient to arrange the conditional probabilities by a square matrix, that 

is, an array of numbers with the same number of rows and columns corresponding to 
the number of states for this process. This is known as the transition matrix of this 
chain. Each of the columns represents the state to which the transition is made. Each 
cell P, represents the likelihood of moving from state i to statej. Each cell thus contains 
a non-negative value with the sum of each row equal to unity. In other words, from a 
given state a the sum of the probabilities of moving to any of the possible states is one. 
That is, the sume of P,,,,, Poh and P,,, is unity. This transition matrix corresponds to 
the discrete-time Markov chain of our experiment and it contains all relevant infor- 
mation regarding the movement of particles among the states. 

The question now is how do we derive values for the matrix? In practical situations, 
specific conditional probability Pij is difficult to ascertain. However, a good estimate 
can be deduced from past data. Referring back to our example, suppose we are given 
the data from the past four years of the movement of these four researchers among 
the three institutes. Table I shows that A started the first year in a; C and D in h; B 

Table 2. Data for the movement of researchers among three institutes 

w- 

a 4/5 0 l/5 

b l/4 214 l/4 

C 0 l/3 213 

Table 2-a. Initial probability distribution: L,. h, (’ = (114, 214, 114). 

a 0 80 0 0 20 

M= b 025 0 50 0 25 

C 0 0 33 067 

Table 2-b. Transition matrix. 

a I 640 067 293 I 

w2 = b 325 

Table 2-c. Stationary probability distGbutions. 

a b C 

a / 3335 2662 3996 

L=+= b 3332 2664 3997 1 

C 3328 2667 3997 

Table 2-d. Reciprocal of stationary distributions of the three states: u. h. (’ = (3. 4. 25) 
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in c. Then A remained in a for the second and third years before moving to c, and so 
on. We note that initially there is only one individual at a, two at h, and one at c. Thus 
the initial probability distribution for N, h, L’ is (114, 2/4, l/4) (See Table 2-a). The 
conditional probability of P,,,, , the estimated chance of any one remaining at a during 
successive years, is computed by counting the number of times a researcher staying 
at Institute a from the previous year. In this case, we have Al to A2, A2 to A3, C2 to 
C3, C3 to C4, a total of four. What other choices does anyone located at Institute a 
have? One can move to Institute h. The number of researchers who actually made the 
move is zero. Thus Prrh is 0. The number of individuals moving from CI to c’ is A3 to 
A4, a total of one. Therefore the conditional probabilities of transition from state a to 
a, h, and c’ are 415, 0, l/.5 respectively. The sum of the values of each row equals to 
unity. Continuing along this line of calculation, we obtain the values for each transition 
in the Matrix M: M is the transition matrix for this Markov chain of cancer researchers 
among the three institutes. The Matrix M gives all the information on any possible 
change from one location to another taken in one step. 

Limiting condition 
Consider next the situation in which an individual moves from state h to state c 

via an intermediary stop at a. PI,<. is accomplished in two steps: Ph(, and P,,,.. The 
transition matrix M does not give the conditional probability of Phc in these specific 
two steps nor Phc. in any two steps directly. One must compute the conditional prob- 
ability of P,,,. given Phc,. That is the intersection of Phi, and P,,,. or l/4 x l/5 which is 
I/20 or 0.05. However, Phr., the transition from state b to c in two steps may be ac- 
complished in three possible paths. They are: 

total 

h to u (114) 0 to C (l/S) 1120 = 0.05 

h to h (214) h to C( 114) 118 = 0.125 

h to C’ (114) C’ to c (213, I16 = 0.0167 

0.342 

Thus the conditional probability of transition from state b to state L’ in two steps is 
0.342 which is considerably higher than 0.05. The calculation of the conditional prob- 
abilities of transition from any state i to any state j in two steps is equivalent to taking 
the power of the transition matrix M. In other words, multiply M by M, or M* (Table 
2-c). In matrix multiplication, the operation is row by column with each element of the 
row multiplied into the correspondiing element of the column. Then the products are 
summed. The following illustrates the operation: 

By the same token, the transition matrix for any transition in five steps is M5 (Table 
2-d). We may extend this method of finding the transition probabilities P,j in n steps 
by the matrix M”. The (i, j)-entry of the nth power of the transition matrix M contains 
the probability that the chain moves from state i to statej in n steps. 

A theorem in the theory of Markov chains states that if M is a regular Markov 
chain, as the chain progresses in a large number of steps k, taking the powers of M 
will approach a probability matrix L in which the distribution of probabilistic values 
in each row is the same. These values are strictly positive. In other words, after a long 
sequence, the matrix converges. One obtains a stationary probability distribution. The 
values in each cell will not change with time, and they are independent of the number 
of steps taken. They are absolute probability values. This is variously known as in- 
variant probability distribution, long run distribution, limiting probability distribution, 
or stationary probability distribution for the chain. This specific property has enormous 
implication. Given an experiment that can be described by a Markov chain, the results 
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of past outcomes may be used to predict the proportion of particles which will eventually 
end up in each of the available states. Since the initial distribution of the population 
of particles no longer affects the eventual distribution among the states and since the 
final distribution is no longer dependent on any of the conditional probabilities, one is 
able to make appropriate decisions based on the estimated percentages of particles 
eventually ending in each state. In various applications, this method has been shown 
to produce results which approximate the actual distributions. 

In our fictitious cancer researcher experiment, we can reasonably predict the rel- 
ative size of the cancer research departments in each of the three institutes after many 
years. There is no need to take into consideration the past history of each researcher’s 
employment. Table 2 shows the intermediary matrices before M reaches the stationary 
probability distribution L after 5 steps. We may infer from these figures that after several 
years, 33%, 27%, 40% of researchers will be found in Institutes LI, h, c respectively. 
Comparing the initial distribution of 25%, 50%, 25% and the limiting distribution for 
these three institutes, it appears that there is a tendency of a build-up at Institute c. 
Its limiting probability is a high of 40% from its initial value of 25%. Thus this Markov 
chain indicates a predictable pattern by its transition matrix. 

Another theorem of the Markov chains is the following[5]. A regular Markov chain 
is irreducible and ergodic, in that every state can be reachable from every other state 
in one or more steps. If all the elements in the transition matrix of such a Markov chain 
after II number of steps are greater than zero, the theorem states that the limiting 
probability for any state i is the reciprocal of the expected mean recurrence time of 
the state i. This means that if a particle moves away from state i, the average time for 
this particle to return to state i again, measured in numbers of steps, is equal to the 
reciprocal of the limiting probability of state i. Since the unit for each step in our 
experiment is a single year, and the limiting probabilities for Institutes u, h, c are .33, 
.27, .40, their reciprocals are 3, 4, 2.5 number of years respectively. Therefore if any 
researcher should leave Institute c, the average individual would return to c again in 
an average of two and a half years. In Goffman’s two experiments on medical inves- 
tigators, he defined the unit of one step as the publication time between any two suc- 
cessive papers by an individual. He found that the investigators of schistosomiasis 
wrote an average of 1.5 papers[4]. Since the shortest recurrence time for any of his 
seven subtopics in schistosomiasis is three papers, there is little chance that the average 
investigator in this subject after leaving a subarea will ever return to it again. Similar 
conclusion was made for investigators in the subject of mast cell. 

EXPERIMENT 

Our objective is to illustrate the application of the theory of Markov chain to study 
the movement of authors in a non-biomedical subject. Comprehensive author data for 
the subject ethnomusicology was compiled from a ten year period, 1967- 1976[7]. 2018 
authors wrote a total of 3302 publications. To satisfy the three restrictions of a Markov 
chain, we chose the unit for each step as the time between the publication of two 
successive publications by the same author. Although strictly speaking, one could pub- 
lish two papers simultaneously, there is usually a time difference. Such steps are dis- 
crete and finite. Second, there are a total of 9 subfields within ethnomusicology, most 
of which are divisions by geographic locations. These are commonly considered as all 
the subfields studied, and there is no overlap at least in the way each paper was classified 
in the abstracting journal Repertoire tntetxtrtionuie dr Litteratur Musicale. The con- 
ditions of exhaustivity and mutual exclusivity applied. Thirdly, that the transition of 
an author from one subfield to another depends only on his or her present research 
interest can be defended adequately. Although availability of funds, one’s educational 
background, availability of resources, materials and opportunity, and one’s association 
can be influencing factors, one’s present research focus is probably the major con- 
tributing force. To summarize, the process of author’s movement among the 9 subfields 
is finite; the exhaustive list of 9 states or subfields is finite: each state transition depends 
only on the present state. Thus we may consider this experiment to satisfy the con- 
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Table 3-a. Initial probabilities for the movement of musicologists among nine subfields in 
ethnomusicology. 

a: Discipline = 0.0258 

b: General = 0.0258 

c: Africa = 0.0733 

d: Asia = 0.2027 

e: Europe = 0.3043 

f: North America = 0.0961 

g: South America = 0.0867 

h: Australia = 0.0173 

I ‘: Popular Music = 0.1680 

ditions for a Markov chain. This is a regular Markov chain since there are no external 
artifact to deter one from publishing in any of the 9 subfields allowing each of the 
available states to be reachable from every other state. 

We tracked the movement of publications by each author among the 9 subfields, 
which were labelled from CI to i. The first paper of each author was checked with respect 
to its relevance to subfield by the heading used by the abstracting service. Each paper 
was assigned to only one of the 9 subfields. There were 52, 52, 148, 409, 614, 194, 175, 
35 and 339 papers in topics a, h, c’, d, e, J ,q, h and i respectively. Thus our initial 
probability distribution is listed in Table 3-a. Next the number of transitions from any 

Table 3-b. Number of transitions among nine subfields. 

Total number 

from to -+ a b c d e f g h i of transitions 

4 
a 

b 

C 

d 

e 

f 

9 

h 

i 

11 10 6 I1 28 0 3 I 0 

7 4 5 15 IO 3 I 0 2 

7 2 82 19 5 2 2 I 9 

18 5 13 78 21 I 2 I 3 

32 14 0 II 13544 0 I 5 

2 4 3 2 0 17 4 0 12 

3 I I I I I 24 0 2 

42 I 2 0 0 014 0 

1 I 5 I 6 14 4 I 26 

number of 

transitions 85 43 1 16 140 206 42 40 19 59 

____ 

70 

47 

129 

142 

202 

44 

34 

23 

59 

~.__ 

750 
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Table 3-c. Transition matrix. 

C d e f 9 h i 

a 

b 

c 

d I 

e I 

f 

9 

h 

I 

.I571 .I429 

.1489 0851 

.0543 .0155 

.I268 .0352 

1584 0693 

0455 .0909 

0882 .0294 

.I739 .0870 

0169 .0169 

a 

.I179 

.I179 

.I179 

.I179 

.I179 

1179 

.I179 

.1179 

.I179 

.0857 

.I064 

.6357 

0915 

0000 

.0682 

.0294 

0435 

.0847 

.I571 

.3191 

.I473 

5493 

.0545 

.0455 

0294 

.0820 

.Ol69 

4000 

.2128 

0388 

I479 

.6683 

0000 

.0294 

.oooo 

.I017 

.oooo 

.0638 

.Ol55 

.0070 

0198 

3864 

.0294 

0000 

2373 

.0429 

.0213 

.0155 

.0141 

.oooo 

0909 

.7059 

0000 

.0678 

.Ol43 .oooo 

.OOOO 0426 

.0078 0698 

0070 0211 

0050 0248 

0000 .2727 

0000 0588 

6087 0000 

.0169 .4407 

Table 3-d. Stationary probability distribution: E’. 

b C d e f g h 

.0609 1250 

.0609 1250 

.0609 1250 

.0609 1250 

.0609 1250 

.0609 1250 

.0609 1250 

.0609 1250 

.0609 1250 

.I779 

.I779 

1779 

1779 

.I779 

.I779 

.I779 

.I779 

.I779 

3041 

3041 

.3041 

.3041 

.3041 

3040 

3040 

a3041 

.3040 

.0532 .0701 

.0532 .0702 

.0532 .0702 

.0532 .0701 

.0532 .07Ol 

0532 0702 

.0532 .0702 

.0532 0701 

.0532 0702 

.Ol70 

.Ol70 

.Ol70 

.Ol70 

0170 

.0170 

0170 

.0170 

0170 

i 

0737 

.0737 

.0737 

0737 

.0737 

.0737 

0738 

0737 

.0737 

subfield to any other subfields was counted. Since 1441 individuals contributed only 
one publication to the subject, they were eliminated because they did not make any 
transition from their original subfield. For example, in Table 3-b, cell P,,, contains 
transitions from subfield (’ to subfield (I and there were a total of seven transitions 
made from subfield c. Table 3-c is the transition matrix E for our experiment, which 
contains the conditional probability of movement from subfield i to subfieldj. The sum 
of each row equals to unity. Consider subfield II, Australian music. There was very 
little activity in row /z and column h, indicating that there was little transition from and 
to this subfield. On the other hand. there was relatively more activity for subfield c, 
European music. 

Next, we raised the matrix E to the power of I?. In the 7th step. the matrix converged 
to a stationary probability distribution. (Table 3-d) A comparison of initial and limiting 
probabilities indicates that the areas of European and Australian folk music are the 
most stable while the Popular Music and discipline areas are the least stable. The long 
run probability distribution also revealed that, in a few years, although Asian and 
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European folk music may retain their predominance among musicologists, one can 
expect a shift in interest from Popular Music and possibly North American folk music 
to African music. The proportion of authors in African music will rise from 7% to 13% 
while areas of North American folk music and Popular Music will lose a few percentage 
points. (See Tables 3-a. 3-d). 

The reciprocals of L, the stationary distribution, were then taken to determine the 
mean recurrences. or the number of papers produced before an author returns to the 
same subject. The values for subfields (I to i were found to be: 8. 16, 8, 6. 3, 19, 14, 
59. and I4 respectively. Once an author leaves North American folk music, for example, 
the least number of papers required before he returns to it is 3. Yet the average number 
of publications per author is 330212018, or I .6. Since these findings held true for all the 
subfields, it was concluded that it would be highly unlikely for an ethnomusicologist 
to return to an area of research once he or she has left it to pursue another area. 

SUMMARY AND CONCLUSIONS 

To verify the validity of the predictive model, publication trends in the ethno- 
musicology area were examined in later volumes of RILM. Unfortunately, due to delays 
in publication, volumes were only available for 1977 through April of 1980. The results 
of comparing the number of publications in each subarea for each year’s volume in- 
dicated the following. During 1977 and 1978. European music retained its dominance 
among musicologists, as was predicted. 1979 and the first part of 1980 reflect the be- 
ginning of a decline in the number of publications in European folk music. Similarly, 
Asian music retains its high numbers of publications during the same period. North 
American music shows a slight decline in 1979 which carries over into 1980. Summing 
the publications in each subarea over the 40 months, one finds a significant portion of 
publications concentrated in Asian and European folk music. Although the percentage 
of papers in Popular music has suffered a slight drop, the predicted shift into African 
music has yet to materialize. Consequently, based on the limited data subsequent to 
our original analysis, predictions made as a result of using the Markov model cannot 
be conclusively verified. To unqualifiably support the previous findings, a repetition 
of the experiment with more data at a later date would seem to be in order. 

The experiment in this humanistic subject has produced results comparable to past 
experiments in the sciences demonstrating that properties of the Markov chains can 
be utilized to describe and predict the pattern of movements of authors in the research 
areas of a subject, assuming that reasonable operational definitions and assumptions 
are made on the unit of each step; that is, the states or the distinct values the process 
may assume. Utilization of this process has far reaching effects in many areas. With 
regard to library acquisitions and development, the ability to predict authors’ writing 
practices can be used to indicate areas to be strengthened, maintained, or retired, as 
well as for providing a more objective basis for collection building. It can further in- 
dicate trends of current and future research interests of library patrons. 

The technique may be used to study the movement of writers among a fixed number 
of publishers that are particularly devoted to a discipline by their change of affiliation 
of publishers. Similarly, the trend of publishing among a group of journals may be 
tracked by the shift of citations among these journals. The movement of faculty mem- 
bers among universities that offer a specific program may also be followed by the 
personnel change among these schools. Finally, in formulating funding policy. one may 
be interested in studying the movement of research interest within a defined scientific 
discipline by tracing the citations or publications shifts in these subareas. Thereby based 
on such information one may formulate a policy with the view to anticipate growing 
and declining trends in science. 

Operationally, the computation of the powers of the transition matrix becomes 
extremely tedious for chains with many states and especially for many steps. This task 
can be simplified by the use of the statistical package MINITAB for chains with less 
than 50 states. We also offer a sample program in Appendix I which can be implemented 

IPM 22:1-R 



16 fVf. t,, PA0 and L. MCcKtiERV 

on any computer with a minimum of modification. Even though incompatible dialects 
of BASIC are offered by different manufacturers, a BASIC interpreter is routinely 
included in any desktop computer. One can easily alter the size of the allowable number 
of states by substituting a larger number than 50 in the dimension statements. One 
should also check the specific commands needed to access the data file. 

This paper discussed only the most elementary applications of the Markov Chains. 
Yet the theory can accommodate more complex situations, such as the merging of the 
states into fewer larger sets, as in the case of the cessation of journals. The relation 
between states may also be quantified by the average number of steps a particle will 
visit state i before entering another statej. The original process before entering a given 
state i may also be fruitfully investigated using the model of Markov process. There 
appears to be other potential applications of this theory. 

I. 

2. 

3. 

4. 

5 
ti: 

7. 
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APPENDIX I 

PROGRAM FOR MATRIX MULTI~L~IC,~TION 

THIS PROGRAM READ DATA CELLS FROM A SQUARE MATRIX-M.DAT 
INTO A TWO DIMENSIONAL ARRAY A(l.J). IT THEN MULTIPLES 
THE MATRIX BY ITSELF AND STORES IT IN Ct1.J). IT IS 
THE RESULTING MATRIX. FINALLY, IT ALLOWS THE USER TO 
CONTINUE TO MULTIPLE THE RESULTING MATRIX BY ANSWERING 
THE QUESTION: ~~ULTIPLE THE RESULTING MATRIX AGAIN? (Y/N) 

MAXIMUM NUMBER OF ROWS ALLOWED IN THIS VERSION IS 
50 BY 50. 

HOWEVER, THE DIMENSION MAY BE INCREASED BY CHANGING THE 
PARAMETERS IN STATEMENTS #?OO AND #2lO. 

PLEASE NOTE THAT THE INPUT FILE MUST BE NAMED M.DAT. 
PLEASE NOTE THAT COMMAS MUST BE INSERTED BETWEEN NU~~BERS IN M.DAT 

DIM A(50.50) 
DIM C(50.50) 
INPUT “ENTER NAME OF THIS MATRIX: “; B$ 
INPUT “ENTER # OF ROWS FOR THIS MATRIX: “; K 
REM” 
REM* THE FOLLOWING SEGMENT READS DATA FROM DATA FILE M.DAT 

OPEN “1”. #2, “M.DAT” 
FOR I = I TO K 

FOR J = 1 TO K 
INPUT #2. A(1.J) 
PRINT A(1.J); 

NEXT J 
PRINT 

NEXT 1 
CLOSE 

REM* 
REM* DATA FILE IS CLOSED 
REM* THE FOLLOWING SEGMENT MULTIPLES THE MATRIX 

PRINT 



Bibliometric application of Markov chains 

PRINT “THE RESULT OF MATRIX MULTIPLICATION IS: ” 
LETS = 0 
FOR M = I TO K 

FOR J = I TO K 
FOR I = 1 TO K 

LET S = S + A(1.J) * A(M,I) 
NEXT I 
LETA = M 
LETB = J 
LET C(A.B) = S 
LETS = 0 

NEXT J 
NEXT M 

REM* THE FOLLOWING SEGMENT PRINTS THE MATRIX 
REM* 

FOR I = I TO K 
FORJ = ITOK 

PRINT USING “#.###:” C(1.J). 
LET A(1.J) = C(1.J) 

NEXT J 
PRINT 

NEXT I 
INPUT “MULTIPLE THE RESULTING MATRIX AGAIN? (YIN)“: Z$ 
IF Z$ = “Y” (or Z$ = ‘Y’) THEN GOT0 390 
END 
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