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Objectives: The practice of evidence-based medicine involves integrating the latest best available evi-
dence into patient care decisions. Yet, critical barriers exist for clinicians’ retrieval of evidence that is rel-
evant for a particular patient from primary sources such as randomized controlled trials and meta-
analyses. To help address those barriers, we investigated machine learning algorithms that find clinical
studies with high clinical impact from PubMed�.
Methods: Our machine learning algorithms use a variety of features including bibliometric features (e.g.,
citation count), social media attention, journal impact factors, and citation metadata. The algorithms
were developed and evaluated with a gold standard composed of 502 high impact clinical studies that
are referenced in 11 clinical evidence-based guidelines on the treatment of various diseases. We tested
the following hypotheses: (1) our high impact classifier outperforms a state-of-the-art classifier based
on citation metadata and citation terms, and PubMed’s� relevance sort algorithm; and (2) the perfor-
mance of our high impact classifier does not decrease significantly after removing proprietary features
such as citation count.
Results: The mean top 20 precision of our high impact classifier was 34% versus 11% for the state-of-the-
art classifier and 4% for PubMed’s� relevance sort (p = 0.009); and the performance of our high impact
classifier did not decrease significantly after removing proprietary features (mean top 20 precision = 34%
vs. 36%; p = 0.085).
Conclusion: The high impact classifier, using features such as bibliometrics, social media attention and
MEDLINE� metadata, outperformed previous approaches and is a promising alternative to identifying
high impact studies for clinical decision support.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

On average, clinicians raise more than one clinical question for
every two patients seen, and the majority of these questions are
left unanswered [1,2]. Unmet information needs can lead to subop-
timal patient care decisions and lower patient care quality [3].
‘‘Lack of time” and ‘‘doubt that a useful answer exists” are two
major reasons that prevent clinicians from pursuing clinical ques-
tions at the point of care [2]. Yet, online knowledge resources, such
as primary literature resources (e.g., PubMed�) and evidence sum-
maries (e.g. clinical guidelines, UpToDate�), can provide answers to
most clinical questions [4].
Evidence based medicine (EBM) practice advocates clinicians to
integrate individual clinical expertise and the best available evi-
dence, ideally frommethodologically sound randomized controlled
trials (RCTs), systematic reviews (SRs), and meta-analyses (MAs)
[5,6]. In the past twenty years, the publication of RCTs, SRs, and
MAs has experienced steady growth [6]. Despite recommendations
for clinicians to integrate high quality evidence in patient care
decisions, the use of primary literature resources in patient care
is still low [7]. Challenges include: (1) only a very small fraction
of the studies indexed in PubMed� warrant changes in clinical
practice - the findings of most studies are false due to weaknesses
such as small sample size, small effect size, biases, unstandardized
study design, flaws in statistical analysis, and conflicts of interest
[8]; and (2) finding and interpreting high quality studies that have
an impact on the care of a specific patient is very time-consuming
and unfeasible in busy care settings [9].
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To promote clinical use of PubMed�, several promising
approaches have been investigated to retrieve high quality (i.e., sci-
entifically rigorous) studies, mainly using MeSH terms/keywords
or bibliometric information [10–15]. However, previous
approaches focused primarily on retrieving studies with scientifi-
cally sound methodology. In the present study, we investigate
approaches to retrieve articles that have a high clinical impact,
and are likely to influence clinicians’ patient care decisions. Our
method is built over the following previous approaches: (1) the
Clinical Query filters [10]; (2) citation count [13]; and (3) the high
quality study classifier by Kilicoglu et al. [11]. We combined the
approaches above and explored several novel features as surro-
gates for an article’s clinical impact. We hypothesize that (1) our
high impact classifier outperforms Kilicoglu et al.’s high quality
Naïve Bayes classifier and PubMed’s� relevance sort in terms of
top 20 precision; and (2) the performance of our high impact clas-
sifier does not decrease significantly after removing proprietary
features.
2. Background

Multiple research efforts have investigated algorithms to
retrieve scientifically rigorous clinical studies. Overall, they can
be divided into three categories: search filters, citation-based algo-
rithms, and supervised machine learning algorithms.
2.1. Search filters

Clinical Queries, a PubMed� built-in feature, have been
designed to help clinicians find citations of scientifically
sound clinical studies [10,12]. Clinical Query filters are
Boolean-based search strategies that include MeSH terms
and keywords that are often found in the abstracts of scien-
tifically sound clinical studies. The approach has been devel-
oped and validated through a rigorous systematic process
[10,12]. Filters for five topics have been developed (i.e., ther-
apy, diagnosis, etiology, prognosis, clinical prediction guides),
with the option to maximize precision or recall. Since Clini-
cal Queries are openly available through PubMed�, they are
often used as a baseline for evaluating the efficacy of novel
approaches aimed at retrieving high quality clinical studies
from PubMed�.
2.2. Citation-based algorithms

Citation-based algorithms, such as the approach proposed
by Bernstam et al. [13], are based on approaches that are
widely used on the Web, such as citation count and PageRank
[16]. Both citation count and PageRank are based on linkage
analysis between the nodes (i.e., citations/websites) of a
graph. The difference is that citation count considers only
one layer of linkage (i.e., only the documents that directly cite
the document of interest), whereas PageRank looks at multiple
layers (i.e., all documents that recursively cite the document
of interest). Using the Society of Surgical Oncology’s Anno-
tated Bibliography (SSOAB) as the gold standard, Bernstam
et al. found that both citation count and PageRank outper-
formed MeSH and keyword-based algorithms, such as Clinical
Queries and machine learning classifiers (top precision = 6%
versus 0.85%) [13]. Limitations of citation-based algorithms
include (1) not considering the scientific quality of a study;
(2) citation count relies on proprietary data; and (3) citation
count is time-dependent and does not work for very recent
studies.
2.3. Supervised machine learning

Examples of the supervised machine learning approach include
studies conducted by Aphinyanaphongs et al. and Kilicoglu et al.
[11,14,15]. Aphinyanaphongs et al. found that a polynomial sup-
port vector machine (Poly SVM) classifier outperformed Clinical
Queries’ specificity filter for retrieving internal medicine articles
included in the American College of Physicians Journal Club (ACPJ)
on treatment (recall = 0.80 versus 0.40) and etiology (recall = 0.76
versus 0.28) tasks [14]. The features included MeSH terms, publica-
tion type, and words in the title and abstract. Next, they proposed
that each PubMed� article retrieval system should be built upon a
particular task and an appropriate gold standard for the task [15].
They compared the performance of different machine learning
methods using three gold standards (i.e., the SSOAB for surgical
oncology, ACPJ-treatment for internal medicine treatment, and
ACPJ-etiology for internal medicine etiology) [15]. The study found
that gold-standard-specific machine learning classifiers (e.g.,
applying the model built on ACPJ-treatment to find internal medi-
cine treatment articles) outperformed non-specific machine learn-
ing (e.g., applying the model built on SSOAB to find internal
medicine treatment articles) in terms of the area under the curve
(0.966 versus 0.770). The main limitation of this study is the gen-
eralizability of the classifier (i.e., only explored the internal medi-
cine domain). We may need to develop new classifiers for every
different domain.

More recently, Kilicoglu et al. employed a stacking ensemble
method that combined the features used in Aphinyanaphongs
et al. with Unified Medical Language System (UMLS) concepts,
UMLS semantic relations, and semantic predications [11]. Classi-
fiers were built and evaluated with a large gold standard developed
by McMaster University and consisting of 49,028 high quality clin-
ical studies selected through a rigorous manual process from 161
clinical journals [11,17]. The stacking classifier had 73.7% precision
and 61.5% recall for scientifically rigorous studies, and 82.5% preci-
sion and 84.3% recall for treatment/prevention studies. The main
strength of this study is good generalizability as it covered multiple
clinical domains. The main limitation of this study is still focusing
on scientifically rigorous studies, but not high clinical impact ones.
3. Methods

Our overall method is based on machine learning algorithms
with a variety of features, including bibliometrics, MEDLINE�

metadata, and social media exposure. The method was developed
according to the following steps (Fig. 1): (1) development of a gold
standard of high impact articles cited in 11 clinical guidelines; (2)
retrieval of candidate PubMed� citations covering the main topic of
each guideline using a search strategy based on PubMed’s� Clinical
Queries filter [17]; (3) preparation of bibliometrics, MEDLINE�

metadata, and social media exposure features; (4) ranking of fea-
tures; (5) training and optimization of classifiers to identify high
impact clinical studies; and (6) testing of a set of hypotheses
regarding the performance of the classifiers.
3.1. Gold standard development

We used studies cited in clinical practice guidelines as a surro-
gate for high impact studies in a clinical topic. Clinical guidelines
contain evidence-based recommendations on the diagnosis and
treatment of specific conditions. Through rigorous systematic
review development methodology, domain experts identify all
studies relevant to the topic of the clinical guideline, screen out
studies that do not meet minimum quality criteria (e.g., random-
ized controlled trials), and derive guideline recommendations from



Box 1 Search strategy pattern for retrieving candidate PubMed�

citations.

‘‘Disease”[MeSH Terms] AND (Therapy/Narrow[filter] OR
(‘‘therapy”[Subheading] AND systematic[sb] AND (‘‘systematic
review”[ti] OR ‘‘meta-analysis”[ti] OR ‘‘Cochrane Database Syst
Rev”[journal])))AND (Guideline Coverage Start Date[PDAT]:
Guideline Coverage End Date[PDAT])AND ‘‘humans”[MeSH
Terms] AND ‘‘english”[language] AND hasabstract[text]

Fig. 1. Method steps.
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the included studies [18,19]. We focused on treatment citations
since most clinical questions are related to the treatment of patient
conditions [2]. In our study, we (1) manually extracted those cita-
tions (i.e., RCTs, MAs and SRs) from each guideline (Table 1); and
(2) automatically mapped each extracted citation to PubMed�

IDs using the NCBI Batch Citation Matcher tool [18]. We manually
mapped citations that could not be automatically mapped.

To find these 11 guidelines, the overall approach was to search
for recent guidelines on the treatment of a range of common com-
plex chronic conditions. We also included guidelines based on the
following criteria: (1) articles cited in the guideline must have been
selected through a systematic search, screening, and appraisal pro-
cess; (2) eligible guidelines must have provided explicit treatment
recommendations, along with citations to the original studies that
supported each recommendation. For guidelines with multiple ver-
sions, we selected the latest version available at the time of our
search.
3.2. Candidate citations retrieval

Candidate citations were retrieved using a search strategy
specifically designed for RCTs, MAs and SRs (Box 1). The strategy
included three components. First, a suitable disease MeSH term
was manually selected based on the main condition covered in
each guideline. Second, filters were applied to retrieve high qual-
ity treatment studies. RCTs were retrieved by using the Clinical
Queries narrow therapy filter [17], which is designed to retrieve
high quality therapy studies and is optimized for precision. MAs
and SRs were retrieved with a combination of PubMed’s� system-
atic review filter and studies whose titles contained ‘‘systematic
review” or ‘‘meta-analysis” or were published in the Cochrane
Database of Systematic Reviews. Third, a date range constraint
was applied matching the same time period of the systematic
search conducted to support the development of the correspond-
ing guideline. Further constraints included articles written in Eng-
lish, studies with human subjects, and articles with an abstract
[31].
3.3. Feature extraction and pre-processing

Features of retrieved citations were extracted through a set of
automated scripts, and stored in a relational database. The features
are as follows:
3.3.1. Journal impact factor (JIF)
JIF measures how often articles published in a particular journal

are cited by other articles. Specifically, JIF is calculated by dividing
the number of citations to publications in the journal of interest in
the previous two years by the number of original research articles
and reviews published in that journal in the previous two years
[32,33]. JIF eliminates the bias of higher citation counts from large
journals, frequently published journals and old journals. We used
JIF as a surrogate for the reputation of a journal and consequently



Table 1
Clinical guidelines used in the gold standard and number of citations per guideline.

Disease topic Guideline title Medical
Society

Number of
Citations

Rheumatoid Arthritis (RA) 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-
modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis [20]

ACR 66

Asthma in Children and Adults VA/DoD Clinical Practice Guideline For Management of Asthma in Children and Adults [21] VA/DoD 31
Major Depressive Disorder (MDD) VA/DoD Clinical Practice Guideline For Management of Major Depressive Disorder (MDD) [22] VA/DoD 65
Outpatient Chronic Obstructive

Pulmonary Disease (COPD) 2007
VA/DoD Clinical Practice Guideline For Management of Outpatient COPD [23] VA/DoD 95

Outpatient Chronic Obstructive
Pulmonary Disease (COPD) 2014

VA/DoD Clinical Practice Guideline For the Management of Chronic Obstructive Pulmonary Disease
[24]

VA/DoD 58

Extracranial Carotid and Vertebral
Artery Disease

2011ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the
Management of Patients With Extracranial Carotid and Vertebral Artery Disease [25]

ACC 22

Stable Ischemic Heart Disease 2012ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients
With Stable Ischemic Heart Disease [26]

ACC 66

ST-Elevation Myocardial Infarction 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the
American College of Cardiology Foundation/American Heart Association Task Force on Practice
Guidelines [27]

ACC 69

Heart Failure 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of
Cardiology Foundation/American Heart Association Task Force on Practice Guidelines [28]

ACC 88

Valvular Heart Disease 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of
the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
[29]

ACC 32

Atrial Fibrillation (AFib) 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of
the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
and the Heart Rhythm Society [30]

ACC 56

ACC: the American College of Cardiology.
ACR: the American College of Rheumatology.
VA/DoD: the US Veterans Administration/Department of Defense Clinical Practice Guidelines.
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for the impact of articles published in the journal. We obtained the
JIFs from the Journal Citation Reports� (JCR�), published by Thom-
son Reuters [34].

3.3.2. Registration in ClinicalTrials.gov
This feature indicates whether the study is registered in the

ClinicalTrials.gov registry. National regulations and most rep-
utable journals require registration of clinical trials in national
registries such as ClinicalTrials.gov before the trial is initiated.
Our assumption is that registration in ClinicalTrials.gov is a pre-
dictor of the study quality and impact. This feature is determined
by the presence of a ClinicalTrial.gov ID in the citations’ PubMed�

metadata.

3.3.3. Publication in PubMed Central�

This feature indicates whether the article is available in the
PubMed Central� database. All studies funded by the US National
Institutes of Health (NIH) are published in PubMed Central� and
available open access. Since these studies are not funded by com-
mercial entities, they tend to be more balanced and potentially
have a stronger clinical impact [35–37]. This feature is determined
by the presence of a PubMed Central� ID in the PubMed�

metadata.

3.3.4. Article age
This feature represents the number of months since the article

was published. More recent articles may have a stronger clinical
impact. Article age was determined based on the number of
months elapsed between the date the citation was added to
PubMed� (the Entrez Date in the PubMed� metadata) and the
month when the Article Age feature was processed (i.e., August
2016).

3.3.5. Study sample size
This feature represents the number of participants in the study

according to the study record in ClinicalTrials.gov. A large sample
size might be a predictor of high impact studies [8].
3.3.6. Comparative study
This feature indicates whether the study compared two or more

treatment alternatives as opposed to a treatment versus placebo.
Comparative studies generally provide more useful information
to support clinical decisions than intervention versus placebo trials
[38]. This feature was extracted from the publication type field in
the PubMed� metadata.
3.3.7. Study quality
This feature represents the probability that a given citation is a

high quality article according to the classifier developed by Kil-
icoglu et al. [11]. The probability score for each retrieved citation
was generated using a model based on a Naïve Bayes classifier with
two types of features (i.e., MeSH indexing terms and publication
type). The rationale behind this classifier is similar to the rationale
of PubMed’s� Clinical Query filters, i.e. that attributes of strong
study designs are indexed as MeSH terms and publication type in
the citation metadata. Examples include MeSH terms such as ‘‘ran-
dom allocation” and ‘‘clinical trials” and publication types such as
‘‘randomized controlled trials”. Other publication types may serve
as negative predictors, such as ‘‘case-control study” or ‘‘case
report”.
3.3.8. Number of comments on PubMed�

This feature indicates the number of editorial comments on a
given citation. Articles that receive editorial comments might be
more important. The number of editorial comments was extracted
from the CommentsCorrectionsList field in the PubMed� metadata.
3.3.9. Citation count
This feature indicates how many times an article has been cited

according to the Scopus system. As a rough adjustment for the time
elapsed since the publication date, we also calculated the rate of
citations per month. We obtained the citation counts in August
2016 using a Web service API provided by Scopus [39].
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3.3.10. Altmetric� score
Altmetric� tracks the online exposure of scientific work based

on social media (e.g., Facebook, Twitter), traditional media (e.g.,
New York Times) and online reference managers (e.g., Mendeley).
A different weight is assigned to each specific source. The score
is calculated based on both the quantity and quality of posts
[40,41]. We also calculated a monthly-adjusted score. We obtained
Altmetric� scores in August 2016 using an Altmetric� API that is
freely available for research purposes [42].
3.3.11. High impact journal
This feature indicates whether the study was published in a

journal included in a list of high impact clinical journals. The list
was compiled by combining the MEDLINE� Abridged Index Medi-
cus (AIM or ‘‘Core Clinical”) journals [43] and the McMaster Plus
(Premium LiteratUre Service) journals [44]. The quality and rele-
vance of these journals are rigorously and periodically evaluated
by a group of experts [45–47].
3.4. Feature ranking

To evaluate the contribution of each individual feature, we
employed the Information Gain evaluator in the Weka data mining
package [48]. This evaluator is one of the best feature ranking
methods according to Hall and Holmes’s benchmarking study
[49]. We selected citations from an average-size guideline (heart
failure dataset) among the 11 guidelines for feature ranking.
3.5. Classification method

To identify an optimal classifier, we chose the heart failure data-
set as the training dataset and the major depressive disorder data-
set as the validation dataset based on our primary outcome (top 20
precision). We chose these two datasets because their sizes are
closest to the average size of all datasets, their positive sample
rates are close to the average positive sample rate across datasets,
and they are focused on different medical domains.

We evaluated 12 classification algorithms with their parameter
settings (Table 2). Since our dataset is very unbalanced (3.2% pos-
itive vs. 96.8% negative cases), we also employed cost-sensitive
data mining with meta cost algorithm where all mentioned classi-
fiers were trained based on different costs for false positive and
false negative errors determined by various cost matrices [50].
Table 2
Classification algorithms and their parameter settings.

Algorithm Parameter setting

K-Nearest
Neighbors

Number of neighbors and instance weighting methods

Naïve Bayes Kernel density estimator
Bayes Net Search algorithm and estimator algorithm
Naïve Bayes

Multinomial
Default parameter setting in Weka

Logistic Kernel type and the corresponding parameters of each
kernel type

Multilayer
Perceptron

Number of hidden layers, number of nodes in each
layer, learning rate, and momentum

Simple Logistic Default parameter setting in Weka
Stochastic Gradient

Descent
Learning rate, lambda and loss function

Decision Table Attribute search method
J48 Minimum number of instances per leaf, reduced error

pruning and confidence threshold for pruning
Random Forest Number of trees, maximum depth of the trees, and

number of attributes
Support Vector

Machine
Kernel type and the corresponding parameters of each
kernel type
Our experimental setting is aligned with similar studies on perfor-
mance comparison among classifiers [51,52].

We selected the best classifier based on our primary outcome
(top 20 precision). If the performance of two or more classifiers
was similar, we selected the one that is easiest to implement and
interpret. After finalizing the optimal parameter setting for the
best classifier, we applied it to the remaining nine disease datasets
for hypothesis testing.

3.6. Hypotheses testing

Hypothesis 1. The high impact classifier outperforms Kilicoglu
et al.’s high quality Naïve Bayes classifier and PubMed’s� relevance
sort in terms of top 20 precision. For the Kilicoglu baseline, we
ranked the citations according to the probability output of the
Naïve Bayes classifier. PubMed’s� relevance sort is a relevance-
based ranking algorithm. The ranking is determined by the
frequency and the location of search terms in the retrieved
citation, and the age of the retrieved citation [53].
Hypothesis 2. The performance of the high impact classifier does
not decrease significantly after removing citation count and social
media exposure features. This experiment assessed the contribu-
tion of the Scopus citation count and the Altmetric� score. These
two features are less desirable since both are based on proprietary
information, and there is a time lag between the time of publica-
tion and the presence of the first citation to an article for the Sco-
pus citation count.
3.6.1. Study outcomes
By default, the PubMed� search results page displays 20

items per page. Since busy clinicians are less likely to look past
the top 20 citations [54], we adopted top 20 precision a priori as
the primary outcome for all the hypotheses. We also measured
top 20 mean average precision, and top 20 mean reciprocal rank
[55]. The main difference between top 20 precision and top 20
mean average precision is that top 20 precision only measures
the percentage of true positive citations among the first 20
retrieved citations, whereas top 20 mean average precision mea-
sures the average ranking position of the true positive citations;
the closer the true positive citations to the top of the ranking,
the better the retrieval system is. Top 20 mean average precision
is computed as follows by: (1) for each true positive citation in
the top 20 retrieved citations, divide its position among true
positive citations by its position in the overall retrieved results;
(2) calculate the average of the values obtained in the previous
step. Since our overall dataset is unbalanced, we also measured
precision, recall, and F-measure of positive samples in all
experiments.

3.6.2. Statistical analysis
The goal of the statistical analyses included three aspects: (1)

in Hypothesis 1, determining if our classifier was superior to Kil-
icoglu et al.’s high quality Naïve Bayes classifier; (2) in Hypothesis
1, determining if our classifier was superior to PubMed’s� rele-
vance sort classifier; (3) in Hypothesis 2, determining if our clas-
sifier was equivalent to the classifier without the citation count
and social media exposure features. Since these were separate
study questions, rather than the more general question of
whether our classifier is better than other classifiers without
being specific, the statistical issue of multiple comparisons did
not arise in our study [56,57]. Besides multiple classifiers (multi-
ple groups), another way that multiplicity, or the multiple com-
parison problem can arise is from having multiple outcome
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measures. To address that, we selected top 20 precision a priori as
our primary outcome measure. The other five measures were sec-
ondary measures. The hypothesis test, then, for answering the
research question was limited to the single primary measure.
The secondary measures are simply exploratory, or descriptive,
and have been included as others in the field may be interested
in seeing them. This approach to multiplicity is called the
primary-secondary approach to multiplicity [58], which is the
most commonly used approach in randomized controlled trials
reported in The New England Journal of Medicine [59]. To compare
our classifier with any of the other three classifiers, we used a
paired sample Wilcoxon signed rank test. We employed the Wil-
coxon test in place of a paired sample t-test so that no data value
could overly influence the result in an outlier fashion. We per-
formed all the statistical analyses using Stata IC 14.
4. Results

A total of 15,845 citations were retrieved with the PubMed�

search strategy for the diseases represented in the 11 guidelines.
Among these citations, 502 (recall of 77.5% for the total 648 guide-
line citations (Table 1)) were high impact clinical studies. Feature
ranking results are shown in Table 3. We found that Scopus citation
count and journal impact factor were the top two features followed
by number of comments on PubMed�, high impact journal, Altmetric�

score and other PubMed� metadata.
We found that hyper-parameter optimization with cost matrix

improved the performance of some but not all of the classifiers
Table 3
Feature ranking results.

Rank Feature Information gain

1 Citation count 0.05154
2 Citation count (monthly) 0.04851
3 Journal impact factor 0.03784
4 Number of comments on PubMed� 0.03563
5 High impact journal 0.01887
6 Altmetric� score 0.01771
7 Altmetric� score (monthly) 0.01275
8 Study sample size 0.01242
9 Registration in ClinicalTrials.gov 0.00763
10 Article age 0.00584
11 Comparative study 0
12 Study quality 0
13 Publication in PubMed Central� 0
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Fig. 2. Average top 20 precision, top 20 mean average precision (MAP), top 20 mean re
Kilicoglu et al.’s high quality Naïve Bayes classifier and PubMed’s� relevance sort (Expe
(see online supplement Table s1 for details). The performance of
the Naïve Bayes classifier with default parameter settings was sim-
ilar to the performance of several other classifiers (e.g., Bayesian
network, Naïve Bayes Multinomial). As the Naïve Bayes classifier
is easiest to implement and understand, we chose it as the final
classifier for hypotheses testing.

Experiment #1: The high impact classifier outperforms Kil-
icoglu et al.’s high quality Naïve Bayes classifier and PubMed’s� rel-
evance sort. Fig. 2 summarizes the results. The high impact
classifier with all features performed significantly better than Kil-
icoglu et al.’s high quality Naïve Bayes classifier and PubMed’s� rel-
evance sort in terms of top 20 precision (mean = 34% vs. 11% and
4% respectively; both p = 0.009). Similar results were found for
the secondary outcomes top 20 mean average precision
(mean = 23% vs. 6% and 1% respectively; both p = 0.008), top 20
mean reciprocal rank (mean = 0.78 vs. 0.30 and 0.05 respectively;
p = 0.012 and p = 0.007), precision (mean = 33% vs. 5% and 4%
respectively; both p = 0.008) and F-measure (mean = 21% vs. 9%
and 8% respectively; p = 0.015 and p = 0.008). The high impact clas-
sifier performed significantly worse than Kilicoglu et al.’s high
quality Naïve Bayes classifier and PubMed’s� relevance sort in
terms of recall (mean = 23% vs. 55% and 65% respectively;
p = 0.009 and p = 0.008) (see online supplement Table s2 for
details).

Experiment #2: The performance of the high impact classifier
does not decrease significantly after removing Scopus citation
count and social media exposure features. Fig. 3 summarizes the
results. The high impact classifier with all features had an equiva-
lent performance to the classifier without Scopus citation count
and social media exposure in terms of top 20 precision
(mean = 34% vs. 36%; p = 0.085). Similar results were found for
the secondary measures top 20 mean average precision
(mean = 23% vs. 24%; p = 0.441), top 20 mean reciprocal rank
(mean = 0.78 vs. 0.60; p = 0.187), precision (mean = 33% vs. 29%;
p = 0.406), and recall (mean = 23% vs. 20%; p = 0.094). In terms of
F-measure, the high impact classifier performed better than the
classifier without Scopus citation count and social media exposure
(mean = 21% vs. 18%; p = 0.044) (see online supplement Table s3
for details).
5. Discussion

In this study, we investigated machine learning methods to
automatically identify high impact clinical studies in PubMed�

for supporting clinical decision making. Our approach builds over
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previous research that relied on MeSH metadata, abstract terms,
and bibliometrics to retrieve scientifically sound studies from
PubMed� [10–15]. Our approach is innovative because we com-
bined features and classifiers used in previous studies with new
features, such as social media attention. Our high impact classifier
outperformed Kilicoglu et al.’s high study quality Naïve Bayes clas-
sifier and PubMed’s� relevance sort ranking algorithm. In addition,
the level of performance does not change significantly after remov-
ing time-sensitive and proprietary features (i.e., citation count and
social media exposure features). Our method can be used to sup-
port patient care by helping time-constrained clinicians meet their
information needs with the latest available evidence. For example,
the algorithm could be integrated with existing tools, such as an
additional filter within PubMed�, or integrated with new clinical
decision support tools, such as the Clinical Knowledge Summary
[59]. The method can also be used to support physicians in
training, who can incorporate evidence searching in their learning
routine.

Strengths of our study include: (1) generalizability to multiple
domains, since the 11 diseases included in our study cover multi-
ple medical domains such as autoimmune (e.g., rheumatoid arthri-
tis), cardiac (e.g., heart failure), and respiratory diseases (e.g.,
Asthma); (2) retrieval of high impact clinical citations that influ-
ence clinicians’ patient care decisions; (3) less dependency on
time-sensitive and proprietary data of our automatic classifier.
5.1. Experiment 1

Experiment 1 confirmed the hypothesis that the high impact
classifier outperforms Kilicoglu et al.’s high quality Naïve Bayes
classifier and PubMed’s� relevance sort ranking in terms of top
20 precision. The top 20 precision of our classifier was on average
34%, which means that roughly 6 to 7 out of the top 20 retrieved
PubMed� articles are high impact articles. Compared with Pub-
Med’s� relevance sort algorithm (roughly 1 out of 20 retrieved arti-
cles) and with a state-of-the-art algorithm (roughly 2 out of 20
articles), our classifier provides a significantly higher chance for
clinicians to find high impact articles among the top ranked ones.
For information retrieval systems, it is very imperative to retrieve
the best results in the first page. According to a classic study, more
than 75% of users using a general search engine do not view the
results beyond the first 20 hits [60]. This issue is even more pro-
nounced in busy clinical settings [61]. On average, clinicians are
not willing to spend more than 2 min seeking information during
patient care [62], and more than 91% of clinicians do not view
PubMed� citations beyond the first 20 [54]. Therefore, to effec-
tively support clinical decision making, it is critical to retrieve
the best results on the first page.
5.2. Experiment 2

Experiment 2 confirmed the hypothesis that the performance of
the high impact classifier does not decrease significantly after
removing citation count and social media exposure features. Cita-
tion count has been a well-established surrogate for measuring
the quality of PubMed� articles [63,64], and it was the strongest
feature in our study according to feature selection, confirming
the finding of Bernstam et al. [13]. Journal Impact Factor (JIF) is
another proprietary metric, based on citation counts of articles
published within that journal. Although JIF changes each year,
we kept it in Experiment 2 because, unlike citation count, JIF (1)
is easier to obtain than article-level citation counts, (2) changes
at a slower rate, and (3) does not have a time lag. Altmetric� score
is a non-traditional surrogate for article quality and impact. No
strong correlation was found between citation count and Altmet-
ric� score, suggesting that the two features are complementary
[65,66]. Although both citation count and Altmetric� score are
strong predictors for article quality, their utility is compromised
by their time-sensitive and proprietary nature. In our study, it is
possible that other features served as surrogates for citation count
and social media attention and, when combined, compensated for
the absence of these features. For example, journal impact factor is
calculated based on the number of citations to each of the articles
published in a journal. Thus, journal impact factor may serve as a
proxy for an article’s citation count. Therefore, our finding that
other features combined compensate for the absence of citation
count and social media attention is important for the feasibility
of integrating our high impact classifier into a production system.
5.3. Limitations

This first limitation of our approach is that we only employed
one guideline (heart failure) dataset for feature ranking and select-
ing an optimal classifier, which could potentially bring some bias
into this study. We have 11 guideline datasets, for the purpose of
boosting statistical power, we employed maximum number of
datasets (i.e., 9) for the statistical analyses regarding the perfor-
mance of our classifiers. In the future, we will include more guide-
line datasets so that number of the guidelines used for feature
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selection and optimal classifier identification and number of the
guidelines used for statistical analyses could be well balanced.

The second limitation of our approach is that it does not
account for concept drift [67,68] and several features used in our
high impact classifier change their values over time, which are
likely to affect the performance of a classifier in a production sys-
tem. Ideally, we should have extracted data for time-sensitive fea-
tures reflecting the values of those features at the time when
articles were searched by the guideline authors. However, histori-
cal data for the Scopus citation count and Altmetric� score are not
available. In addition, our approach depends on citation metadata,
such as MeSH terms and publication type, but those features are
not available immediately after a citation becomes available in
PubMed�. The time-to-indexing of an article in PubMed� varies
from less than a month to eight months, depending on multiple
factors such as journal impact factor, focus area, and discipline
[69]. This poses a challenge upon using our classifier for very
recent articles, which may be quite desirable for clinicians who
are experts in a domain and are mostly interested in keeping up
with very recent evidence. In future studies, we plan to investigate
approaches to overcome this limitation, such as relying on off-the-
shelf auto-indexing tools (e.g., MTI indexer [70]) and leveraging
other citation metadata (e.g., journal impact factor, author and
affiliation, and references) that are available at the first time the
article appears in PubMed�.

6. Conclusion

This study shows that a high impact Naïve Bayes classifier,
using features such as bibliometrics, social media attention and
MEDLINE� metadata, is a promising approach to identifying high
impact studies for clinical decision support. Our current classifier
is optimal for classifying PubMed� articles that have been pub-
lished after a certain period of time, roughly 6–9 months. Further
research is warranted to investigate time-sensitive approaches
that address concept drift.
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