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Abstract

Empirical technology forecasting (TF) is not well utilized in technology management. Three factors

could enhance managerial utilization: capability to exploit huge volumes of available information,

ways to do so very quickly, and informative representations that help manage emerging technologies.

This paper reports on efforts to address these three factors via partially automated processes to generate

helpful knowledge from text quickly and graphically. We first illustrate a process to generate a family

of technology maps that help convey emphases, players, and patterns in the development of a target

technology. Second, we exemplify the generation of particular ‘‘innovation indicators’’ that measure

particular facets of R&D activity to relate these to technological maturation, contextual influences, and

market potential. Both technology mapping and innovation indicators rely upon searches in huge,

easily accessible, abstract databases and text mining software. We augment these through ‘‘macros’’

(programming scripts) that automatically sequence the necessary steps to generate particular desired

information products. These analytical findings can be tailored to the needs of particular technology

managers. D 2002 Elsevier Science Inc. All rights reserved.
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1. The challenge

Technology forecasting (TF) activities have rebounded energetically in the 1990s with var-

ious emphases—competitive technological intelligence, technology foresight, and technology

roadmapping. TF is expanding its tool set to synthesize findings drawn from a range of quan-

titative and qualitative approaches [1]. Efforts to systematize the TF process hold promise [2].

Tough economic competition is today’s primary driver of technological innovation and,

hence, the key motivator to conduct TF. Large companies need TF, in its various guises, to

prioritize R&D, plan new product development, and make strategic decisions on technology

licensing, joint ventures, and so forth. Small companies often depend on technological

innovation for their existence, yet have been notably weak at TF. Small firms have been

limited by time pressures, lack of information resources, and unfamiliarity with methods.

Government agencies also have TF needs as they seek to advance public agendas in the face

of increasing rates of technological changes with constrained budgets.

Forecasting a technology’s future draws on empirical evidence and expert opinion. We

focus on empirical analyses in this paper, recognizing that expert opinion provides essential

complementary information. Forecasters have long had complex algorithmic approaches at

their disposal, but their ability to effectively execute those approaches has been limited by the

availability of information and costs of manual information manipulation and analysis. The

situation is changing.

Empirical analysis of emerging technologies poses a number of challenges to analysts. In

particular, we note the need to:

1. digest enormous amounts of available information,

2. do so rapidly,

3. present findings vividly and understandably.

Let us consider each of these three challenges in turn.

The defining characteristic of the ‘‘information economy’’ is tremendously enhanced

access to information. This offers particular promise to improve TF. In addition to Internet

technology information sites worth mining, there are superb database resources for R&D

information, including:

� projects (e.g., NSF projects—http://www.nsf.gov)
� research opportunities (e.g., http://www.cos.com)
� publications (e.g., Chemical Abstracts—http://www.cas.org/SCIFINDER/SCHOLAR)
� citations (Social Science Citation Index and Science Citation Index—http://www.

isinet.com/isi)
� patents (e.g., Derwent World Patents Index http://www.derwent.com/worldpatentsindex)

Tremendous research and development activity, worldwide, results in explosive growth in

the amount of scientific and engineering literature. For instance, Science Citation Index

contains almost 15 million abstracts of journal and conference papers published since 1987;
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MEDLINE contains some 12 million medical research abstracts. In engineering domains, EI

Compendex includes over 5 million records and INSPEC nearly 7 million since 1970. US,

Japanese, and European patents are searchable online. Gateway services, such as Dialog, link

to numerous databases through a standard interface, for ready access. Importantly, many

organizations license diverse R&D databases for unlimited searching, e.g., universities for

their students and faculty. A major portion of the world’s R&D is literally ‘‘at our fingertips.’’

An R&D information specialist put this challenge in dramatic terms to us. A search on a

particular topic in the late 1980s yielded about a dozen pertinent papers; a similar search in

the late 1990s yielded over a hundred; she anticipates this heading toward a thousand in a

very few years. This challenges all those who would manage technology—from researchers

to industrialists—to grasp advances in their own domains and in work potentially relating to

their areas. It mandates that we all apply the emerging analytical tools to ‘‘mine’’ this

information to inform our analyses.

Our experience has elucidated the diversity of user needs for TF information in various

forms, with different time and resource constraints. However, one of the dominant themes—

and our second key challenge—is that information is usually needed fast. In a small survey

of technology professionals and managers, two of three reported they typically needed

technology information in a week or less to inform decision making [3]. In contrast, most TF

has taken months to generate. A primary objective of our development is to semiautomate

analyses so as to generate findings rapidly.

A third hard-earned lesson gained from our developmental experiences with ‘‘bibliomet-

rics’’ (counting bibliographic activity) and ‘‘text mining’’ has been that TF-related results

must be easily understood and must directly relate to a user’s perceived information needs. A

communication from Theresa Gow of DERA (UK) gives the flavor of these concerns:

However, when trying to present the analyses to ‘non-users,’ I am aware that many do have

difficulty accepting KDD ‘knowledge’ and would prefer to have experts providing the

knowledge. [KDD refers to ‘‘knowledge discovery in databases.’’]

A private sector user of VantagePoint noted the difficulty in learning to devise usable TF

findings to which her management could relate. This is counterbalanced by the realization

that if you don’t use such tools, you risk that your competition will, thereby accruing a

competitive advantage [4].

We have found the development of useful TF information extremely challenging. With

support from the National Science Foundation (NSF),1 we have worked with five partner

organizations (two companies, two government agencies, one industrial technology consor-

tium) and surveyed others to learn what information is valued. In the process, we have

identified a number of critical factors, including [5]:

� user involvement in the formulation of an inquiry and the analytical process,
� the need for ‘‘hooks’’ (vivid representations of key findings),

1 NSF—Management of Technological Innovation Program Sponsored Project (DMI-9872482), 1998–2000;

extended to 2001.
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� the nature of technological change under scrutiny (normal, transitional, transformational),
� focus just as the user prefers (proper blend of technological, contextual, and business

aspects),
� credibility (of the analyst, methods used, data employed),
� communications (right amount of information in clear and accessible form).

In sum, then, we seek to respond to these challenges—analyzing large text resources,

rapidly, to generate compelling findings—to enhance TF (including competitive technolo-

gical intelligence, technology foresight, etc.). Our approach, called technology opportunities

analysis (TOA), seeks to facilitate this process by profiling search sets of bibliographic

abstracts on technologies of interest.

2. Technology opportunities analysis (TOA)

TOA has been under development at Georgia Tech since 1990 [6,7]. The premise is that

useful information on the prospects of particular technological innovations can be extracted

from abstracts collected by searching on the given topic in suitable publication, patent,

citation, and/or project databases. That information extraction is enabled by software.

Software development was initiated in 1993 and continues under the lead of Search

Technology, in collaboration with Georgia Tech, with major support of the US Army

Tank-automotive and Armaments Command (TACOM) and the Defense Advanced Research

Projects Agency (DARPA). It is commercially available as VantagePoint since 2000 (http://

www.theVantagePoint.com).

The TOA process entails these main steps:

1. Search and retrieve text information, typically from large abstract databases.

2. Profile the resulting search set. VantagePoint applies a combination of machine learning,

statistics, and natural language processing to yield what bibliometricians call a mix of

‘‘one-dimensional’’ descriptions (lists) and ‘‘two-dimensional’’ relationships (matrices)

[8]. Profiling may focus on documents (e.g., ‘‘bucketing’’ documents into related,

manageable groups; cf., Refs. [9,10]). Or, it may focus on concepts (e.g., principal com-

ponents analysis (PCA) to group related terms as conceptual clusters; cf., Refs. [11,12]). A

third choice is a combination—seeking to link documents to concepts (e.g., relevance

scoring [13]). Conceptual distinctions and methods are discussed further elsewhere [14].

3. Extract latent relationships. VantagePoint applies iterative principal components

analyses to uncover links among terms and underlying concepts (cf., examples on the

website: http://tpac.gatech.edu [9–12,15]).

4. Represent relationships graphically. Generation of ‘‘mapping’’ and ‘‘indicators’’ are

elaborated in the following sections [16].

5. Interpret the prospects for successful technological development. This typically entails

integrating the bibliographic search set analyses with expert domain knowledge

(interviews) (cf., Ref. [11]; companion workshop paper on ‘‘ROI’’).

D. Zhu, A.L. Porter / Technological Forecasting & Social Change 69 (2002) 495–506498



We seek knowledge from a ‘‘body’’ of literature beyond that obtainable by digesting

individual pieces. We treat retrieved text as data [17] to parse text into informative units,

count those units, and uncover patterns that can speak to TF interests. Work on text mining

is extremely active. For our purposes, this draws on efforts under several labels, including

KDD (cf., www.cs.cmu.edu/~dunja/WshKDD2000.html; www.cs.biu.ac.il/~feldman/ijcai-

workshop%20cfp.html) and bibliometrics (counting of bibliographic activity—cf., sistm.

web.unsw.edu.au/conference/issi2001).

We seek empirical measures to help gauge development progress and prospects. In

particular, we focus on three sets of ‘‘innovation indicators’’ to get at life cycle status,

contextual influences (support factors), and market prospects [12,18]. A keen objective in

‘‘text mining for TF’’ [19] is to develop an automated sequence of steps that generates such

indicators rapidly (i.e., in one day). We believe such a process can dramatically improve the

ability of companies and other organizations to forecast the progress of technology to

improve their ability to manage emerging technologies

The following sections focus on two types of TOA-based knowledge representations—

technology maps and innovation indicators. They draw upon illustrative cases, based on

simple search in the INSPEC database. INSPEC is a widely available R&D publication

database abstracting some 300,000 journal articles and conference papers from select

technical domains annually. It is produced by IEE and available various ways (e.g., through

‘‘Dialog’’ or by subscription). A ‘‘nanotechnology’’ search provided 3552 abstract records. A

thorough analysis of this topic would certainly warrant more extensive review of nano-

technology R&D, as well as expert perspectives.

3. Mapping

As noted, we seek to identify and represent relationships inherent in sets of abstracts resulting

from a database search. This inductive approach does not impose groupings, but instead elicits

them from the data. We have developed a partly automated process to do so based on ‘‘co-

occurrence’’ information. Co-occurrence is based on the pattern of terms occurring together in

the records. If two terms occur together in the records more frequently than expected, there is a

presumption of relationship between them. Terms can include authorship (also organizational

affiliation, nationality) or ‘‘keywords’’ (subject index terms), or noun phrases generated from

titles or abstracts using our natural language processing (NLP) routine (cf., Refs. [18,20]).

Such relationships can be straightforward—for instance, showing which topics particular

organizations mention most frequently in their writing—the basis of Fig. 1. Relationships can

also be more subtle. PCA is a useful technique for extracting the main relationships implicit

in a data set. A PCA-based approach called latent semantic indexing (LSI; cf. Refs. [14,21])

generates conceptual indices instead of individual words to improve information retrieval.

LSI is based on co-occurrence information from large text sources, such as collections of

abstract records. Interesting issues concern the use of grouping techniques such as PCA and

LSI, but those are not central to our focus here (cf., Refs. [8–10,12,15,20])—which concerns

how to represent relationships quickly and effectively.
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Effective visualization of the basic co-occurrence and correlation matrix information

entails a sequence of analyses:

� a new two-step multidimensional scaling (MDS) algorithm,
� an improved path-erasing algorithm,
� a routine to determine and display size (relative frequency of occurrence),
� macros to create maps in VantagePoint, Microsoft Word or MS PowerPoint,
� a routine to consolidate duplicate principal components (in the mapping process),
� an algorithm to automatically name principal components,
� an algorithm to cut off principal components to just include high-loading terms (the last

three steps are needed for principal components maps; cf., Refs. [16,18]),

Our routine generates various maps, such as:

1. principal components map [represents the relationships among conceptual clusters];

2. keywords map [represents the relationships among frequently occurring subject index

terms, title phrases, or whatever terms are chosen];

3. affiliations map [represents the relationships of affiliations’ research topics, based on

terms they use in their documents—see Fig. 1];

4. authors map [analogous to affiliations map, but for individual researchers];

5. countries map [analogous to affiliations map];

6. sources (e.g., journals) map [analogous to affiliations map].

Fig. 1. Nanotechnology—affiliations map.
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Fig. 1 shows an affiliations (organizations) map for the ‘‘Nanotechnology’’ topic.

Displayed are the most prolific publishers abstracted in INSPEC for 1998. Along with the

organizational name are shown the three keywords most frequently used in its publications in

the search set. The size of a node reflects the number of publications. Positioning is

determined using our MDS and path-erasing algorithm

Maps such as Fig. 1 are built from a similarity matrix. In essence, the challenge is to reduce

n-dimensional (in this case, n equates to 40-dimensional since there are some 40 affiliations’

similarity being represented) to 2-D or 3-D. MDS is the generally favored approach to

accomplish this. In MDS, an important parameter called stress is used to control its

procedures. The process of generating a MDS map seeks the optimum location for each

element in the map by minimizing the stress. Traditionally, the ‘‘steepest descent’’ algorithm

is employed in most MDS applications (e.g., SPSS uses this). We have found that the

‘‘steepest descent’’ algorithm is not very effective in a number of text mapping cases,

especially for 3-D solutions. The algorithm can often be trapped in a local minimum of

‘‘stress space,’’ never reaching the global minimum.

We have devised a ‘‘step-by-step’’ search algorithm. This algorithm is effective at finding

the global stress minimum, although it usually consumes more CPU time than the ‘‘steepest

descent’’ algorithm. In our mapping algorithm, we bind the two ‘‘step-by-step’’ and

‘‘steepest descent’’ algorithms in the MDS iteration process. Comparison of a number of

cases shows our MDS solution to yield substantially better visual representations than other

MDS solutions.

As noted, MDS tries to represent high-dimensional spatial relations by displaying the

elements in 2-D or 3-D spaces. The resulting distortions tend to become problematic when

many elements (hence many dimensions) are involved. Therefore, we have added an

additional representational element, connecting links, based on a ‘‘path-erasing’’ algorithm.

This is built on a proximity matrix among the elements (in Fig. 1, the affiliations). Its logic is

as follows:

1. connect all elements in the proximity matrix together,

2. set a series of thresholds to erase the connecting lines one by one,

3. devise a suitable stop criterion.

Our experience is that the links are easily perceived as dominant proximity representations,

with the MDS-based location taken as secondary. The MDS axes are essentially arbitrary so

our routine provides four alternative axial perspectives for 3-D views. We find the resulting

representations superior to others in capturing the conceptual entities and visualizing them

(cf., Ref. [22]). However, we note that the representations are not singular—different

numbers of entities mapped and different views give quite different results. We are presently

conducting a series of experiments to devise preferred algorithms in terms of conceptual

clarity (e.g., how many principal components to extract from how many terms to achieve

robust results?) and visual clarity (e.g., how many organizations to include in Fig. 1?).

In viewing Fig. 1, note that commonality of interests should reflect in connections.

For instance, at the right are a group of academic departments and libraries with shared
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Silicon, Elemental semiconductors, and Surface chemistry interests (as estimated by

keyword usage in their publications). Other nanotechnology maps (principal components,

terms, authors, countries, and sources) are displayed on our website: http://tpac.gatech.edu/

~donghua/nanotechnology.

Fig. 1 is badly cluttered. VantagePoint provides a cleaner, interactive version just showing

the nodes and names, but allowing the user to ‘‘pull down’’ other desired information

concerning a node. For instance, one might want to focus on the IBM node (lower right, Fig. 1).

One could pull down short lists of the leading IBM authors, the dates of their publications, or

even read their full abstract records (http://www.theVantagePoint.com).

4. A composite indicator

The maps just discussed represent co-occurrence and correlative information gathered

within the dataset. We believe that additional insightful representations can be produced by

adding external information. Toward that end, we have explored a number of candidate

innovation indicators (Fig. 2). These empirically measure various aspects of the abstracts set

and auxiliary information to get at different aspects of technological innovation, e.g., trends in

research activity in particular domains, relative prevalence of industrial versus academic

research activity. To produce these indicators presently, the analyst manually combines the

requisite information.

We have taken an initial step to automate this process, generating an ‘‘indicator mapping’’

test program. This uses a Perl script to automatically extract information from a source

database accessed through the Georgia Tech Electronic Library (such as INSPEC). It

Fig. 2. Toward automated generation of innovation indicator and maps.
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produces an indicator—‘‘term specificity’’—that measures terms’ relative association with a

given data set.

Term specificity is calculated as the ratio of a keyword’s frequency of occurrence in the

search set to the keyword’s occurrences in the overall source database. A high ratio implies

that the term is relatively particular to that data set; a low ratio implies that the term is

relatively ‘‘universal.’’ Fig. 3 plots the logs to yield an informative two-dimensional

indicator—in this case for ‘‘Internet’’ topics. Terms that lie below the diagonal and are

very large—such as ‘‘information technology’’ or ‘‘software tools’’—can be taken as noise

terms from a semantic view. On the other hand, terms that lie above the diagonal and exhibit

high term specificity—such as ‘‘online front-ends’’ or ‘‘security of data’’—are relatively

particular to the topic under scrutiny. Fig. 3 points the analyst to these terms as strong

candidate topics to analyze in seeking to understand complementary technologies and

contextual influences on the development in question.

Rapid access to such innovation indicators should enrich the analytical process. We are

working to expand the set of automatically generated innovation indicators. We expect that

soon an analyst will be able to create a set of technology maps and innovation indicators by

just striking a few keys and making a few choices [18].

Fig. 3. Internet—indicator map, Na.m. versus size.
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5. Observations

The partially automated processes presented provide ‘‘value-added’’ knowledge from

bibliographic text mining. The family of maps allows a user to gain an intuitive feel for R&D

activity. This offers potential routes to professional and managerial action:

� facility at digging down to initiate professional networking, e.g., follow the leads in Fig.

1 that the Department of Ceramic Engineering of Yonsei University in South Korea is

publishing on silicon compounds, dielectric thin films, and sol–gel processing by

checking their website;
� perspective on the dispersion of activity on a topic of interest (e.g., medical appli-

cations of nanotechnology R&D) to consider one’s R&D priorities and commercializa-

tion prospects;
� indications of latent relationships, to identify links among topics (as per TOA principal

components maps, not shown here (cf., [9]).

The innovation indicator (Fig. 2) illustrates how conceptual understanding (the technology

innovation process) can guide creation of empirical indicators. In this case, the indicator

combines internal information from the Nanotechnology topic search results with external

database information to offer managerial insights.

Blending various forms of extracted information can significantly enhance the utility of

text mining in areas such as technology management. Indeed, there appears to be a threshold

phenomenon—if the results are rich enough, and helpful enough, then users will devote the

energy to deal with unfamiliar information sources, analyses, and representations. If not, they

prefer the familiar old ways. We are researching what factors make the real difference in

getting various technology managers to use such text mining analyses [23].

In conjunction with demonstrable utility of its results, the text mining process needs to be

readily accessible. This begins with database access licensed for unlimited usage—no

charges per record retrieved (increasingly the case in the past year or so through Internet

access and gateways, such as Dialog). Text mining for TF is facilitated by automated processes,

so that an analyst can produce desired results quickly and correctly. Such automation also

implies reproducibility, so that another analyst can replicate a representation to see how

activities in a topical domain are changing over time, or to examine another domain in a

comparable fashion. The two representations illustrated in this paper can be generated in less

than 15 minutes from initiation of a search in any of a dozen or so technical or business text

databases to which one has access (e.g., Science Citation Index,Medline,US Patents, Business

Index). To reiterate, such empirical analyses demand expert review to refine searches, note

gaps, and interpret insightfully. We have found that generating draft empirical analyses can

stimulate expert involvement by providing handy summaries and fresh perspectives.

Reproducibility of representations holds special promise in facilitating knowledge

management as organizations develop ‘‘standards,’’ i.e., familiar, widely used forms that

enhance information exchange and warehousing. For example, if an organization determined

that a particular innovation indicator were valuable, then that can become part of its standard

D. Zhu, A.L. Porter / Technological Forecasting & Social Change 69 (2002) 495–506504



analytical forms. Fig. 3 (term specificity) is one of many candidate indicators we have been

exploring. (Others are suggested in Fig. 2 and demonstrated on our website http://

tpac.gatech.edu. Look under Technology Opportunities Analysis at the ‘‘Fuel Cells’’ and

‘‘KDD’’ examples).

Text mining tools, such as those described herein, can be applied to diverse information

sources. Our emphasis lies in knowledge discovery in large, bibliographic abstract databases,

but the tools can be adapted to internal organizational databases of various types. An exciting

target is to collect topical information from a wide spectrum of websites—then filter, format,

and analyze. The National Natural Science Foundation of China recently supported a 3-year

key project for this (http://tpac.gatech.edu/~donghua/index.files/dmmmti.htm). Text mining

can help integrate across multiple information resources too. For instance, a US Office of

Naval Research research intelligence operation that stimulates cooperation between US and

foreign researchers has sought to combine (1) ONR technology priority descriptions, (2)

internal trip reports, and (3) external R&D publication database resources to help its experts

locate promising research activities.

This paper emphasizes representation of text-derived knowledge. In closing, we note that

text mining draws upon notably different approaches—NLP and computational linguistics,

machine learning, and statistics (cf., Refs. [24–26]). Numerical data mining and text mining

also employ some similar and some distinct approaches. Text mining emphases vary

somewhat between mining ill-structured sources (e.g., lengthy documents, websites) and

those addressing more structured texts (e.g., field-structured, abstract records). There truly is

exciting potential for cross-fertilization among these approaches. So also with the sorts of

representations illustrated here. We suggest that development of routines to generate particular

representations—technology maps and innovation indicators—automatically can enhance the

applicability of text mining and bibliometrics to TF. [Note that this does not mean automated

TF-expert inputs and analyst art in focusing, sifting, and interpreting such representations is

essential.] However, scripting the production of these visualizations can facilitate provision of

empirically based, vivid TF findings, in a timely manner, to inform decision making. That

could dramatically increase the utilization of TF in management of technology.
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