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Background. The brain-derived neurotrophic factor (BDNF) rs6265 (G196A; Val66Met)
single nucleotide polymorphism has been associated with BMI and obesity in distinct
populations, both adult and pediatric, with contradictory results involving either Val or
Met as the risk variant.

Aim of the Study. To determine the association between the BDNF Val66Met polymor-
phism and BMI in Mexican children and adolescents.

Methods. BDNF Val66Met genotyping by restriction fragment length polymorphism and
nutritional status characterized by their BMI-for-age z-scores (BAZ) from pediatric vol-
unteers (n 5 498) were analyzed by Fisher’s exact test association analysis. Standardized
residuals (R) were used to determine which genotype/allele had the major influence on
the significant Fisher’s exact test statistic. Odds ratios were analyzed to measure the as-
sociation between genotype and normal weight ($�2 SD ! þ 1 SD) and overweight
($ þ 1 SD, including obesity, Ow þ Ob) status with 95% confidence intervals to estimate
the precision of the effect as well as 95% credible intervals to obtain the most probable
estimate.

Results. Comparisons between GG (Val/Val), GA (Val/Met) and AA (Met/Met) geno-
types or Met homozygotes vs. Val carriers (combination of GG and GA genotypes)
showed significant differences ( p 5 0.034 and p 5 0.037, respectively) between normal
weight and the combined overweight and obese pediatric subjects. Our data showed that
children/adolescents homozygous for the A allele have increased risk of overweight
compared to the Val carriers (Bayes OR 5 4.2, 95% CI**[1.09e33.1]).

Conclusion. This is the first study showing the significant association between the BDNF
rs6265 AA (Met/Met) genotype and overweight/obesity in Mexican pediatric popula-
tion. � 2018 IMSS. Published by Elsevier Inc.
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Introduction

Obesity Epidemic

Obesity is a global increasing epidemic for both children (1)
and adults (2) that compromises human well being. The most
critical comorbidities related to adipose tissue excess range
from rheumatological conditions to type 2 diabetes mellitus,
cardiovascular disease, and increased risk of cancer (3). Ac-
cording to the World Health Organization (WHO) (4), over-
weight and obesity currently affects 1.9 billion adults and 41
million children under the age of five all around the world,
accounting as the fifth leading risk for global deaths with
at least 2.8 million adults dying each year as a result of these
conditions. Up to the past decade, developing countries such
as Mexico, China and Thailand have had the most dramatic
increase in obesity (5). Recently, it was published that
Mexico has the second prevalence of obesity in the adult
population with 22 million obese (30%) in addition to the
26 million adults with overweight, while ranking fourth in
children (6). The most recent results from the Mexican
health and nutritional survey (ENSANUT, 2012) indicate
an overall overweight (Ow) or obesity (Ob) prevalence of
28.8% in children !19 years of age (7,8). In the last
24 years, the highest prevalence was observed among chil-
dren and adolescents living in urban areas and those from
the highest socioeconomic level, while the rate of increase
was higher in the lowest socioeconomic status (8).

In general, it is assumed that obesity results from a com-
bination of genetic susceptibility, increased availability and
consumption of high-energy foods as well as a decreased
requirement and performance of physical activity as a conse-
quence of modern life styles (9). Obesity is a complex con-
dition determined by an intricate interplay of genetic and
environmental factors (10). Genetic variants are estimated
to account for a range between 40e70% of the heritability
of BMI (11,12), including single mutations as well as single
nucleotide polymorphisms (SNPs) causing from severe
impairment in appetite regulation and early-onset overweight
to slightly increased BMI or early-onset obesity (11).
BDNF and Obesity

As for genetic susceptibility, known single-gene mutations
(13,14) or syndromes (15) may explain only a small frac-
tion (|5%) of childhood-onset obesity. However, as
mentioned previously, obesity can mainly be the result of
the imbalance between caloric intake and energy expendi-
ture, so by studying the genes involved in appetite regula-
tion we will be able to unravel the essential molecular
network involved in obesity.

One such molecule that has been associated with body
weight regulation is the brain-derived neurotrophic factor
(BDNF). BDNF is a member of the neurotrophin family
of small secreted proteins with major roles in central ner-
vous system (CNS) development. Current data from
Ensembl shows that BDNF is located at locus 11p14.1, ex-
tends over approximately 67 kb, contains 12 exons with 9
functional promoters for tissue and brain-region specificity
and originates 19 transcripts by alternative splicing (16). In-
formation about the pro-BDNF proteolytic processing,
mature BDNF and its receptors p75NTR and Trkb, respec-
tively, has been thoroughly reviewed elsewhere (17).

Although it is widely expressed among several tissues
(18), BDNF is abundant in the CNS (19,20), predominantly
in the hippocampus, amygdala, cerebral cortex, and hypo-
thalamus (21e23). BDNF plays a critical role in nervous
system development and function (24,25), and particularly,
exerts an anorexigenic function in the brain (26). BDNF
molecular alterations have been implicated in conditions
affecting body weight such as eating disorders (27,28).
One of these variations affecting BDNF is the Val66Met
single nucleotide polymorphism (G196A; SNP rs6265). In
particular, the 66Met (A variant) allele is biologically rele-
vant as it alters the intracellular processing, trafficking and
activity-dependent secretion of BDNF (29,30), and has
been associated with several clinical traits such as early sei-
zures, bipolar affective disorders, obsessive-compulsive
disorders, eating disorders, BMI, and obesity (17).

As with adults (31), studies involving children and adoles-
cents attempting to examine the association between the
BDNF rs6265 polymorphism and age-and-sex specific nutri-
tional status characterized by their BMI-for-age z-scores
(BAZ) have shown contradictory results. Some of them have
found association between this SNP and childhood BAZ at
the upper tail of the BMI distribution in children with Euro-
pean ancestry (32), as well as for BMI and obesity in Chi-
nese (33e35), European American (36), and Croatian (37)
children; while others reported no association with BMI in
Spanish (38), with BAZ in Mexican children (39), and with
extreme obesity in German children and adolescents (40).

The BDNF 66Met (A allele) presents greater plausibility
of being associated with BMI increase and overweight/
obesity, as it is a functional variant that generates subcellular
translocation and activity-dependent secretion deficiencies of
BDNF which could resemble the BDNF deficiencies associ-
ated with obesity (41,42). However, several articles have
pointed to the Val66 allele (G variant) as the risk allele asso-
ciated with BMI or obesity risk (33e35,43), while others
point to the Met66 allele (A variant) (37,44,45), and even
to the heterozygous genotype AG (37,46). In example, it
has been observed in German children that 66Met carriers,
although associated with lower BMI, had an increased calo-
rie intake and reported higher carbohydrates and proteins
consumption (47), while in Chinese children carriers of the
A allele are at increased risk of obesity when moderate to
low physical activity levels are reported (45).

At present, association studies involving BDNF rs6265
and BMI in children and adolescents are still scarce and con-
flicting. Therefore, the aim of this study was to analyze the
relationship and determine the association between the
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BDNF Val66Met polymorphism and nutritional status char-
acterized by their BMI-for-age z-scores (BAZ) in Mexican
pediatric subjects.
Material and Methods

Subject Recruitment and Sample Collection

Samples were obtained from Mexican pediatric volunteers
(n 5 498), 282 girls (56.6%) and 216 boys (43.4%) be-
tween 5e17 years old (312 overweight children and 186
normal weight controls) without any metabolic condition
reported. This study was performed at Unidad de Inves-
tigaci�on M�edica en Gen�etica Humana (UIMGH), Hospital
de Pediatr�ıa, at Centro M�edico Nacional Siglo XXI from
Instituto Mexicano del Seguro Social (CMN Siglo XXI,
IMSS). Our protocol was reviewed and approved by the
Ethical Committee of IMSS and assigned with the registry
number R-2009-3603-9; both children and parents provided
written informed consent for participation in the study
before any study-related procedures were performed.

Biological Parameters

Nutritional status categories for children and teenagers
were diagnosed by calculating both their individual BMI
as weight(kg)/height2(m2) as well as their BMI-for-age
z-scores for either girls or boys (BAZ), following WHO’s
growth reference data for 5e19 years (48) and employing
the WHO AnthroPlus software (WHO 2007 R macro
package) (49). Participants were then classified in two main
BAZ categories: normal weight (O �2 SD ! þ 1 SD;
n 5 186) and overweight group, including overweight
and obesity ($ þ 1 SD; n 5 312). Only BAZ values be-
tween �3 and þ 5 z-scores were considered valid and
included in this analysis (7).

Genotyping

Five milliliters of blood from each fasting participant were
collected by a standard method in an EDTA tube. For the
DNA preparation a commercial kit (Illustra blood genomic-
Prep Mini Spin Kit, GE Healthcare) was used.

The BDNF Val66Met SNP rs6265 genotype (G196A) was
obtained, as previously described (50), using a polymerase
chain reaction-restriction fragment length polymorphism
(PCR-RFLP) method with forward (50-ACTCTGGA-
GAGCGTGAAT-30) and reverse (50-ATACTGTCACAC
ACGCTC-30) primers, and further digestion of the PCR
product with NlaIII enzyme (Cat. No. R0125S, New England
Biolabs). From the five possible restriction fragments for this
Val66Met amplicon, the genotype was identified by the size
and distribution of three bands: 243 bp for the G variant
(Val), 168 bp and 75 bp bands for the A variant (Met), and
these three bands for GA heterozygotes (Val/Met), on
2.5% (w/v) agarose gel electrophoresis. A random selection
of 15 samples was performed for validation with genomic
DNA sequencing.
Statistical Analysis

The data analysis was carried out with free and commercial
software, R and SPSS, respectively as well as online tools
for statistical computation and visualization (51,52). Base-
line characteristics for quantitative variables are presented
as arithmetic mean and standard deviation (mean � SD),
and evaluated using one-way analysis of variance
(ANOVA), while simple frequencies (n) and percentages
(%) were used for qualitative variables.

Allele and genotypic frequencies were analyzed for
compliance with c2 Hardy-Weinberg equilibrium (HWE)
with an online calculator for biallelic markers that includes
an analysis for ascertainment bias for dominant/recessive
models due to biological or technical causes (52) for both
the whole pediatric sample as well as for each of the two
BAZ categories.

To evaluate the possible association between the BDNF
rs6265 polymorphism and BAZ nutritional status, genotype
frequencies of the pediatric population were compared
against the two main nutritional categories: normal weight
and overweight, including obesity. To determine if there
were significant differences in the frequency of occurrence
for each genotype: GG (Val/Val), GA (Val/Met), and AA
(Met/Met) or allele (Val or Met) in a particular nutritional
group, we performed c2 statistics and Fisher’s exact test.
Standardized residuals (R) were obtained as a measure of
the strength of the difference between observed and ex-
pected values to determine how significant the frequencies
are to the c2 value and which frequencies had the major in-
fluence on the significant c2 test statistic; positive or nega-
tive standardized residuals indicate that there are more or
fewer genotype counts (or frequencies) than expected,
respectively. Alternatively, the AA (Met/Met) and GA
(Val/Met) groups were combined into Met carriers and
compared against the homozygous GG group (Val homozy-
gotes). Both the HWE and the frequency of each genotype
according to their classification into a BAZ group were
plotted in de Finetti diagrams to visualize the proportions
and possible significant deviations from HWE of the bi-
allelic marker as implemented in the program DeFinetti
(53) as well as to explore the clustering trends between ge-
notypes and BAZ categories (54).

To establish the magnitude of the association between
Val66Met genotypes and nutritional groups, we performed
logistic regression analysis considering genotypes or alleles
as independent variables and BAZ categories as dependent
variables comparing Normal weight vs. Overweight and
Obesity combined (Ow þ Ob). Odds ratios (ORs) with
95% confidence intervals (CI 95%) were obtained for pre-
cision. All results were considered statistically significant
when two-tailed Fisher’s exact test p-value was !0.05.
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A Bayesian analysis was performed with JASP using
default priors (55) to determine the relative plausibility
of the data under the null hypothesis versus the alternative
through the Bayes factor (BF), when comparing the null
hypothesis (H0) of no association between Val66Met ge-
notypes and BAZ, as well as the alternative hypothesis
(H1) as the association between them. In addition, the
Bayesian OR with a 95% credible interval (CI**) was
obtained.
Results

We recruited 498 Mexican children and adolescents
attending the Unidad de Investigaci�on M�edica en Nutrici�on
from the Hospital de Pediatr�ıa at CMN Siglo XXI, IMSS
(Mexico City). The phenotypic characteristics and BDNF
Val66Met genotypes of the pediatric participants, 282 girls
(56.6%) and 216 boys (43.4%), ranging between 5 and
17 years (mean age: 12.2 � 2.02 years) are shown in
Table 1. According to the BAZ categories, 37.3% of the
participants had normal weight and 62.6% were overweight
(corresponding to 26.1% overweight and 36.5% obesity).
The BDNF Val66Met allele frequencies were 0.85 and
0.15 for G (Val) and A (Met), respectively, while the geno-
type frequencies were 71.7% for GG (Val/Val, n 5 357),
25.9% for GA (Val/Met, n 5 129), and 2.4% for AA
(Met/Met, n 5 12). Hardy-Weinberg equilibrium (HWE)
criteria under a model of ascertainment was met
(c2 5 0.007; df 5 1; p 5 0.93), indicating no deviation
from the Hardy-Weinberg equilibrium in this study, and that
our data had no gain/losses bias in the genotype counts.
There were no differences in genotype distribution between
female and male subjects (Table 1). Our results are similar
to those reported previously for other pediatric populations
(56e58), and as expected under HWE.
Table 1. Baseline phenotypes and BDNF Val66Met (G196A)

genotypes of Mexican children and adolescents (n 5 498) ranging

between 5e17 years

Phenotypes Participants Frequency n (%)

Age (mean � SD

years)

12.2 � 2.02 498 (100)

Sex Female (girls) 282 (56.6)

Male (boys) 216 (43.4)

Nutritional Status

(BAZ)

Normal weight 186 (37.3)

Overweight 130 (26.1)

Obesity 182 (36.5)

(%) within genderb

Genotype Populationa Female Male

BDNF Val66Met GG (Val/Val) 357 (71.7) 209 (74.1) 148 (68.5)

GA (Val/Met) 129 (25.9) 67 (23.8) 62 (28.7)

AA (Met/Met) 12 (2.4) 6 (2.1) 6 (2.8)

BAZ, BMI-for-age z-scores.
aHWE: c2 5 0.007; df 5 1; p 5 0.93.
bc2 5 1.9; df 5 2; p 5 0.38.
Figure 1 illustrates the de Finetti distributions (53,54) of
the BDNF rs6265 polymorphism according to (A) the test
for deviation from HWE of both the normal weight and
overweight group (HWE: p 5 0.053 and p 5 0.124 with
Fisher’s exact test, respectively), as well as (B) the fre-
quency and location of the pediatric sample according to
both their genotypes and BAZ classification. These visual-
izations showed that not only the whole sample but each of
the two main BAZ groups, normal weight and overweight
group, are in HWE, but also that there is a clear trend to-
wards clustering closer to the overweight or obesity groups
when bearing the AA genotype.

The aim of this study was to determine a possible asso-
ciation between BDNF rs6265 and nutritional status. We
observed significant differences between the frequencies
of the BDNF GG (Val/Val), GA (Val/Met) and AA (Met/
Met) genotypes ( p 5 0.034), as well as between the
Met homozygotes in comparison to the combined Val/
Val and Val/Met genotypes grouped into the Val carriers
( p 5 0.037) depending on the normal weight or over-
weight status (Table 2). The frequency of the Val and
Met alleles or the Met carriers (the combined Val/Met
and Met/Met genotypes in comparison to the homozygous
Val/Val genotype) did not show statistical differences.
Although the absolute standardized residuals (R) values
were not $1.96 which would indicate that the frequency
of that group is significantly contributing to the difference
between proportions, both the lowest and highest R values
were detected for the AA genotype (R 5 �1.6 and þ 1.3)
in the normal weight and overweight group (Ow þ Ob),
respectively, when compared against GG and GA. Similar
results were obtained for the lowest and highest R values
from Met homozygotes (R 5 �1.4 and 1.1) when
compared against the Val carriers in the normal weight
and Ow þ Ob group, respectively. These results indicate
that the significant difference between proportions is
mainly the result of the lower and higher frequency of
the AA (Met/Met) genotype among subjects in the normal
weight (0.5%) and overweight group (3.5%), respectively
(Table 2).

Given the contradictory results reported for the BDNF
rs6265 SNP in pediatric as well as adult populations in
which either variant has been associated with BMI or
Ow þ Ob-related conditions, we explored several genotype
combinations considering either the A or G variant as the
risk allele to obtain the directions of the effects. Our results
showed that when considering the A variant as the risk
allele, the AA (Met/Met) genotype increased more than
six times the risk of being classified within the overweight
group (Ow þ Ob) when compared against each genotype:
GG (6.22, p 5 0.039), AG (8.43, p 5 0.015), or both
GA þ GG (6.76, p 5 0.028). On the other hand, when
considering the G variant as the risk allele, several combi-
nations (GG vs AA, GA vs AA and GG þ GA vs AA)
showed that the common variant G had a significant



Figure 1. De Finetti ternary diagrams for Mexican pediatric population (n 5 498) of BDNF rs6265. These visualizations represent both the Hardy-Weinberg

equilibrium of the bi-allelic marker in the pediatric population as well as their clustering into normal weight (O �2 SD ! þ1 SD), overweight ($ þ1 SD

!þ2 SD) and obesity ($þ2 SD) phenotypes according to their BDNF rs6265 genotype. (A) Ternary diagram for the single nucleotide polymorphism with a

Hardy-Weinberg parabola for normal weight (black dotted line, p 5 0.053) and overweight group ($ þ1 SD; blue dotted line, p 5 0.124) Mexican children

(https://ihg.gsf.de/cgibin/hw/finetti2.pl). (B) Ternary plot visualizing the location and frequency of genotypes in relation tonutritional status classified by

WHO’s BAZ cut-offs. The genotypes GG (n 5 357), GA (n 5 129) and AA (n 5 12) are shown with green and orange circles, and red

dot, respectively, in proportion with the observed counts per BAZ category. (A color figure can be found in the online version of this article.)
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protective effect against being classified in the overweight
(Ow þ Ob) group (Figure 2A).

Further, to estimate a more credible OR we performed a
Bayesian analysis. Results of the Bayesian analysis are only
shown for the association between AA vs GG þ GA when
compared against the BAZ groups (Figure 2B). First, to
quantify the evidence provided by the observed data in
favor of one hypothesis over the other, we calculated the
Bayes factor (BF), where values O 1 indicate evidence in
Table 2. The BDNF genotype and allele count and frequencies (%) in

Mexican children and adolescents (n 5 498) subdivided into two main

BAZ groups, normal weight ($�2 !þ1 SD) and overweight group

($ þ1 SD, including overweight and obesity)

BDNF Val66Met

genotype

Normal

weight n (%)

Overweight

groupa n (%)

GG (Val/Val) 129 (69.4) 228 (73.1)

GA (Val/Met) 56 (30.1) 73 (23.4)

AA (Met/Met) 1 (0.5) 11 (3.5)

Fisher’s exact test p 5 0.034

R5 �1.6 and þ1.3 for AA genotype in the normal and overweight groups,

respectively

Val allele 314 (84.4) 529 (84.8)

Met allele 58 (15.6) 95 (15.2)

Fisher’s exact test p 5 0.93

Val carriers 185 (99.5) 301 (96.5)

Met homozygotes 1 (0.5) 11 (3.5)

Fisher’s exact test p 5 0.037

R 5 �1.4 and þ1.1 for Met homozygotes in the normal and overweight

groups, respectively

Met carriers 57 (30.6) 84 (26.9)

Val homozygotes 129 (69.4) 228 (73.1)

Fisher’s exact test p 5 0.411

a$ þ 1 SD, including overweight and obese children; R 5 absolute value

of the standardized residual.
favor of the alternative hypothesis (H1: the probability of
AA (Met/Met) genotype is higher in the overweight group).
The Bayes factor for the alternative hypothesis (BF10) was
3.151 suggesting that these data are 3.151 more likely to be
observed under the alternative hypothesis (H1). The
Bayesian OR for this association was 4.22, indicating the
most probable associated risk value for Ow þ Ob with a
95% credible interval of 1.09e33.1.
Discussion

To our knowledge, this is the first study in Mexican pediat-
ric population showing a significant association between
the BDNF Val66Met (rs6265) Met homozygous and nutri-
tional status characterized by their BMI-for-age z-scores
(BAZ).

According to an update of our previous bibliometric
analysis for BDNF Val66Met in three main databases:
Web of Science, Pubmed and Scopus (59), a previous study
in healthy Mexican school-aged children between
6e15 years of age recruited from a summer camp (60)
did not find association between this SNP and BMI
for-age z-scores (39); however, the authors analyzed this
association as a linear function of BAZ, instead of
considering nutritional status as well established over-
weight and obesity categories. In addition, they considered
the G variant as the risk allele and only reported the risk
allele frequency, but not the frequency of the AA (Met/Met)
genotype, which could have allowed a comparison between
our samples. At least across 58 global populations, the
derived Met allele exhibits a wide allelic distribution
variability ranging from 0e72% (61); in our sample, this
frequency is 15.2%.

https://ihg.gsf.de/cgibin/hw/finetti2.pl


Figure 2. Risk estimation between BDNF rs6265 genotypes and BAZ categories in Mexican pediatric population. The image shows (A) a forest plot

visualizing the magnitude and precision of the association of the effect of either allele A or G at rs6265 in BDNF on overweight and obesity combined,

and (B) the 95% highest density interval for the association between AA vs GG þ GA when compared against the BAZ groups, where every point inside

the area under the curve between the limits has higher credibility (probability density) than any point outside the interval. The piechart visualizes the Bayes

factor where the red predominance over white indicate evidence for the alternative hypothesis. ORs and p-values in bold indicate statistical significance by

two-tailed Fisher’s exact test. Both X-axis represents values at Log10 scale. BAZ, BMI for-age-and-sex z-scores; OR, odds ratio; CI 95%, 95% confidence

interval; LCL, lower confidence (or credible) interval; UCL, upper confidence (or credible) interval; Ow, overweight; Ob; obesity; BF10, Bayes factor for the

alternative hypothesis; H0, null hypothesis; H1, alternative hypothesis; HDI, highest density interval; 95% CI**, 95% credible interval. (A color figure can be

found in the online version of this article.)
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Given the low frequency of the AA (Met/Met) genotype
in our sample, employing BAZ categories resulted in the
increase of statistical power, allowing us to detect its
association with overweight and obesity. Indeed, WHO’s
standards were chosen since they depict normal (non-obese)
childhood growth and can be used to assess children,
regardless of ethnicity, socioeconomic status and type of
feeding. In addition, it has been reported as a more sensitive
criterion to identify overweight and obesity than CDC and
IOTF recommendations since they derived from more recent
data in which the BMI distribution of the reference
populations has shifted towards the right due to an increase
in BMI (62e64). Not only the frequency of the AA
(Met/Met) genotype in our population is similar to that
observed in Croatian children (37), 2.4 and 3%, respectively,
but also its association with overweight/obesity. Although
difficult to explain, discrepancies observed in the literature
about the risk allele associated with BMI, overweight, and
obesity may be the result of differences in the clinical
criteria for patients selection, allele distribution between
populations, strategies for data processing and analysis
(ie. BMI-for-age or nutritional status, national or
international BAZ cut-offs), gene-environment factors, and
the effect of other genes. For example, it has been shown that
the effect of several SNPs associated with BMI, overweight
and obesity in Europeans does not replicate completely in
Mexican children, implying that distinct population genetic
susceptibility variations may account for these outcomes
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(65), in the context of particular gene-environment or gene-
diet interactions which would require further exploration.

From the beginning, we hypothesized that the associa-
tion between the AA genotype with the overweight BAZ
category was a more plausible outcome given the clear
functional effects of this SNP, in which in an homozygous
state the molecular function would be completely altered,
while compensated in an heterozygous state. As mentioned
previously, the 66Met variant reduces the expression of
BDNF, which inhibits excessive calorie uptake and
promotes energy expenditure; then, the 66Met variant
impairs the normal function of these systems with direct
impact in either BMI or Ow þ Ob-related outcomes (30).
We tested this hypothesis by considering either the A or
G allele as the risk variant. As biologically expected, we
observed that the significant risk of being overweight
(Ow þ Ob) was observed only in participants bearing the
AA (Met/Met) genotype (Figure 3). It is worth mention that
the only children with the AA genotype classified in the
normal weight group had a BMI-for age z-score 5 0.96,
which is almost in the cut-off point for the overweight
group ($ þ 1 SD) classification. In contrast, either one
or two copies of the Val allele, showed a significant
protective effect against overweight (Figure 2A).

Our results are partially in line with recent studies that
have shown a significant association between obesity
(BMI percentile) for Caucasian children and adolescents
of the same ethnic (Croatian) background and one or two
Met alleles of the BDNF Val66Met polymorphism, each
of them increasing their BMI, and with a significant risk
for obesity in children bearing the Val/Met genotype (37).
However, no significant differences in the distribution of
the BDNF Met carriers compared to Val homozygotes were
observed for adults from the same ethnic (Croatian)
Figure 3. BDNF Val66Met is a genetic risk factor for overweight and obesity in

Val carriers (GG and GA genotypes) increased four times (Bayes OR 5 4.2, 95

ration; CI**, credible interval. (A color figure can be found in the online versio
background for normal weight, overweight and obese
categories, neither gain or changes during a 35 years of
follow-up with three time check-up periods (43.4 � 4.4,
53.4 � 4.5, and 77.2 � 4.5 years; mean age in
years � SD for each period) (66). A recent systematic
review and meta-analysis assessing the association of
BDNF polymorphisms and BMI, as a representative index
of overweight and obesity, has concluded that the rs6265
SNP can be considered as a genetic determinant of obesity
(31). Nevertheless, a previous analysis from data of the
Brain Resource International Database showed trends
towards a lower BMI in adults from 18e82 years bearing
the Met/Met genotype compared to the Val/Val and Val/Met
genotypes as well as when comparing the Met homozygotes
to the Val carriers (67).

According to these observations, it results intriguing the
possibility that subjects with Met/Met genotype may shift
their BMI according to their life span, in which young
Met/Met subjects have an increased probability of showing
a higher BAZ which will be attenuated in adulthood until
shifting towards a lower BMI in old age.

Factors and mechanisms involved in this Met
homozygous-BMI shift still remain to be elucidated. In
fact, follow-up studies considering changing eating
patterns, physical activity or sedentary behaviors, differen-
tial mechanisms and distinct combination of factors across
lifespan regulating food intake and caloric expenditure
between children, adults, and elderly subjects from distinct
populations must be considered. Clearly, brain-regulating
hormonal signals like leptin and insulin (68), with
physiological effects particularly in the hippocampus,
amygdala, cerebral cortex, and hypothalamus, brain regions
with abundant BDNF expression (20e22), some of them
involved in weight regulation and food intake via its actions
Mexican children and adolescents. The AA (Met/Met) genotype relative to

% CI**[1.09e33.1]) the risk of overweight, including obesity. OR, odds

n of this article.)
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on specific hypothalamic nuclei (69), should be considered
in further molecular combinatorial analysis, as the
homeostatic imbalance of these nutritional signals has been
associated to weight loss in lean older adults (70).
Conclusion

Finally, we have confirmed BDNF Val66Met, particularly
the AA genotype (Met variant), as a genetic risk factor
for nutritional BAZ status in Mexican children and
adolescents. However, studies on this polymorphism in
Mexican pediatric population should be replicated in a
larger sample and include the variables mentioned above
that may be involved in the association discrepancies
reported among populations. Further research should be
encouraged towards BDNF and functional variants such
as Val66Met associated with energy metabolism, food
regulation and BMI, particularly in countries like Mexico
widely affected by this health-threatening condition.
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