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1. Introduction

The theoretical literature in international economics and economic growth over
the last decade has given considerable attention to the potential role of technologi-
cal externalities in generating endogenous growth and determining the pattern of
trade. In a number of contexts, it has been shown that assuming externalities of
this type can have dramatic effects on the equilibrium pattern of trade and
production. In these models, there are multiple equilibria, and comparative
advantage can itself be endogenously determined.

The sort of technological externality on which this paper focuses is most closely
related to the theoretical contributions of Grossman and Helpman, particularly the
model presented in Grossman and Helpman (1990). These authors have developed
growth models in which the number of products (and/or product quality) expands
over time due to the innovative activity of profit-seeking firms. In these models,
decreasing returns to innovation never sets in because the innovative activities of
firms not only lead to new products (whose benefits the firms can appropriate), but
also contribute to a general stock of knowledge upon which subsequent innovators
can build. Over time, the foundation of general knowledge grows, allowing more
differentiated products to be introduced without a continual increase in the
research resources that must be expended. This is referred to as ‘‘knowledge
spillovers,’’ so-called because the benefit of innovation accrues not only to the
innovator, but ‘‘spills over’’ to other firms by raising the level of knowledge upon
which new innovations can be based. Thus, knowledge spillovers serve as the

1‘‘engine of endogenous economic growth.’’
In their work, Grossman and Helpman have demonstrated that even in a model

in which innovation is fully endogenous, trade can still be determined by factor
endowments if new ideas flow as quickly to other nations as they flow within
nations. On the other hand, if knowledge spillovers are purely intranational, then
trade patterns can exhibit path dependence. For example, a country which acquires
a temporary advantage in R&D-intensive sectors can build on that advantage,
eventually developing a position of enduring comparative advantage. Once this
country’s firms begin to innovate at a faster rate than those outside the country,
these new innovations become the foundation upon which more ideas can be
created. Because this ‘‘foundation’’ is higher than it is elsewhere, firms in this
country have a powerful advantage over foreign rivals — they are likely to
continue to generate more ideas than their foreign rivals, further enlarging and
broadening the national ‘‘stock’’ of knowledge from which they can draw and
further cementing their technological advantage.

Even in models in which any nonzero level of international knowledge spillover
rules out multiple equilibria in the long run steady-state equilibrium, it is still true

1The phrase ‘‘engine of endogenous growth’’ comes from Grossman and Helpman (1995).
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that the extent of the differential in international and intranational spillovers will
affect both the speed and the nature of the convergence to the steady-state. As
Grossman and Helpman (1995) put it, ‘‘an accident of history’’ or a temporary
policy that provides one country with a temporary advantage in the R&D-intensive
sector ‘‘can have long-lasting implications for trade when there is a national

2component to the knowledge stock.’’
This paper seeks to measure the extent of this ‘‘national component’’ of the

knowledge stock. Following the spirit of these models, I derive an empirical
framework that allows us to estimate the relationship of new increments to the
general knowledge stock, or ‘‘flows’’ of spillovers, from foreign and domestic
sources, to the innovative performance of firms in Japan and the United States.
The paper then obtains estimates of the impact of ‘‘international’’ and ‘‘intrana-
tional’’ knowledge spillovers on innovation and technological change at the firm
level, using previously unexploited panel data from the U.S. and Japan. I find
robust evidence that knowledge spillovers are primarily an intranational phenom-
enon. The implications of this finding for the theoretical literature and for policy
are discussed in the conclusion.

2. Previous literature

An alternative mechanism for endogenous growth and endogenous comparative
advantage is some form of ‘‘learning-by-doing.’’ Taking a focus very similar in
spirit to that of the current paper, Irwin and Klenow (1994) examine the relative
strength of intranational and international learning-by-doing spillovers in the
Dynamic Random Access Memory Chip industry. Noting that considerable
anecdotal and empirical evidence suggests that learning-by-doing is an important
feature of production in this industry, Irwin and Klenow proceed to examine the
extent to which learning-by-doing by one firm ‘‘spills over’’ to other producers
within the same country and the extent to which it spills over internationally.
Unfortunately, the data limitations they confront in their study are substantial.
Because they lack any direct measure of firms’ marginal cost, the dependent
variable in their regressions, they are forced to impute it by assuming that the
global DRAM industry is at all times characterized by strict Cournot competition
in quantities with no capacity constraints. Irwin and Klenow also lack any
firm-level data on R&D. They are thus unable to assess the degree to which R&D
contributes to marginal cost reduction or product innovation in this industry.

In one of the most interesting and well-done recent papers on a related topic,
Jonathan Eaton and Sam Kortum derive a formal model of technology diffusion,
which is then parameterized around data on country-level international ‘‘cross-

2These quotes are taken from Grossman and Helpman (1995).
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patenting’’ in 8 OECD countries. However, the authors quite explicitly see their
work as a measurement of technology transfer or diffusion, rather than knowledge
spillovers. There is little focus on the extent to which knowledge which diffuses
abroad begats further innovation abroad.

There is also a set of papers in the literature which have sought to measure
‘‘R&D spillovers.’’ Coe and Helpman (1995), Coe et al. (1995), and Bernstein and
Mohnen (1998) have done so, using country-level data to assess the statistical
relationship between aggregate R&D capital accumulation abroad and own country

3growth in total factor productivity. Keller (1998) has taken a similar approach
using approximately 2-digit industry data from 8 countries. In the influential paper
by Coe and Helpman and much subsequent work, an explicit emphasis is placed
on the role of intermediate inputs as conduits of spillovers. Information on the flow
of goods, either between countries, between industrial sectors, or between
countries and sectors, is used to predict the flow of knowledge. However, the flow

4of knowledge does not necessarily closely correspond to the flow of goods.
Wolfgang Keller’s (1998) paper, ‘‘Are International R&D Spillovers Trade-
Related?’’ provides econometric evidence on the potential dangers of relying too

5heavily on flows of goods to infer flows of knowledge spillovers.
It is useful here to invoke the distinction made by Griliches (1992) between

‘‘pecuniary’’ spillovers and knowledge spillovers. When an upstream firm or
industry, through its R&D efforts, produces a higher quality good (or a larger
range of specialized goods) which is then utilized by a downstream industry or
firm, a pecuniary external can be said to have occurred if the upstream innovator is
unable to appropriate all of the surplus from this invention. In practice, competi-
tive pressures and the impossibility of perfect price discrimination even in the
absence of strong competition will insure that some surplus ‘‘leaks’’ downstream.
However, unless that downstream user is able to reverse engineer the technology
embodied in this newly improved product, and use that knowledge to further its
own inventive activity, one cannot say that a ‘‘knowledge spillover’’ has taken
place. One can obtain substantial productive gains (in the sense of cost reduction)
from the use of an improved input, but this can be a static gain analogous to the
benefit to producers when energy prices decline. The ‘‘engine of endogenous
growth’’ is not operative in such a case.

3Using a methodology similar to that of Bernstein and Mohnen (1998), Bernstein has estimated
international spillovers for several other country pairs and groups of countries. This methodology
utilizes a cost function approach rather than a production function approach.

4To cite a trivial but illustrative example, I purchase much more on an annual basis from my
landlord, my mechanic, and my physician than from my fellow economists. However, these
transactions have taught me little about real estate, medicine, or auto repair.

5Using the Coe–Helpman data set, Keller creates ‘‘random’’ measures of bilateral trade by which he
weights the ‘‘foreign’’ spillover term. The estimated output elasticity of this ‘‘randomly’’ weighted
spillover term is often higher than that of the actual bilateral trade-weighted spillover term used by Coe
and Helpman.
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There is also a practical problem with econometric work at the level of
aggregation used in these papers. Within countries and even within 2-digit
industries, there is considerable technological heterogeneity. This requires us to be
careful in measuring spillovers. For instance, a maker of industrial solvents is
unlikely to directly benefit from the research of pharmaceuticals companies on
psychoactive drugs, even though both are in the ‘‘chemical’’ industry. If we find
no relationship between the productivity of our industrial solvent manufacturer and
research and development by the pharmaceuticals manufacturer, that does not
mean there are no knowledge spillovers. On the other hand, if we find a
relationship, and these authors generally do, it is difficult to give it a causal

6interpretation. We are more likely to be observing common demand or input price
7shocks or a common time trend rather than actual knowledge spillovers.

Separating the ‘‘signal’’ of real knowledge spillovers from the ‘‘noise’’ of
potentially spurious correlation requires a measure of technological proximity by
which to weight the R&D, domestic and foreign, which is done external to the
firm. Obtaining such a measure requires the use of data at the level of the producer
which provides a rich description of the R&D activities of individual firms and the
distribution of that effort across different technological fields. Fortunately, such
data exist and are exploited in this paper.

In concluding this section, I note that a number of researchers have recently
taken alternative approaches to the measurement of knowledge spillovers. Adam
Jaffe and a number of co-authors have examined knowledge spillovers through the

8econometric analysis of patent citations in U.S. patent data. These researchers
have generally found that innovators in the same country have a much higher
propensity to cite one another than would be expected given the distribution of
research resources across countries, fields, and time. Narin (1995) has found
similar evidence of primarily intranational knowledge spillovers in his bibliometric
studies of citations in the academic literature of the biological sciences. Finally,
Goto and Nagata (1997) directly surveyed R&D managers in Japan and the U.S.

6Working with aggregate data does not necessarily bias one toward not finding a significant result.
Recent work by Funk (1998) demonstrates that the aggregate data used by Coe and Helpman to obtain
fairly large and statistically significant estimates of spillover effects are non-stationary; that is, they
contain a unit root. The use of standard linear regression techniques with such data creates standard
errors that are biased downwards. Using recently developed techniques for panel data analysis in the
presence of unit roots, Funk re-estimates the regressions of Coe and Helpman, finding no statistically
significant evidence of international R&D spillovers.

7This general problem is exacerbated by the way R&D data is collected in some countries. In the
U.S., R&D is collected at the firm level and assigned to the industry which the firm identifies as its
primary industry. However, most of the private sector R&D in the U.S. is done by large firms that span
several 3-digit and even 2-digit sectors. Working at the industry level can lead to what F.M. Scherer has
referred to as ‘‘mismeasurement spillovers’’ — correlations resulting from the misclassification of
R&D data at the industry level.

8See Jaffe et al. (1993) and Jaffe and Trajtenberg (1996).
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concerning where they perceived their ‘‘spillovers’’ to be coming from. The survey
responses indicate that managers learn much more from other domestic firms than
from foreign-based ones. Taken together, these results suggest that knowledge
spillovers have a substantial ‘‘intranational’’ component. My empirical results will
support this view.

3. Empirical methodology

This paper builds on the methodologies suggested by the late Zvi Griliches
(1979) and first implemented by Jaffe (1986). I note that this description of my
methodology borrows heavily from Branstetter (1996) and overlaps substantially
with Branstetter (2000a) and Branstetter (2000b). The typical firm conducts R&D
in a number of technological fields simultaneously. We can construct a measure of
a firm’s location in ‘technology space’ by measuring the distribution of its R&D
effort across various technological fields. Let a firm’s R&D program be described
by the vector F, where

F 5 ( f ? ? ? f ) (1)i i k

and where the k elements of F represent the firm’s research resources and
9expertise in the kth technological area. We can infer from the number of patents

taken out in different technological areas what the distribution of R&D investment
and technological expertise across different technical fields has been. In other
words, by counting the number of patents held by a firm in a narrowly defined
technological field, we can obtain a quantitative measure of the firm’s level of

10technological expertise in that field.
Of course, a firm can change its position in technology space by building

technological expertise in new areas, but the ‘‘adjustment costs’’ associated with
this kind of change are likely to be high and such change is likely to be time
consuming. I therefore assume that a firm’s position in technology space is
effectively fixed in the short term. Based on this assumption, I calculate for each
firm in my sample a single location vector based on its patenting behavior over the

9The k areas represent technological areas (based on the technology classification scheme of the U.S.
patent office) rather than industry classifications. We do control for industry effects elsewhere, but here
we aim to measure technological proximity rather than proximity in a ‘‘product market’’ sense.

10Obviously, advances in some technological fields are more easily codified into and protected by
patents than advances in others. However, the F vector can still function as a reasonable measure of
‘‘relative’’ position in technology space as long as the ‘‘ease of codification’’ varies across fields in a
common way across firms.
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entire sample period. By construction, I am assuming that firms remain in that
position for the duration of my sample period.

Griliches and Jaffe have reasoned that ‘‘R&D spillovers’’ between firms should
be proportional to the similarity and intensity of their research programs. We can
measure the ‘‘technological proximity’’ between two firms by measuring the
degree of similarity in their patent portfolios. To be more precise, the ‘‘distance’’
in ‘‘technology space’’ between two firms i and j can be approximated by Tij

where T is the uncentered correlation coefficient of the F vectors of the twoij

firms, or

9F Fi j
]]]]]T 5 (2)ij 1 / 29 9[(F F )(F F )]i i j j

The total potential pool of intranational R&D spillovers for a firm can be proxied
by calculating the weighted sum of the R&D performed by all other firms with the
‘‘similarity coefficients’’ for each pair of firms, T , used as weights. Thus, theij

potential intranational, or ‘‘domestic’’ spillover pool for the ith firm is K , wheredit

K isdit

K 5OT R (3)dit ij jt
i±j

Here R is the R&D spending of the jth firm ( j not equal to i) in the tth year andjt

T is the ‘‘similarity coefficient.’’ Recall that the T s are time-invariant, byij ij

construction, but K varies over time because the R&D spending of the otherdit

domestically-based firms is changing over time.
In the same way, we can calculate the potential international, or ‘‘foreign,’’

spillover pool as

K 5OT R (4)f it ij jt
i±j

Where R represents the R&D spending of individual firms based in a foreignjt

country, again weighted by the T ’s. If we postulate that innovation at the firmij

level is a function of own R&D and external knowledge, then we can let the
‘‘innovation production function’’ for the ith firm be

b g g1 2N 5 K K F (5)it it dit f it it

where

Od D ´c ic tiF 5 e e (6)cit
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Here the d ’s can be thought of as exogenous differences in ‘‘technological
opportunity’’ across c different industries.

Taking the logs of both sides of (5) yields the following log-linear equation

n 5 br 1 g k 1 g k 1Od D 1 ´ (7)it it 1 dit 2 f it c ic it
c

In (7), n is innovation, r is the firm’s own R&D investment, k is the domesticit it dit

spillover pool, k is the international spillover pool, the D’s are dummy variablesf it

to control for differences in technological opportunity across industries (indicated
by the subscript c), and ´ is an error term. In this specification, the g coefficients
are interpreted as measuring the ‘‘innovative output elasticity’’ of our domestic
and international spillover pools.

One might suppose that external R&D only enters into the knowledge
production function with a long and variable lag. However, empirical research
suggests that the time required for new innovation to ‘‘leak out’’ is quite short.
Mansfield (1985) finds that 70% of new product innovations ‘‘leak out’’ within

11one year and only 17% take more than 18 months. Recent survey evidence
obtained by Cohen et al. (1998) suggests that some 71% of Japanese firms and
69% of U.S. firms receive useful information about the R&D activities of their
competitors on a monthly basis.

There is an immediate practical challenge to estimating an equation like (7):
there are no direct measures of innovation. In order to operationalize (7), we
assume that some fraction of new knowledge is patented, such that the number of
new patents generated by the ith firm is an exponential function of its new
knowledge,

Oa D jc ic iP 5 e e N (8)cit it

If this assumption is approximately correct, then the production of new knowledge
12can be proxied by examining the generation of new patents. We take the logs of

both sides of (8) and substituting into (7), we get

p 5 br 1 g k 1 g k 1Od D 1 m (9)it it 1 dit 2 f it c ic it
c

where p is the log of the number of new patents and the other variables are asit

11Caballero and Jaffe (1993) also find evidence consistent with rapid diffusion of new innovations.
12Note that this formulation allows for both industry and firm differences in the propensity to patent.

This flexibility is important given the observed differences in patenting behavior across firms and
industries.
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before, except for the error term which is defined below. With this substitution, the
interpretation of the coefficients on the D’s has changed. They now represent
industry-level differences in the propensity to patent, which are a function of both
the level of ‘‘technological opportunity’’ of the cth industry, as in (6), and the
usefulness of patents as a tool of appropriation in the cth industry. It is known that
strong differences in both factors exist across industries.

The interpretation of the g ’s also changes in an important way which merits
immediate comment. We do not observe the ‘‘pure effects’’ of knowledge
spillovers on firm innovation, which constitute an unambiguously positive
externality. We instead observe the effects of knowledge spillovers on economic
manifestations of the firms’ innovation, patents. Clearly, patents are a tool of
appropriation. If technological rivalry with other firms is intense enough and the
scope of intellectual property rights conferred by patents is broad enough, then
firms may sometimes find themselves competing in a limited range of the
intellectual product space for a limited pool of available patents — a patent race.
For this reason, the positive technological externality is potentially confounded

13with a negative effect of other firms’ research due to competition. Because of
this, if actual flows of knowledge are weak and rivalry is strong, our estimates of
the g ’s may be negative even though the underlying knowledge externality is
positive. Unfortunately, it is not possible to disentangle these two effects in the

14data, though my empirical results suggest that both are present.
We allow the error term in (9) to contain a firm-specific component such that

m 5 j 1 u (10)it i it

where the latter term is assumed to be a normal ‘‘iid’’ disturbance. If j isi

uncorrelated with the right hand side regressors, then this effect can be estimated
using the ‘‘random effects’’ framework. However, this firm-specific component in
the error term may be quite plausibly correlated with a firm’s own research levels.
If we assume unobservable but permanent differences in the productivity of firm’s
research, owing perhaps to the unequal distribution of high quality research
personnel across firms, we can easily imagine that firms with high quality research
personnel will do more research, and that this will lead to more patents. In this
case, estimates are biased unless we correct for the correlation between firm-
specific research productivity and R&D levels. We can do this using a ‘‘fixed

13Adam Jaffe (1986) and others have also made this point, and some of my language here closely
follows Jaffe (1986). The recent survey evidence presented by Cohen et al. (1998) suggests that 81% of
U.S. firms and 95% of Japanese firms regard this ‘‘competitive effect’’ as relevant to their own
patenting experience.

14See Jaffe (1986), who finds direct evidence of negative ‘‘competitive’’ externalities in a framework
similar to the one used in this paper.
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15effect’’ estimator. Results from both a random effects specification and a fixed
effects specification are provided. Unfortunately, I am unable to allow the
propensity to patent to vary according to the strength of the spillover term, as that
would preclude identification.

The use of patents as indicators of economic activity has a number of
disadvantages. Perhaps the most important of these is the fact that the ultimate
economic value of firms’ patents varies widely, with some patents leading to no
commercial products and others leading to billions of dollars in revenues. Because
of this, the link between patent counts and the economic effects of innovation that
economists tend to care about is less than straightforward. For this reason, it would
be useful to have an alternative index of innovation by the firm, and I provide one.

Real technological spillovers should lead not only to more patents but also
higher levels of revenue for the innovating firm, by increasing product quality, and
thus product demand, or lowering production costs. To measure this effect, I
estimate a standard Cobb–Douglas production function in its ‘‘growth rate’’
(difference) form, using the spillover terms as regressors. Thus, output can be
described as

a b f w r eiQ 5 C L R K K e (11)it it it it dit f it

taking the logs of both sides gives us

q 5 ac 1 bl 1 fr 1 wk 1 rk 1 e (12)it it it it dit f it it

Here q is output, c is capital, l is labor input, r is the firms’ own R&D stock,
and the k’s are the domestic and foreign spillover stocks respectively. In this case,
firm’s own R&D and the spillover terms are calculated as stocks, following

16Griliches (1984). Again, we allow for the existence of individual effects which
are potentially correlated with the right hand side regressors, such that

e 5 l 1 u (13)it it i

The standard procedure is, of course, to use a ‘‘within’’ panel estimator to
eliminate the individual effect. However, if there is measurement error in the

15The obvious alternative would be some sort of instrumental variables approach. Unfortunately, the
only instrumental variables available at the firm level are lagged values of the included variables. If
research quality evolves slowly over time, these lagged values are likely to be no less endogenous than
the variables for which we instrument. As for GMM ‘‘dynamic’’ panel estimators which use lagged
levels as instruments for current differences, Blundell and Bond (1995), among others, have found that
in short, moderately sized panels with autoregressive explanatory variables (such as my data set), these
estimators can behave quite poorly.

16A full discussion of why the use of stock measures is appropriate here is given in Section 5.
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17variables of interest, the ‘‘within’’ estimate may have a serious bias of its own.
Following Griliches and Hausman (1986), we use a ‘‘within’’ estimator that is less
likely to suffer from this second source of bias than either using the first-
differences estimator or transforming the data by calculating deviations from
firms’ ‘‘time means.’’ We use the so-called ‘‘long difference’’ estimator, regressing
the log difference in the starting and ending levels of firms’ sales on the ‘‘long’’
log difference in levels of capital and labor inputs, etc.

q 2 q 5 a(c 2 c ) 1 b(l 2 l ) 1 f(r 2 r ) 1 w(k 2 k )iT i0 iT i0 iT i0 iT i0 diT di0

1 r(k 2 k ) 1 (l 2 l ) 1 u 2 u (14)f iT fi0 i i iT i0

Here, T is the last period in the panel, while 0 is the first period. Thus our
estimates are, it is hoped, consistent in the presence of measurement error as well
as individual effects which are correlated with firm’s levels of capital, employ-
ment, or R&D.

Since we do not directly observe output growth, per se, we will use revenue
18growth as our proxy for output growth. This raises problems of inference,

because revenue growth is subject to idiosyncratic and systematic demand and
input supply shocks. In particular, unmeasured growth in the effective demand for
a firm’s products, the level of capacity utilization, or the quality of capital and

19labor inputs can all show up in the ‘‘residual’’ as productivity growth. As a result
of this additional noise, it may be considerably more difficult to distill a
relationship between spillovers and firm-level innovation from the data. If,
however, our production function regressions give us results similar to those of the
patent equations, we have strong confirmation that we may be observing a ‘‘real’’
effect.

Revenues of firms are subject to the same mix of positive technological
externalities and negative competitive externalities as are patents, because success-
ful imitation can deplete monopoly rents. Where knowledge flows are strong, we

17Here, serious measurement error is a virtual certainty. Research by Pakes and Griliches (1984) has
shown that accounting rates of depreciation physical capital are wildly inaccurate measures of the true
depreciation of capital services. Even less is known about the true rate of depreciation of ‘‘knowledge
capital,’’ whether internal or external to the firm.

18See Griliches (1984). This is, of course, problematic to the extent that there are large stocks of
unsold goods or to the extent that price indices fail to reflect industry or firm-specific price and quality
changes. The available data provide us with little leverage on either issue.

19In addition, there is the problem of the potential endogeneity of the right hand side variables, which
my ‘‘fixed effects’’ model may not completely fix. On this issue (which effects most empirical work in
the micro R&D/productivity literature) and the difficulty of doing much about it, see Griliches and
Mairesse (1997).
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can expect a net positive effect of external R&D on own firm productivity growth.
Where flows of knowledge are weak and rivalry in the product market is strong,
we can anticipate a zero or even negative estimate.

4. A note on data

I use microdata on publicly traded high-technology manufacturing firms in the
United States and Japan. This choice was motivated by data availability, but also
by the intrinsic importance of the two countries. Japan and the United States are

20the leading technological superpowers in the OECD. They are also highly
integrated economically. Finally, there is considerable anecdotal evidence to
suggest that Japanese firms are particularly good at monitoring R&D developments
abroad. If one is going to find international knowledge spillovers anywhere, one
should find them here. Fortunately, there also exists broadly comparable, publicly
available data at the micro-level on the innovative activities of publicly traded

21firms in both countries.
I chose to examine the five industries in the U.S. and Japan in which the average

R&D/sales ratio is highest, for the simple reason that one is less likely to identify
the sources and effects of spillovers in industries with little technological
innovation. Since I rely on patents both as indicators of innovative activity and as
a means of locating firms in technology space, I restricted my sample to U.S. and
Japanese firms with more than ten patents granted in the U.S. during my initial
sample period, 1977–1989. I later shortened this sample period to 1983–1989
because of limitations on the availability of micro-level data on R&D spending by
Japanese firms. Prior to 1985, the publicly available data on firm-level R&D
spending is of uneven quality, with gaps in the time series of individual firms.

20The two countries account for over 60% of the world’s scientists and engineers. See Eaton and
Kortum (1996) for more evidence on the skewness of innovative activity.

21Public sector R&D in either the U.S. or Japan is excluded from this study, as this study focuses on
the extent to which private R&D spills over domestically and internationally. For Japan, this is not
necessarily an important omission, since the private sector accounts for more than 80% of the national
total during the years of my sample period. It is true that, in contrast, U.S. government R&D accounted
for a substantial percentage of total expenditures over the sample period. However, much of this R&D
effort was concentrated in health care, space, defense, or academic science, and could be seen as much
less relevant to the majority of firms in my sample than R&D undertaken in the private sector.
Furthermore, it is difficult to place much of this research into the same ‘‘technology space’’ as the
private sector R&D. Finally, in principle, our measures of firm-level patenting capture the benefits of
international and intranational spillovers from the public sector. To the extent that public sector R&D
positively effects foreign firms’ R&D, we might expect its omission to bias the coefficient on
international spillovers upward rather than downward. This suggests that the central conclusion of this
paper may not be affected by the omission of public sector R&D.
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Table 1
aSample statistics for Japanese data

Variable Obs Mean St. Dev. Min Max

Patents 1025 41.47 117.17 0 966
R&D 1025 15369.33 39020.69 0 316147
Dom. Pool 1025 605,780.6 294,972.7 50326.07 1,742,435
Foreign Pool 1025 1,441,850 136,659.1 3,462,034

a Units are millions of 1985 Japanese yen.

Thus, in most of my regressions, I am forced to further restrict the sample period
to the years 1985–1989.

The Japanese panel consists of 205 firms from the chemicals, machinery,
electronics, transportation, and precision instruments manufacturing industries. For
each firm, we have data by year for the years 1985–1989. For each year, I have the
number of patents granted to these firms in the U.S. (classified by date of
application), their R&D expenditures in that year, a ‘‘domestic spillover’’ term
consisting of the weighted sum of ‘‘external’’ R&D performed by technologically
related Japanese firms computed for each year, and a foreign spillover term

22consisting of ‘‘external’’ R&D performed by technologically related U.S. firms.
23Table 1 gives some summary statistics for the Japanese sample.

24Similar data was gathered for American firms from the same industries. The
final U.S. panel consists of 209 firms. Firms were required to be listed on the stock
exchange continuously during the sample period, and firm with large jumps in
recorded capital stock (generally the result of large mergers or divestitures) were

22Here I use the U.S. patents of Japanese firms to locate them in technology space and to measure
their innovation. The patent classification schemes and the patent screening processes used in the two
countries are different enough that, to insure the comparability of patents for both sets of firms, I
decided to use U.S. patents. It should be noted that Japanese firms have been extremely aggressive
about patenting their inventions in the U.S. as well as Japan. In the late 1980s and early 1990s,
Japanese firms accounted for about 25% of new patents in the U.S., making them by far the most
important foreign users of the American patent system. Finally, it is also true that detailed data on the
Japanese patents held by these firms is difficult to obtain and extraordinarily expensive.

23The use of U.S. patents to infer the R&D activities of Japanese firms raises the possibility that I am
systematically undermeasuring Japanese research productivity. To the extent that Japanese patent only a
fraction of their inventions in the U.S., but that this fraction is constant across firms and across time, it
will fall into the constant term (since I estimate separate knowledge production functions for U.S. and
Japanese firms). To the extent that it is constant across firms but not across time, it will fall out in the
time dummies. To the extent that it is not constant across firms, but is constant across time, this
differential will be absorbed into the fixed effect. In the absence of more detailed information about the
Japanese patents of Japanese firms and how they vary with these firms’ U.S. patents, little more can be
said on this issue, though I acknowledge that it may cloud my interpretation of the empirical results.

24The U.S. sample is based on the NBER Productivity Data Base produced by Bronwyn Hall.



66 L.G. Branstetter / Journal of International Economics 53 (2001) 53 –79

Table 2
aSample statistics for U.S. data

Variable Obs Mean St. Dev. Min Max

Patents 1045 58.11 107.5 0 750
R&D 1045 189.58 495.15 0.6939 4885.939
Dom. Pool 1045 9532.2 3669.64 1806.36 21841.21
Foreign Pool 1045 3872.14 419.36 10328.73

a Units are millions of 1987 U.S. dollars.

removed in the interest of avoiding large outliers. Table 2 gives sample statistics
25for the U.S. sample.

5. Empirical analysis

5.1. Empirical results using linear models

This section presents results from a linear regression framework. The estimating
equation is

p 5 a 1 br 1 g k 1 g k 1Od D 1 m (9)it it 1 dit 2 f it c ic it
c

where p is the log of patents for firm i in the tth year, a is an overall constant
term, r is the log of firm’s own R&D, the k’s represent the logs of ‘‘domestic’’ and
‘‘foreign’’ spillover terms, and the D’s are dummy variables for the five industries
represented. In some firm-years in the sample, the number of patents is zero. Since
the log of zero is undefined, this issue was dealt with by adding one to all
observations of the dependent variable, then taking the log. This is the ‘‘standard’’
procedure for dealing with this problem in the older micro R&D/productivity
literature. Concerns that this transformation might bias the results motivated the
estimation of alternative nonlinear models, described below.

Investments in R&D, particularly basic R&D, may take some time to bear fruit.
Accordingly, when estimating the impact of R&D on some measure of innovation,
one can make an argument for including lagged values of past R&D investment or,
alternatively, constructing an R&D ‘‘stock’’ by assuming that past R&D invest-
ments do contribute to current innovation, albeit with decreasing effectiveness
over time due to technological obsolescence. However, empirical research on
patenting indicates that the temporal linkage between R&D and patenting is quite
close. Survey evidence from the U.S. and the former West Germany suggests that
the time lag between the initial conception of an invention and filing for a patent

25Further details on data construction can be found in Branstetter (1996).
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application is only 9 months. Econometric studies also show that the relationship
26between patenting and R&D is apparently largely contemporaneous. It seems to

be the case that firms tend to take out patents at a relatively early stage in the
research and development process. Based on these results, my specification of Eq.
(9) relates patents applied for in period t with firm R&D spending in period t.
Thus, I use a contemporaneous ‘‘flow’’ measure of R&D.

The same issues of timing exist with regard to the spillover terms. As mentioned
before there is a fair amount of evidence based on U.S. data suggesting that new

27innovation spills over fairly quickly. The short length of the time series
dimension of my panel and the multicollinearity in the data effectively preclude
the estimation of intricate lag structures on the spillover term. In the regressions
below, I treated ‘‘domestic spillovers’’ as contemporaneous whereas ‘‘foreign
spillovers’’ were lagged by one year. This was done, in part, to allow ‘‘foreign’’
innovations longer to diffuse. It was also done to partly control for differences in
accounting conventions in the two countries, as the fiscal years of most of the U.S.
firms and those of the Japanese firms do not perfectly overlap. However,
experiments with contemporaneous ‘‘foreign spillovers’’ and lagged ‘‘domestic
spillovers’’ yielded results that are qualitatively similar to the ones reported in this
paper. In results that I do not report, I constructed stock-based measures of own
firm R&D and domestic and foreign spillover terms and reestimated (9) using
these stocks rather than flows. This yielded results very similar to the ones

28reported in the tables. Note also that lagging foreign spillovers by one year
means that we lose 205 observations in the Japanese sample and 209 observations
in the U.S. sample in our reported regressions.

In Table 3, the first and fourth columns present coefficients and standard errors
for OLS versions of (9) in which domestic and foreign spillovers are entered along
with own R&D using Japanese and U.S. data, respectively. The second and fifth
columns give results from using the ‘‘random-effects’’ panel estimator on Japanese
and U.S. data, respectively. The third and sixth columns give results from using
the ‘‘fixed-effects’’ or ‘‘within’’ panel estimator using both terms on Japanese and
U.S. data, respectively. A Hausman test rejects the random effects estimator in

26For more on this survey evidence, see Scherer (1984). Hausman et al. (1986) found essentially no
effect of past R&D investments on current patenting. Blundell et al. (1995) found similar results of
lagged R&D on current patenting using a GMM-based multiplicative distributive lag model.

27See Mansfield (1985) and Caballero and Jaffe (1993).
28While the similarity is heartening, it is driven by the fact that most of the variability in firms’ R&D

spending is in the cross-section dimension, with individual firms showing relatively little variation in
their R&D spending over time (which also explains why the introduction of simple lags has little effect
on my empirical results). In addition, due to data limitations for Japanese firms, construction of the
stock variables required me to extrapolate R&D spending into the past based on firm behavior in the
sample period. Finally, very little is known about the rate at which knowledge depreciates. I make the
standard assumption of 15% annual depreciation, which is ultimately nothing more than an educated
guess. See Griliches (1984).
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Table 3
aLinear regressions

Results for Japanese firms Results for U.S. firms

OLS Random Fixed OLS Random Fixed
effects effects effects effects

Log R&D 0.7294 0.5941 0.0711 0.7223 0.6295 0.1952
(0.0270) (0.0443) (0.0912) (0.0217) (0.0373) (0.0821)

Log domestic spillovers 0.9091 1.108 1.084 0.7967 0.9658 0.9994
(0.1881) (0.2800) (0.6166) (0.1768) (0.3244) (1.081)

Log foreign spillovers 20.5449 20.4930 21.113 20.7003 20.6694 21.872
(0.2091) (0.2976) (1.222) (0.1646) (0.2876) (0.6978)

2 2Test of equality F514.28 Chi 58.46 F52.89 F520.79 Chi 57.73 F53.74
P50.0002 P50.0036 P50.0896 P50.0000 P50.0054 P50.0536

Chemicals 20.4144 20.2950 n.a. 0.1574 0.3270 n.a.
(0.1742) (0.2964) (0.1111) (0.2213)

Machinery 20.1196 20.1236 n.a. 0.2223 0.2504 n.a.
(0.1764) (0.2968) (0.0994) (0.2149)

Electronics 20.5538 20.5542 n.a. 20.1440 20.0908 n.a.
(0.1650) (0.2847) (0.0969) (0.1950)

Transportation 20.5146 20.4891 n.a. 0.1628 0.2503 n.a.
(0.1822) (0.2948) (0.1282) (0.2420)

Year 2 20.0414 20.0196 20.2128 0.1086 0.1263 20.1835
(0.0984) (0.0590) (0.2476) (0.0897) (0.0514) (0.1772)

Year 3 0.0601 0.0939 20.0113 0.2218 0.2353 0.0810
(0.0962) (0.0636) (0.1863) (0.0878) (0.0465) (0.1241)

Year 4 0.0707 0.0829 0.0148 0.1120 0.1219 20.0310
(0.0965) (0.0538) (0.1070) (0.0904) (0.0472) (0.0916)

a Dependent variable: Log (Patents11). Standard errors in parentheses.

favor of a fixed effects estimator, and firm-level heterogeneity in patenting and
R&D spending suggests that firm effects are important.

On this basis, fixed effects specifications are preferred. However, the fixed
effects approach requires us to throw away the cross-sectional variance, which is
most of the variance in the data. Furthermore, as I have noted, fixed effects
estimators can exacerbate the problem of measurement error bias, which is likely
to be a significant issue with this data set. Adding a full set of time dummies
removes all common time variance, leaving only firm-specific variance over time
from which to estimate the parameters of interest. This reduces the signal-to-noise
ratio even further. The predictable result is that our estimates lose precision.
Nevertheless, the qualitative results are consistent with those of our other linear

29specifications.

29In these and other regressions, we hold the elasticities of ‘‘innovative output’’ with respect to own
R&D and the spillover terms constant, though we do allow for industry, time, and firm effects.
Attempts to allow these elasticities to vary across industries for the Japanese data were severely
constrained by the small cross-section of firms in a particular industry. Estimates of intra- and
international spillovers based on data from 20 firms tend to be quite imprecise!
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In all models but the fixed effects models, we can reject the hypothesis of
equality of the coefficients of domestic and foreign spillovers at the 5% level using
the standard F-test (or Chi-squared test, in the case of the random effects model).
Even in the fixed effects case, we can reject the hypothesis of equality at levels
close to the standard 5% level (note the P-values given in the tables) and below the
10% level.

5.2. Results from the negative binomial model

Patent data are ‘‘count data’’ — non-negative integers — and in any given year
a number of firms perform R&D but generate no patents. Over the past decade a
set of regression models have been developed expressly for the purpose of
handling this kind of data. The technique used here is a generalization of the
Poisson model known as the ‘‘negative binomial’’ estimator. For a formal
development of this model, please consult Hausman et al. (1984). This model has
the advantage of being able to accommodate ‘‘zero’’ outcomes for the dependent
variable in a natural way. Unfortunately, this benefit is achieved at the cost of

30imposing a number of strong assumptions on the data.
Estimates from the negative binomial models are given in Table 4. Again, the

coefficients of domestic and foreign spillovers are clearly not equal. The formal
null hypothesis of equality of the two coefficients can be rejected at conventional

31levels in all specifications, for both the Japanese and U.S. data sets. Also, there is
no evidence of a positive effect of foreign spillovers on domestic innovation.
Hausman, Hall, and Griliches have also developed a ‘‘fixed effect’’ version of the
negative binomial estimator. Results from this specification are provided in the
second and fourth columns of Table 4 for regressions using the Japanese and U.S.
data, respectively. Again, the hypothesis of equality of the coefficients for
domestic and foreign spillovers can be rejected at well below the conventional
levels of significance in both the U.S. and the Japanese data.

5.3. Results from a ‘‘productivity growth’’ equation

As an alternative to the results based on patents, I also present empirical
evidence based on the ‘‘long difference’’ form of the Cobb–Douglas production
function derived in Eq. (14). Unlike the relationship between patents and R&D,
the relationship between R&D and revenues is subject to fairly long, variable lags.

30If the error term does not follow the assumed negative binomial distribution, there is no guarantee,
even asymptotically, that the results are consistent. The results are robust only to certain forms of
heteroskedasticity, and the omission of relevant variables, even those not correlated with the included
variables, can also lead to biased results.

31One can easily conduct a Wald test of the equality of the coefficients on the domestic and foreign
spillover terms. In all cases, the test statistics easily exceeded the critical values at well below the 1%
significance level.
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Table 4
aNegative binomial regressions

Japanese firms U.S. firms

n.b. totals Fixed effects n.b. totals Fixed effects

Log R&D 0.7987 0.8483 0.8107 0.8056
(0.0273) (0.02110)) (0.0203) (0.0329)

Log domestic spillovers 1.246 1.275 0.7267 0.8123
(0.1591) (0.1347) (0.1710) (0.2278)

Log foreign spillovers 20.7970 21.518 20.8152 20.8926
(0.1533) (0.1245) (0.1924) (0.2589)

2 2 2 2Test of equality Chi 546.04 Chi 5116.4 Chi 518.06 Chi 512.3
P50.0000 P50.0000 P50.0000 P50.0005

Chemicals 20.5487 n.a. 0.1541 n.a.
(0.1621) (0.1438)

Machinery 20.1710 n.a. 0.2950 n.a.
(0.1539) (0.1338)

Electronics 20.8230 n.a. 20.0194 n.a.
(0.1435) (0.1283)

Transportation 20.5256 n.a. 0.4027 n.a.
(0.1482) (0.1379)

Time trend 20.08331 20.0104 20.0081 20.0023
(0.0236) (0.0311) (0.0284) (0.0525)

Log likelihood 22965.91 23004.80 23468.8 23561.23
a Dependent variable: Patents.

Bringing an idea from the ‘‘patent’’ stage to the ‘‘product’’ stage requires several
steps, each of which generates a lag between the time the initial R&D is performed
and the period in which it has an impact on a firm’s sales. Because of this, I
estimate (14) using ‘‘stock’’ measures of a firm’s own R&D and the spillover
terms. Unfortunately, because of the limited time series dimension of the Japanese
micro R&D data, the construction of these stocks is quite problematic and the

32resulting stock numbers likely contain a substantial degree of measurement error.
Because revenue growth is affected by changes in demand and in the quality

and price of factors of production other than technology, I attempt to eliminate the
effect of these irrelevant fluctuations by ‘‘averaging them out.’’ Thus data
preparation differs from that used with the patent equations. I use a longer sample
period, 1983–1989. In my specification of (14), the variables consist of the
differences in the logs of data averaged over the first 3 years of the sample and the

32Reliable R&D data prior to the early 1980s do not exist for most Japanese firms. In order to create
an R&D stock series, I had to ‘‘backcast’’ R&D expenditures based on the time path of R&D spending
during the sample period. Unfortunately, this means that the R&D stock numbers for Japanese firms
are, to a large extent, imputed. This may introduce considerable measurement errors into the R&D
stock measures. The implausibly small estimated coefficients for the own R&D stock term suggest that
these measurement errors are leading to regression estimates which are biased toward zero.
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data averaged over the last 4 years of this extended sample. In the U.S. panel,
capital stock data are calculated using the perpetual inventory method. Data
limitations in the Japanese panel require me to use the ‘‘book value’’ of a firm’s
capital stock, taken directly from the firm’s accounts and deflated by the capital

33goods price deflator. This introduces an additional source of measurement error,
as accounting adjustments in the capital stock often have little basis in economic
reality. Finally, data on raw materials expenditures are available at the firm level
for Japanese firms but such data are not available for the U.S. sample. Because of
all these caveats, the results from the production function are offered in the spirit
of a ‘‘reality check’’ for the patent equation results.

Table 5, based on Japanese data, yields results that differ in some respects from
the patent equation results. The coefficients on capital stock and own R&D stock
are implausibly small and insignificant, suggesting that measurement error in these

34two variables is leading to a downward bias in the coefficients. The presence of
the bias clearly limits the inference we can make. The coefficients on the spillover
terms are also estimated with less precision than is the case in the patent equations,
and the foreign spillover term enters with a positive sign, providing some evidence
that Japanese firms do benefit from U.S. research. However, while these co-
efficients are of reasonably large magnitude, the domestic spillover term is only

Table 5
aProduction function regression (Japanese data)

D Log (Capital) 0.083
(0.057)

D Log (Labor) 0.293
(0.083)

D Log (Materials) 0.351
(0.087)

D Log (Own firm R&D) 0.007
(0.051)

D Log (Dom. Pool) 0.503
(0.322)

D Log (Foreign Pool) 0.396
(0.314)

a Dependent Variable: D Log (Deflated sales), Obs5205.

33A full description of the Japanese capital stock data used in this paper is given in Branstetter
(1996). The use of a capital stock measure computed using the perpetual inventory method would have
been preferable to the deflated ‘‘book value’’ measures used here. Unfortunately, given the data
limitations I confronted, this alternative was not feasible.

34I should note that attempts to estimate production functions using the ‘‘within’’ dimension of
similar micro-level panels often produce estimates implying decreasing returns to scale. The micro
‘‘R&D/productivity’’ literature is full of such results. See Griliches and Hausman (1986) and Griliches
(1984) for some examples and references.
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35marginally significant and foreign spillovers are statistically indistinguishable
from zero. The general qualitative pattern of the greater impact of domestic
spillovers (both in terms of magnitude and significance) holds here as well, but it
is difficult to interpret this result given the obvious data problems.

Finally, I offer results based on a ‘‘production function’’ approach for the U.S.
data in Table 6. The production function results seem more plausible than those for
the Japanese sample, reflecting the higher quality of the U.S. data, and, in
particular, the much longer time series dimension of the U.S. micro R&D data,
which allows for more accurate construction of R&D and spillover ‘‘stocks.’’
These results are broadly consistent with the results from the patent equations.

5.4. Comments on results

One of the striking features of the results is the frequency with which foreign
spillovers are estimated to have a negative impact on innovative output, though I
should point out that in many cases the coefficients are not statistically dis-
tinguishable from zero. There are two potential explanations for this finding. The
first refers back to points raised in Footnotes 12 and 13. For clarity, I repeat some
of the points already made in the text. We do not observe the ‘‘pure effects’’ of
knowledge spillovers on firm innovation, which constitute an unambiguously
positive externality. We instead observe the effects of knowledge spillovers on
economic manifestations of the firms’ innovation, such as patents or revenues. For
this reason, the positive technological externality is possibly confounded with a
negative effect of other firms’ research due to competition. Because of this, if

Table 6
aProduction function regression (U.S. data)

D Log (Capital) 0.302
(0.010)

D Log (Labor) 0.512
(0.094)

D Log (Own firm R&D) 0.366
(0.119)

D Log (Dom. Pool) 0.829
(0.439)

D Log (Foreign Pool) 20.244
(0.180)

a Dependent variable: D Log (Deflated sales), Obs5209.

35A one sided test would find domestic spillovers to be significant at the 10% level. The foreign
spillovers term does not meet even this unusually generous threshold.
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actual flows of knowledge are weak — or nonexistent — and rivalry is strong, our
36estimates of the g ’s may be negative.

In other words, firms can be engaged in a patent race, in which the successful
research outcomes of competing firms can ‘‘block’’ the firm’s own patenting
efforts. If one is learning a great deal from domestic competitors, than this
negative effect due to competition is outweighed by the positive effect of
knowledge spillovers. A similar pattern could be observed in the production
function regressions. Competition in the product market can lower revenues earned
from new products, leading to a negative effect of others’ research on ones own
revenues. If the underlying knowledge spillover is strong enough, then the net
effect estimated will be a positive one.

For this interpretation to be correct, one would need strong reasons to think that
there is a substantial difference in the underlying knowledge spillovers within
countries versus the spillovers that flow between them. Recent survey evidence
and econometric evidence suggests that this is in fact the case. Econometric
analysis of U.S. patent citations data and bibliometric studies of the biological
sciences literature both show that innovators are far more likely to cite other
innovators in the same country than would be expected given the distribution of
research resources across time, fields, and countries. This statistical evidence of
the localization of knowledge spillovers is confirmed by the survey evidence
presented by Goto and Nagata (1997). These authors conducted a survey which
directly asked Japanese and U.S. corporate R&D managers where they perceived
their ‘‘spillover’’ benefits to be coming from. The survey results indicate that
knowledge spillovers are perceived by industry participants to be largely intrana-
tional in scope, further corroborating the central finding of this paper.

An alternative explanation of the finding of a ‘‘negative’’ effect of knowledge
spillovers is that this finding is an artifact of the data, driven by multicollinearity
problems. In fact, the domestic and foreign spillover terms are highly correlated

37with one another. Because there is little independent variation in the two series,
regressions could, in principle, produce coefficients with the ‘‘wrong’’ sign, as
often happens in the case of severe multicollinearity. In results not reported here, I
ran a number of regressions in which the foreign spillover term was entered
without the domestic spillover term. What I found was that, even when entered
independently into the regression equation, the foreign spillover term often has a

38negative coefficient. This suggests that the results reported herein are not purely

36The language used in this paragraph closely follows Jaffe (1986), who describes a similar issue in
his paper.

37This is illustrated in Branstetter (1996). The simple correlation coefficient of (log) domestic
spillover and foreign spillover terms is 0.855 in the Japanese data and .906 in the U.S. data.

38For instance, when entered by itself into a fixed effects model with time dummies, the foreign
spillover term has a negative (but statistically insignificant) coefficient in the Japanese data. In the U.S.
data, foreign spillovers enter with a negative coefficient in every specification tried.
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driven by multicollinearity, and that the first explanation is likely to be the correct
one.

Taking the results at face value, we can briefly discuss their economic
implications. The coefficients are expressed in terms of elasticities. For instance,
the coefficients estimated by the random effects model with the Japanese data
imply that a 100% increase in the level of own R&D spending generates a 59%
increase in the level of patenting. On the other hand, a 100% increase in the level
of the R&D spending of domestic firms implies an increase in patenting of
approximately 111%. Finally, an increase in the R&D spending of foreign firms
generates, all other things equal, a decrease in own patenting, though the negative
coefficient on the foreign spillover term is statistically indistinguishable from zero
at conventional levels. Results using U.S. data and results obtained through the use
of a negative binomial model are broadly similar in magnitude. At first glance,
these results seem to imply implausibly large intranational spillover effects.
However, they are quite consistent with the view of R&D as having the attributes
of a local public good. They are also consistent with knowledge spillovers playing
the role of ‘‘engine of endogenous growth’’ as has been stressed in recent theory.
Finally, these results are broadly consistent with those obtained using U.S. data
and a slightly different specification by Jaffe (1986), who found an elasticity with
respect to the (domestic) spillover term of approximately 1.1.

To give the reader a sense of the economic magnitudes involved, I have
calculated the number of patents generated by one billion yen of ‘‘internal’’ and
‘‘external’’ R&D. Evaluated in terms of marginal products at the mean of the
Japanese data, the random effects coefficients imply that one billion yen of own
R&D spending generates 1.6 patents and one billion yen of other (domestic) firms’
R&D spending generates 0.076 patents. Because any one firm’s own R&D
investment is small relative to the potential spillover pool, the impact of other
firms’ R&D spending is a very important factor in explaining innovative
performance at the firm level. I note that these figures should be interpreted with
some caution. Recall from the definition of T that the proximity coefficients, withij

39which the spillover pools are calculated, are not normalized. The implications of
this for interpretation of my empirical results can perhaps be best summarized as
follows. The ‘‘true’’ technologically relevant spillover pools could be one tenth as
large as my calculated spillover pools suggest. If so, that would not effect my
estimated elasticities, but it would affect the implied marginal products.

Finally, I wish to comment on the variations in the results across the different
specifications. One consistently finds quite pronounced differences in the measured
impact of domestic and foreign spillovers in the patent regressions using both

39See Eq. (2). Jaffe (1986) encounters a similar problem.
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linear and negative binomial models on both U.S. and Japanese data. In the case of
the U.S. production function regression, given in Table 6, while we cannot reject
the null hypothesis of equality of the coefficients, this is primarily because the
foreign spillover term is estimated with very little precision. It is worth noting,
however, that the qualitative pattern of a positive, significant impact of domestic
spillovers and a negative, but insignificant impact of foreign spillovers is quite
consistent with our findings from the patent regressions. On the other hand, in the
Japan production function regression, given in Table 5, there is little qualitative
difference in the measured impact of the two spillover terms, and neither is
statistically significant at conventional levels. Given the evident downward biases
in the other regression coefficients, however, it is difficult to argue that these
results are very informative. The lack of much of a time series on R&D data with
which to construct an R&D stock and the obvious measurement problems in the
capital stock data make it difficult to draw strong conclusions from these results. I
take some assurance from the fact that the qualitative pattern of relatively stronger
intranational knowledge spillovers is reflected in these data as well.

6. Conclusions and extensions

In general, the data support the following conclusions:
1. There is strong evidence of intranational knowledge spillovers.
2. There is limited evidence that Japanese companies benefit positively from

research undertaken by American firms. However, there are no specifications in
which the estimated impact of foreign spillovers is positive and significant once
domestic spillovers are controlled for.

3. There is no evidence that American companies benefit positively from
research undertaken by Japanese firms. In fact where the effect is statistically
distinguishable from zero, it is negative.

The implications of these findings for the theoretical and empirical literature are
potentially quite significant. They clearly lend credence to a number of models that
generate multiple equilibria in trade flows, allow comparative advantage to be
determined endogenously, and allow temporary government policies to have a
lasting (perhaps even permanent) impact on trade. They also lead to a whole nexus
of research questions. What are the barriers to the flow of knowledge spillovers
across countries? Will they become less important over time as multinational firms
conduct more R&D abroad and become more aggressive and proficient in
transferring their existing knowledge capital abroad?

The implications for policy are also potentially significant, and lead to some
natural extensions of the paper. My results certainly support the view that private
R&D has public good aspects and that the private marginal product of investment
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in R&D may be considerably lower than the social marginal product. In addition,
because these effects are intranational in scope, they lend some support to the view
that there may be strategic reasons for supporting private R&D.

The potential benefits of such policies have not been lost on the Japanese. Since
Spence (1984), numerous economists have explored the possibility of using
research consortia to ‘‘internalize’’ the externalities created by R&D. No nation
has utilized this policy instrument more intensely than Japan. Surprisingly little

40serious empirical research has been done on these consortia. Ongoing research
with Mariko Sakakibara of the Anderson Graduate School of Management at
UCLA is using the data developed here to estimate the impact of participation in a
joint venture on Japanese firms’ ex-post R&D spending, patenting in Japan and the
U.S., and measures of intranational spillovers. We present evidence in Branstetter
and Sakakibara (1998) and Branstetter and Sakakibara (2000) that participation in
consortia has had a positive impact on the innovative activities of participating
firms.

It is also well-known that Japanese firms frequently collaborate with their
suppliers or customers in the development of new products even without the
inducements of government-organized consortia. This kind of collaboration is
often concentrated in the vertical keiretsu groups. To what extent is Japanese
industrial organization responsible for the high estimates of intranational spillovers

41in these data? Using micro-level data on affiliation to vertical keiretsu groups, I
have investigated this potential linkage in Branstetter (2000a), comparing the
spillovers of affiliated firms to non-affiliated firms, and examining the intra-group
correlation of productivity residuals. This paper documents evidence of a
relationship between keiretsu affiliation and spillovers of process technology.

While this paper has found little evidence of a strong impact of international
spillovers on the ‘‘average’’ Japanese firm in the sample, it is likely that these
effects confer greater benefits on some firms than others. Does the impact of
international spillovers correlate in any way with measures of exports to the U.S.
market or FDI in the U.S.? For decades, observers have attributed some
component of Japan’s success to its focus on exports to advanced country markets.
Might this have augmented Japan’s ability to effectively absorb new technological
knowledge embodied in the products of U.S. competitors? Alternatively, given the
degree to which knowledge spillovers seem to flow within countries but not
between them, might setting up subsidiaries in the U.S. provide Japanese firms
with a channel through which to more effectively absorb these knowledge

40See Wakasugi (1986) for an excellent summary of the issues involved and some ‘‘case study’’
evidence on the effectiveness of the consortia.

41See Suzuki (1993) for another analysis of the effects of vertical keiretsu ties on innovation.
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spillovers? Preliminary evidence on these points is provided in Branstetter
(2000b). In that paper, I allow the international spillover elasticity to vary across
firms depending on the fraction of their total sales that is exported to the U.S.
market. In a separate specification, I allow the international spillover elasticity to
vary according to the firm’s stock of FDI in the U.S. The preliminary results
suggest that the impact of knowledge spillovers is positively correlated with both

42firm-level measures of ‘‘exposure’’ to the U.S. market.
Finally, it is my hope that this paper will stimulate additional research in

international economics at the firm level employing the types of data used here.
Knowledge capital and innovation are not only at the core of the ‘‘new’’ models of
trade and growth, but they also figure prominently in existing theories of foreign
direct investment and in the theory of the multinational firm. Detailed, publicly
available data at the producer level exists on these assets, and the econometric
techniques developed by the micro productivity literature should find fruitful
application in testing a number of the hypotheses generated by these theories.
Intellectual arbitrage between these two fields (or, exploiting the spillovers
between them) should increase the research productivity of both.
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