### Accepted Manuscript

Title: Applied Soft Computing: A Bibliometric Analysis of the Publications and Citations during (2004-2016)

Authors: Pranab K. Muhuri, Amit K. Shukla, Manvendra Janmaijaya, Aparna Basu



| PII:          | S1568-4946(18)30164-9                      |
|---------------|--------------------------------------------|
| DOI:          | https://doi.org/10.1016/j.asoc.2018.03.041 |
| Reference:    | ASOC 4790                                  |
| To appear in: | Applied Soft Computing                     |

 Received date:
 21-8-2017

 Revised date:
 23-3-2018

 Accepted date:
 26-3-2018

Please cite this article as: Pranab K.Muhuri, Amit K.Shukla, Manvendra Janmaijaya, Aparna Basu, Applied Soft Computing: A Bibliometric Analysis of the Publications and Citations during (2004-2016), Applied Soft Computing Journal https://doi.org/10.1016/j.asoc.2018.03.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# Applied Soft Computing: A Bibliometric Analysis of the Publications and Citations during (2004-2016)

Pranab K. Muhuri Amit K. Shukla Manvendra Janmaijaya Aparna Basu Department of Computer Science South Asian University, Akbar Bhavan, Chanakyapuri, New Delhi-110021, Indian

### Highlights

- Bibliometric analysis of ASOC publications (2004-2016) with Web of Science (WoS) data.
- Main influencing aspects that govern the ASOC publications are highlighted.
- The distribution of citations over the years, citing sources and an aerial view of the citation structure is also given.
- ASOC authorship is analyzed, the author co-citation network is also given.
- Country-wise temporal and quantitative analysis of the ASOC publications are given.

#### ABSTRACT

The Journal of Applied Soft Computing (ASOC) is a highly reputed journal in the field of engineering and computer science. This study reviews the ASOC publications during the period 2004-2016 which are indexed in the Web of Science (WoS). The motive behind this study is to reveal the main influencing aspects that govern the ASOC publications and its citation structure using scientometric methods. The citation structure of the journal is analyzed first, which includes the distribution of citations over the years, citing sources and an aerial view of the citation structure. Then, the ASOC authorship is analyzed and the author co-citation network displayed. Further, a country-wise temporal and quantitative analysis of the publications is given along with the highly cited documents among the ASOC publications. Document co-citation analysis is also performed to reveal the intellectual base of ASOC publications.

Keywords: Applied Soft Computing; Bibliometric study; Scientometric mapping; Co-citation analysis; Web of Science.

#### **1.** INTRODUCTION

Soft computing is a sub category of computational techniques concerned with approximate solutions to computationally intractable tasks, like problems that can be classified as Nondeterministic Polynomial (NP) hard which do not yield deterministic solutions in polynomial time [1]. Soft computing in its present form came after a degree of influence from fuzzy sets [2], complex systems and decision processes [3] and possibility theory and soft data analysis [4] etc. Later, evolutionary computing [5] and neural computing [6] were also added to it. Applied Soft Computing (ASOC) is one of the prominent international journals in the domain of soft computing research and applications. It is published by Elsevier Press. The scope of the journal covers soft computing techniques such as Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques that address complex real-world problems [7].

Bibliometrics (also called Scientometrics) involves statistical analysis of written publications such as books or scientific articles. Typically, bibliographic data from citation indexes (viz., titles, abstracts, journal, author name, author addresses etc.) are statistically analyzed to determine the popularity and impact of specific articles, authors and institutions, or entire fields. Results are used in policy planning or performance evaluation, as well as to draw up a historiography of authors, journals, subject fields, institutions or countries. While individual and institutional output are required for performance evaluation and planning, country output can indicate strategic development of R&D in different countries. Scientometrics is widely used to support decision making and science policy today due to the vast increase in scientific research, and the near impossibility of evaluation that would require experts in many fields who could read and evaluate the literature. Scientometrics therefore gives an aerial view of scientific activity.

Several studies in the scientometrics of fuzzy sets and related soft computing areas have already been done. Studies on specific research areas are by Yu (2015) on aggregation operator research [8], Fuzzy decision making (2017) by Blanco-Mesa et al. [12], Ordered weighted averaging operators (2014) by Emrouznejad [14], Atanassov intuitionistic fuzzy sets (2015) by Yu and Shi [18], Fuzzy research (2015) by Merigo et al. [16], Linguistic decision making studies (2016) by Yu et al. [17], Real-time operating systems (2018) by Shukla et al. [81], and fuzzy theory research in China (2018) by Yu et al. [84]. In addition some studies have looked at the development of journals in this research area. Cobo et al. (2015) studied 25 years of the journal Knowledge Based Systems (KBS) [13], Merigo et al. (2016) studied the first thirty years of the International Journal of Intelligent Systems (IJIS) [15], Xu et al. (2017) have examined the structure and citation landscape of IEEE Transactions on Fuzzy Systems (TFS) [9], Laengle et al. (2017) looked at 40 years of the European Journal of Operations Research (EJOR) [11], and Cancino et al. (2017) studied the thirty years of Computers & Industrial Engineering [82]. Yu et al. (2017) studied the publications of the Information Sciences (INS) 1968-2016 [10], which was later extended by Merigó et al. (2018) with a bibliometric overview of its fifty years of publications in [83].

The main aim of this paper is to create a bibliometric profile of the journal ASOC including its growth over the last 12 years (2004-2016), identify the most frequently published authors, the main subject areas covered, the institutions to which the authors were affiliated and the countries where they were located. The bibliometric analysis of a single journal creates a general picture of the journal and depicts the quality and productivity of the journal in a particular field, and this study can further include the contribution of a country, institute or author. Collaborations and co-

occurrence of terms are explored through visualizations. A list of the most highly cited articles is also provided. In essence the paper tries to provide a historiography of the development of ASOC and the highlights.

The paper is organized as follows: Section 2 describes the data source and the methodology used for this study. Section 3 shows the publications and citation structure of ASOC. Section 4 depicts the authorship and institution analysis of the publications. Section 5 shows the country wise analysis of ASOC publications. In Section 6, we have included the document co-citation analysis. The overall discussion and a concise conclusion is drawn in Section 7.

#### 2. DATA COLLECTION AND METHODOLOGY

The data for this study is collected for a period of 12 years (2004-2016) from the Science Citation Index-Expanded and Social Science Citation Index of the Web of Science. The SCI is the first multidisciplinary bibliographic index of journal publications designed, and currently covers over 12,000 journals. It is considered a standard data source for bibliometrics. Other databases such as Scopus by Elsevier are also used by bibliometricians. The data was collected in April, 2017. A total of 3680 publications were retrieved for the above said period. The query used in the search engine of WoS was "SO = Applied Soft Computing". Each record of the data retrieved from WoS comprises of a number of fields such as author, author affiliation, title, abstract, citations record etc.

The approach used here includes the use of typical scientometric characterizations along with certain statistical analysis. Three types of relationships between papers have been explored, viz., co-citation, co-authorship and bibliometric coupling. Co-citation analysis is another way to analyze the citation structure and provides a glimpse of the relationships between papers, and through them other entities, inside a research domain. It basically tells us that if two entities are co-cited, i.e., cited together more frequently then there are closer academic or disciplinary ties between them. Bibliographic coupling is the opposite of co-citation, it is the number of times two entities cite the same entity. Both co-citation and bibliographic coupling indicate disciplinary links. The number of co-authored documents identifies collaborative or co-authorship links between two entities, directly linking authors, institutions or countries. (By entity we mean either an author, an organization, or a country.)

For analysis, the variables used are Total Papers (TP) - the total number of papers from a particular source, Total Citations (TC) - the total number of citations generated by a particular publication, Citations per Paper (CPP) - TP divided by TC, and the Hirsch index or h-index which is equal to the number of papers (N) of an entity that has more than N citations each [19].

#### Graphical Mapping Software: i) VOSviewer and ii) CiteSpace

i) The bibliographic coupling and co-authorship between different entities is shown with the help of graphs (Figs. 3-5) For visualization we have used VOSviewer which is a tool for creating and visualizing bibliographic networks [20]. VOSviewer can be used to construct networks of scientific publications, scientific journals, researchers, research organizations, countries, keywords, or terms. Items in these networks can be connected by co-authorship, co-occurrence, citation, bibliographic coupling, or co-citation links. Examples are bibliographic coupling links between publications, co-authorship links between researchers, and co-occurrence links between terms. The strength of a link may for example indicate the

number of cited references two publications have in common (in the case of bibliographic coupling links), the number of publications two researchers have co-authored (in the case of co-authorship links), or the number of publications in which two terms occur together (in the case of co-occurrence links). Items may be grouped into clusters. A cluster is a set of items included in a cohesive group. In the visualization of a map, items with a higher weight are shown more prominently than items with a lower weight. Items are represented by their label and by default also by a circle. The size of the label and the circle of an item is determined by the weight of the item. The higher the weight of an item, the larger the label and the circle of the item. For some items the label may not be displayed, to avoid overlapping. The color of an item is determined by the cluster to which the item belongs. Lines between items represent links. Bibliographic data can be used to construct a network of co-authorship, co-occurrence, citation, bibliographic coupling, or co-citation, which are then displayed as a mapping.

 ii) Citescape [21] has also been used here for visualization of the bibliographic coupling between ASOC publications. It is an open source Java application used for visualizing trends from metadata of scientific literature. It helps in understanding and analysis of network patterns.

### 3. PUBLICATION AND CITATION STRUCTURE OF ASOC

The first volume of ASOC came in the year 2001. The journal was included in the Web of Science indexing from the year 2004 with 43 published papers followed by 32 papers in 2005, 24 papers in 2006 and since then the total number of publications never came below 100. Fig. 1 shows the number of publications in ASOC from 2004 to 2016. However, ASOC sees a sudden increase in publication in year 2011 with 548 papers as compared to 123 papers in the previous year. The overall publication trend seems to be uneven over the years. The year 2015 shows the highest number of publications with 654 papers with top research areas being Genetic Algorithms (GAs), Particle Swarm Optimization (PSO) and Multi-Objective Optimization (MOO). The aforesaid topics were also among the top research areas in the last five years. The average number of publication is 306 per year.



Fig. 1: Total number of ASOC publications by years (2004-2016)

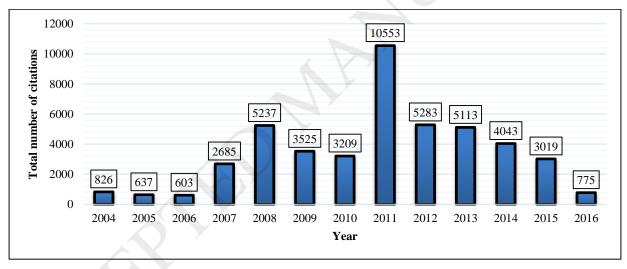



Fig. 2: Total citations by year (2004-2016)

The distribution of year wise citation counts over the time span of 12 years from 2004 to 2016 is shown in Fig. 2. The highest total citations were received by ASOC papers published in 2011. However, the highest *citations per paper* - (33) were received by papers published in 2008. Among the total publications, papers by Mallipeddi et al. [22] and Karaboga et al. [23] were cited the most number of times with 350 and 302 citations, respectively. The average citation per paper was 13. In the period between 2008 and 2016 the citations fetched by the journal were averaged at around 4528 per year.

Table 1 shows that only 0.11% of the ASOC publications received more than 200 citations, 0.98% more than 100 citations, 3.51 % more than 50 citations 15.92 % received more than 20 citations, 34.35 % received more than 10 citations and more than half of ASOC publications i.e. 54.16% received more than 5 citations. The four papers with more than 200 citations were

published between 2008-2011 by Karaboga and Basturk [23], Mallipeddi et al. [22], Karaboga and Ozturk [24] and Wei [25]. Of the total ASOC publications, 14.95% received no citations at all. It is clear from Table 1 that most of these papers came from 2016, and did not have enough time to obtain citations. Table 1 also presents year-wise values of TP, TC, CPP and h-index of ASOC.

| Year       | ≥ 200 | ≥100 | ≥ 50 | ≥ <b>20</b> | ≥10   | ≥5    | ≥1    | 0     | h-index | ТР   | ТС    | СРР |
|------------|-------|------|------|-------------|-------|-------|-------|-------|---------|------|-------|-----|
| 2016       | 0     | 0    | 0    | 0           | 1     | 24    | 247   | 348   | 18      | 595  | 775   | 1   |
| 2015       | 0     | 0    | 0    | 12          | 59    | 191   | 536   | 118   | 15      | 654  | 3019  | 5   |
| 2014       | 0     | 0    | 2    | 34          | 123   | 269   | 468   | 29    | 12      | 497  | 4043  | 8   |
| 2013       | 0     | 0    | 11   | 63          | 169   | 296   | 395   | 13    | 30      | 408  | 5113  | 13  |
| 2012       | 0     | 4    | 11   | 75          | 181   | 264   | 333   | 11    | 38      | 344  | 5283  | 15  |
| 2011       | 2     | 11   | 36   | 143         | 308   | 414   | 531   | 17    | 31      | 548  | 10553 | 19  |
| 2010       | 1     | 4    | 14   | 50          | 83    | 102   | 122   | 1     | 30      | 123  | 3209  | 26  |
| 2009       | 0     | 7    | 15   | 54          | 91    | 114   | 140   | 2     | 44      | 142  | 3525  | 25  |
| 2008       | 1     | 6    | 21   | 70          | 103   | 136   | 156   | 4     | 34      | 160  | 5237  | 33  |
| 2007       | 0     | 2    | 13   | 48          | 79    | 100   | 106   | 4     | 32      | 110  | 2685  | 24  |
| 2006       | 0     | 1    | 3    | 10          | 15    | 19    | 23    | 1     | 27      | 24   | 603   | 25  |
| 2005       | 0     | 0    | 2    | 10          | 23    | 28    | 31    | 1     | 19      | 32   | 637   | 20  |
| 2004       | 0     | 1    | 1    | 17          | 29    | 36    | 42    | 1     | 8       | 43   | 826   | 19  |
| Total      | 4     | 36   | 129  | 586         | 1264  | 1993  | 3130  | 550   | -       | 3680 | 45508 | -   |
| Percentage | 0.11  | 0.98 | 3.51 | 15.92       | 34.35 | 54.16 | 85.05 | 14.95 | 100.00  |      |       |     |

Table 1: General citation Structure in the Journal: Applied Soft Computing (2004-2016)

Table 2 lists the top 25 journals, institutions and countries/territories that have published documents citing ASOC publications. From the table, it can be seen that ASOC is on the top of the Journal source list with 2078 citations. The Expert Systems with Applications, Information Sciences, Mathematical Problems in Engineering, Neurocomputing and Journal of Intelligent Fuzzy Systems have frequently cited ASOC with, 933, 645, 481, 457 and 432 citations, respectively. They are followed by Knowledge Based Systems (344), Soft Computing (333), International Journal of Electrical Power and Energy Systems (280), International Journal of Advanced Manufacturing Technology (251), Engineering Applications of Artificial Intelligence (229) and Neural Computing Applications (222).

Among the institutions, the Islamic Azad University at Tehran in Iran is the leading institute in terms of the number of documents citing ASOC publications with 783 papers. The Indian Institute of Technology (IIT) from India with 470 papers and Chinese Academy of Sciences from China with 343 papers are in the second and third spots, respectively. If the top 10 list is considered, then the list has 4 institutions from Iran, 3 from China and 2 from Malaysia and 1 from India.

Among the countries/territories, Peoples Republic of China had 7194 papers citing ASOC, followed by Iran with 2677 papers and India with 2386 papers. United States of America (1584),

Taiwan (1569), Spain (1304), Turkey (1177) and England (876) have also cited the journal ASOC quite frequently.

|   |      | Journals                                                          |                 | Institution                                                                           | Country      |                 |                 |
|---|------|-------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------|--------------|-----------------|-----------------|
| R | lank | Source                                                            | Total<br>Papers | Source                                                                                | Total Papers | Source          | Total<br>Papers |
|   | 1    | Applied Soft Computing                                            | 2078            | Islamic Azad University,<br>Iran                                                      | 783          | Peoples R China | 7194            |
|   | 2    | Expert Systems with<br>Applications                               | 933             | Indian Institute of<br>Technology IIT, India                                          | 470          | Iran            | 2677            |
|   | 3    | Information Sciences                                              | 645             | Chinese Academy of<br>Sciences, China                                                 | 343          | India           | 2386            |
|   | 4    | Mathematical Problems<br>in Engineering                           | 481             | University of Tehran, Iran                                                            | 332          | USA             | 1584            |
|   | 5    | Neurocomputing                                                    | 457             | Amirkabir University of<br>Technology, Iran                                           | 283          | Taiwan          | 1569            |
|   | 6    | Journal of Intelligent<br>Fuzzy Systems                           | 432             | Iran University Science<br>Technology, Iran                                           | 266          | Spain           | 1304            |
|   | 7    | Knowledge Based<br>Systems                                        | 344             | Huazhong University of<br>Science Technology, China                                   | 264          | Turkey          | 1177            |
|   | 8    | Soft Computing                                                    | 333             | Dalian University of<br>Technology, China                                             | 247          | England         | 876             |
|   | 9    | International Journal of<br>Electrical Power Energy<br>Systems    | 280             | Universiti Malaya, Malaysia                                                           | 241          | Malaysia        | 861             |
|   | 10   | International Journal of<br>Advanced Manufacturing<br>Technology  | 257             | Universiti Teknologi,<br>Malaysia                                                     | 231          | Canada          | 674             |
|   | 11   | Computers Industrial<br>Engineering                               | 251             | University of Granada, Spain                                                          | 210          | Australia       | 655             |
|   | 12   | Engineering Applications of Artificial Intelligence               | 229             | National Taiwan University<br>of Science Technology,<br>Taiwan                        | 190          | South Korea     | 515             |
|   | 13   | Neural Computing<br>Applications                                  | 222             | Beihang University, China                                                             | 180          | Italy           | 453             |
|   | 14   | International Journal of<br>Production Research                   | 165             | Central South University,<br>China                                                    | 178          | Brazil          | 447             |
|   | 15   | Applied Mathematical<br>Modelling                                 | 145             | Hong Kong Polytechnic<br>University, China                                            | 178          | France          | 443             |
|   | 16   | Scientific World Journal                                          | 137             | Northeastern University,<br>China                                                     | 176          | Saudi Arabia    | 360             |
|   | 17   | IEEE Transactions on<br>Fuzzy Systems                             | 135             | Nanyang Technological<br>University, Singapore                                        | 170          | Poland          | 359             |
|   | 18   | International Journal of<br>Computational<br>Intelligence Systems | 134             | Nanyang Technological<br>University National Institute<br>of Education NIE, Singapore | 170          | Mexico          | 335             |
|   | 19   | Applied Mathematics<br>and Computation                            | 126             | Shanghai Jiao Tong<br>University, China                                               | 168          | Japan           | 299             |
|   | 20   | Energy                                                            | 126             | Xidian University, China                                                              | 161          | Greece          | 259             |
|   | 21   | European Journal of<br>Operational Research                       | 124             | Zhejiang University, China                                                            | 161          | Singapore       | 257             |
|   | 22   | Computers Operations<br>Research                                  | 122             | Xi An Jiaotong University,<br>China                                                   | 159          | Germany         | 247             |
|   | 23   | Applied Intelligence                                              | 118             | Harbin Institute of<br>Technology, China                                              | 158          | Pakistan        | 219             |
|   | 24   | Energy Conversion and<br>Management                               | 117             | Sichuan University, China                                                             | 150          | Serbia          | 190             |
|   | 25   | Sensors                                                           | 114             | Southeast University China,<br>China                                                  | 150          | Portugal        | 185             |

#### Table 2: Journals, Institutions and Countries citing Applied Soft Computing (2004-2016)

### Table 3: Top 40 Most Cited papers in Applied Soft Computing (2004-2016)

| Rank | Title                                                                                | Year | Author(s)                              | TC   | Citations/year |
|------|--------------------------------------------------------------------------------------|------|----------------------------------------|------|----------------|
| 1    | On the performance of artificial bee colony (ABC) algorithm [23]                     | 2008 | Karaboga D; Basturk, B                 | 1073 | 134.13         |
| 2    | Differential evolution algorithm with ensemble of parameters and mutation strategies | 2011 | Mallipeddi R; Suganthan, P. N; Pan, Q. | 350  | 70.00          |
|      | [22]                                                                                 |      | K; Tasgetiren, M. F                    |      |                |
| -    |                                                                                      |      |                                        |      |                |

| 3  | A novel clustering approach: Artificial Bee Colony (ABC) algorithm [24]                                                                                        | 2011 | Karaboga Dervis; Ozturk, Celal                                                            | 302 | 60.40 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------|-----|-------|
| 4  | Some induced geometric aggregation operators with intuitionistic fuzzy information<br>and their application to group decision making [25]                      | 2010 | Wei Guiwu                                                                                 | 277 | 46.17 |
| 5  | Cuckoo Optimization Algorithm [26]                                                                                                                             | 2011 | Rajabioun Ramin                                                                           | 183 | 36.60 |
| 6  | An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem [27]                                                                 | 2009 | Singh Alok                                                                                | 179 | 25.57 |
| 7  | A new chaos-based fast image encryption algorithm [28]                                                                                                         | 2011 | Wang Yong; Wong, Kwok-Wo; Liao,<br>Xiaofeng; Chen, Guanrong                               | 172 | 34.40 |
| 8  | Firefly Algorithm for solving non-convex economic dispatch problems with valve<br>loading effect [29]                                                          | 2012 | Yang Xin-She; Hosseini, Seyyed Soheil<br>Sadat; Gandomi, Amir Hossein                     | 170 | 42.50 |
| 9  | A modified Artificial Bee Colony (ABC) algorithm for constrained optimization<br>problems [30]                                                                 | 2011 | Karaboga Dervis; Akay, Bahriye                                                            | 170 | 34.00 |
| 10 | A hybrid genetic algorithm and particle swarm optimization for multimodal functions [31]                                                                       | 2008 | Kao Yi-Tung; Zahara, Erwie                                                                | 166 | 20.75 |
| 11 | Hybrid metaheuristics in combinatorial optimization: A survey [32]                                                                                             | 2011 | Blum Christian; Puchinger, Jakob;<br>Raidl, Guenther R; Roli, Andrea                      | 156 | 31.20 |
| 12 | A novel particle swarm optimization algorithm with adaptive inertia weight [33]                                                                                | 2011 | Nickabadi Ahmad; Ebadzadeh,<br>Mohammad Mehdi; Safabakhsh, Reza                           | 152 | 30.40 |
| 13 | Fuzzy hierarchical TOPSIS for supplier selection [34]                                                                                                          | 2009 | Wang Jia-Wen; Cheng, Ching-Hsue;<br>Kun-Cheng, Huang                                      | 152 | 21.71 |
| 14 | Application areas of AIS: The past, the present and the future [35]                                                                                            | 2008 | Hart Emma; Timmis, Jon                                                                    | 151 | 18.88 |
| 15 | Hybrid neural network models for hydrologic time series forecasting [36]                                                                                       | 2007 | Jain Ashu; Kumar, Avadhnam Madhav                                                         | 148 | 16.44 |
| 16 | The use of computational intelligence in intrusion detection systems: A review [37]                                                                            | 2010 | Wu Shelly Xiaonan; Banzhaf, Wolfgang                                                      | 142 | 23.67 |
| 17 | Evaluation of services using a fuzzy analytic hierarchy process [38]                                                                                           | 2004 | Mikhailov L; Tsvetinov, P                                                                 | 133 | 11.08 |
| 18 | A distributed PSO-SVM hybrid system with feature selection and parameter<br>optimization [39]                                                                  | 2008 | Huang Cheng-Lung; Dun, Jian-Fan                                                           | 131 | 16.38 |
| 19 | A review on the design and optimization of interval type-2 fuzzy controllers [40]                                                                              | 2012 | Castillo Oscar; Melin, Patricia                                                           | 128 | 32.00 |
| 20 | Hybridizing particle swarm optimization with differential evolution for constrained<br>numerical and engineering optimization [41]                             | 2010 | Liu Hui; Cai, Zixing; Wang, Yong                                                          | 128 | 21.33 |
| 21 | A genetic algorithms based multi-objective neural net applied to noisy blast furnace<br>data [42]                                                              | 2007 | Pettersson F; Chakraborti, N; Saxen, H                                                    | 127 | 14.11 |
| 22 | Recent Advances in Artificial Immune Systems: Models and Applications [43]                                                                                     | 2011 | Dasgupta Dipankar; Yu, Senhua; Nino,<br>Fernando                                          | 125 | 25.00 |
| 23 | The best-so-far selection in Artificial Bee Colony algorithm [44]                                                                                              | 2011 | Banharnsakun Anan; Achalakul,<br>Tiranee; Sirinaovakul, Booncharoen                       | 122 | 24.40 |
| 24 | A comparative analysis of training methods for artificial neural network rainfall-runoff models [45]                                                           | 2006 | Srinivasulu S; Jain, A                                                                    | 115 | 11.50 |
| 25 | An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis [46]                                                                           | 2010 | Niknam Taher; Amiri, Babak                                                                | 114 | 19.00 |
| 26 | Artificial Bee Colony (ABC) for multi-objective design optimization of composite<br>structures [47]                                                            | 2011 | Omkar S. N; Senthilnath, J; Khandelwal,<br>Rahul; Naik, G. Narayana;<br>Gopalakrishnan, S | 113 | 22.60 |
| 27 | Influence of crossover on the behavior of Differential Evolution Algorithms [48]                                                                               | 2009 | Zaharie Daniela                                                                           | 113 | 16.14 |
| 28 | Particle swarm optimization with adaptive population size and its application [49]                                                                             | 2009 | Chen DeBao; Zhao ChunXia                                                                  | 109 | 15.57 |
| 29 | Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design [50]                                                         | 2008 | Panda Sidhartha; Padhy, Narayana<br>Prasad                                                | 108 | 13.50 |
| 30 | Dimensionality reduction based on rough set theory: A review [51]                                                                                              | 2009 | Thangavel K; Pethalakshmi, A                                                              | 106 | 15.14 |
| 31 | Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets [52]                                                                                      | 2009 | Ashtiani Behzad; Haghighirad, Farzad;<br>Makui, Ahmad; Montazer, Golam Ali                | 104 | 14.86 |
| 32 | Closeness coefficient based nonlinear programming method for interval-valued<br>intuitionistic fuzzy multiattribute decision making with incomplete preference | 2011 | Li Deng-Feng                                                                              | 103 | 20.60 |
| 33 | information [53]<br>Estimation of elastic constant of rocks using an ANFIS approach [54]                                                                       | 2012 | Singh Rajesh; Kainthola, Ashutosh;<br>Singh, T. N                                         | 101 | 25.25 |
| 34 | No-reference image quality assessment using modified extreme learning machine<br>classifier [55]                                                               | 2009 | Singn, T. N<br>Suresh S; Babu, R. Venkatesh; Kim, H.                                      | 101 | 14.43 |
| 35 | Development and investigation of efficient artificial bee colony algorithm for<br>numerical function optimization [56]                                         | 2012 | Li Guoqiang; Niu, Peifeng; Xiao,<br>Xingjun                                               | 100 | 25.00 |
| 36 | Parameter determination of support vector machine and feature selection using<br>simulated annealing approach [57]                                             | 2008 | Lin Shih-Wei; Lee, Zne-Jung; Chen,<br>Shih-Chieh; Tseng, Tsung-Yuan                       | 100 | 12.50 |
| 37 | A linguistic consensus model for Web 2.0 communities [58]                                                                                                      | 2013 | Alonso S; Perez, I. J; Cabrerizo, F. J;<br>Herrera-Viedma, E                              | 99  | 33.00 |
| 38 | Knowledge-Based Ant Colony Optimization for Flexible Job Shop Scheduling<br>Problems [59]                                                                      | 2010 | Xing Li-Ning; Chen, Ying-Wu; Wang,<br>Peng; Zhao, Qing-Song; Xiong, Jian                  | 98  | 16.33 |
| 39 | Problems [59]<br>Path planning for autonomous mobile robot navigation with ant colony optimization<br>and fuzzy cost function evaluation [60]                  | 2009 | Garcia M. A. Porta; Montiel, Oscar;<br>Castillo, Oscar; Sepulveda, Roberto;               | 97  | 13.86 |
| 40 | A fuzzy AHP approach to personnel selection problem [61]                                                                                                       | 2009 | Melin, Patricia<br>Gungor Zulal; Serhadlioglu, Guerkan;                                   | 94  | 13.43 |

Applied Soft Computing is a journal of high impact factor, viz., 3.541. Impact factor is a generally accepted metric for assessment of journals. It represents the average citation of papers published in the journal during last two (five) years. ASOC has been publishing good quality research work in the area of computer science and engineering. The top 40 most cited papers in

ASOC according to WoS are shown in Table 3. The top cited publication is titled, *On the performance of artificial bee colony (ABC) algorithm*, by Karaboga and Basturk [23]. The paper has received 1073 citations since its publication in 2008. The third rank is also taken by Karaborga et al. [24] with 302 citations, with the paper titled *A novel clustering approach: Artificial Bee Colony (ABC) algorithm*. The second place with 350 citations goes to Mallipeddi et al. [22] for their paper, *Differential evolution algorithm with ensemble of parameters and mutation strategies*. They are followed by Wei [25] with 277 citations, Rajabioun [26] with 183 citations and Singh [27] with 179 citations for their work on, *intuitionistic fuzzy information and their application, Cuckoo Optimization Algorithm, and artificial bee colony algorithm for the leaf-constrained minimum spanning tree, respectively.* 

In terms of citations per year, the paper by Karaboga and Basturk [23] performed best with 134.13 citations per year, and next is Mallipeddi et al. [22] with 70 citations per year.

#### 4. AUTHORS AND INSTITUTION ANALYSIS

This Section analysis the authorship of the ASOC publications and their institutions. It also discusses about the authors who were cited highly in the ASOC publications as well as their cocitation network.

#### 4.1 Authorship

Table 4 shows the list of top 15 productive and influential authors in ASOC. Each of the authors have contributed more than 10 papers in ASOC. Pedrycz, Castillo with 25 and 22 papers respectively, are the three top most productive authors. They are followed by Jiao (19), Melin (15), Chang (14), Wang, Y. (14), Ghosh (13), Wang S.T. (13), Isa (12) and Lin (12).

| Rank | Name        | ТР | ТС  | СРР   | h-index |
|------|-------------|----|-----|-------|---------|
| 1    | Pedrycz W   | 25 | 274 | 10.96 | 9       |
| 2    | Castillo O  | 22 | 761 | 34.59 | 14      |
| 3    | Jiao LC     | 19 | 154 | 8.11  | 8       |
| 4    | Melin P     | 15 | 684 | 45.60 | 12      |
| 5    | Chang PC    | 14 | 351 | 25.07 | 10      |
| 6    | Wang Y      | 14 | 434 | 31.00 | 7       |
| 7    | Ghosh S     | 13 | 108 | 8.31  | 6       |
| 8    | Wang ST     | 13 | 87  | 6.69  | 6       |
| 9    | Isa Nam     | 12 | 106 | 8.83  | 8       |
| 10   | Lin SW      | 12 | 249 | 20.75 | 7       |
| 11   | Zarandi MHF | 12 | 123 | 10.25 | 5       |
| 12   | Kumar A     | 11 | 91  | 8.27  | 4       |
| 13   | Li H        | 11 | 77  | 7.00  | 4       |
| 14   | Lim CP      | 11 | 107 | 9.73  | 5       |
| 15   | Zhang J     | 11 | 58  | 5.27  | 4       |

| Table 4: Most Produ | ctive and Influential | Authors in A | SOC (2004-2016) |
|---------------------|-----------------------|--------------|-----------------|
|---------------------|-----------------------|--------------|-----------------|

Besides total number of papers, total citations, citations per paper and h-index are also used to describe the authors. Authors with the highest total citations are Castillo (761), Melin (684), Wang Y. (434), Chang (351) and Pedrycz (274). Few of the highly cited papers contributed by these authors are: The design and optimization of Interval type-2 fuzzy controllers [39] and autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation [59], A new chaos-based fast image encryption algorithm [27], Fuzzy hierarchical

TOPSIS for supplier selection [33], and Ant Colony Optimization for Flexible Job Shop Scheduling Problems [59].

The highest *average citations per paper* (CPP) were received by Melin (45.6), Castillo (34.6), Wang (31.0), Chang (25.1), Lin (20.8) and Pedrycz (11). The *h-index* was highest for Castillo (h=14), followed by Melin (12) and Chang (10).

#### 4.2 Institutions

Table 5 presents the most active institutions which have contributed to ASOC publications. The Islamic Azad University, Iran produced 96 total papers with total citation of 1134. The second spot is taken by Amir Kabir University of Technology, also from Iran, with 76 papers. Jadavpur University from India takes the third spot with 47 occurrences. The total papers from the institute with total citations and citations per paper (CPP) are also given in the table, along with h-index of each institution.

| Rank | Institution                                      | Country/<br>Territory | ТР | тс   | СРР   | h-index |
|------|--------------------------------------------------|-----------------------|----|------|-------|---------|
| 1    | Islamic Azad University                          | Iran                  | 96 | 1134 | 11.81 | 17      |
| 2    | Amirkabir University of Technology               | Iran                  | 76 | 1047 | 13.78 | 16      |
| 3    | Jadavpur University                              | India                 | 47 | 780  | 16.60 | 17      |
| 4    | Indian Institute of Technology IIT Kharagpur     | India                 | 46 | 822  | 17.87 | 17      |
| 5    | University of Tehran                             | Iran                  | 46 | 686  | 14.91 | 14      |
| 6    | National Taiwan University of Science Technology | Taiwan                | 42 | 659  | 15.69 | 14      |
| 7    | University of Granada                            | Spain                 | 42 | 499  | 11.88 | 11      |
| 8    | Iran University Science Technology               | Iran                  | 40 | 691  | 17.28 | 14      |
| 9    | Hong Kong Polytechnic University                 | Hong Kong             | 39 | 343  | 8.79  | 11      |
| 10   | Indian Institute of Technology IIT Delhi         | India                 | 36 | 387  | 10.75 | 11      |
| 11   | Xidian University                                | China                 | 35 | 274  | 7.83  | 10      |
| 12   | Indian Statistical Institute                     | India                 | 33 | 290  | 8.79  | 11      |
| 13   | Sharif University of Technology                  | Iran                  | 31 | 333  | 10.74 | 10      |
| 14   | Universiti Teknologi Malaysia                    | Malaysia              | 31 | 298  | 9.61  | 10      |
| 15   | Nanyang Technological University                 | Singapore             | 30 | 801  | 26.70 | 10      |
| 16   | City University of Hong Kong                     | Hong Kong             | 28 | 482  | 17.21 | 11      |
| 17   | University of Alberta                            | Canada                | 28 | 283  | 10.11 | 9       |
| 18   | Yuan Ze University                               | Taiwan                | 28 | 531  | 18.96 | 14      |
| 10   | King Abdulaziz University                        | Saudi Arabia          | 27 | 202  | 7.48  | 7       |
| 20   | Universiti Sains Malaysia                        | Malaysia              | 27 | 293  | 10.85 | 10      |
| 21   | Chinese Academy of Sciences                      | China                 | 25 | 266  | 10.64 | 9       |
| 22   | Polish Academy of Sciences                       | Poland                | 25 | 275  | 11.00 | 9       |
| 23   | Universiti Malaya                                | Malaysia              | 25 | 197  | 7.88  | 6       |
| 24   | Huazhong University of Science Technology        | China                 | 24 | 250  | 10.42 | 9       |
| 25   | Dalian University of Technology                  | China                 | 23 | 410  | 17.83 | 8       |

Table 5: Most Productive and Influential Institutions in ASOC publications (2004-2016)

The two top institutes from Iran also had the highest total citation (1134, 1047) followed by the Indian Institute of Technology Kharagpur and Jadavpur University (822, 780 citations), both from India. Following is the Iran Institute of Science and Technology (691), again from Iran.

The institutes with the highest average citation per paper CPP were Nanyang Technological University, Singapore (26.7), Yuan Ze University, Taiwan (19.0), IIT Kharagpur (17.9), Dalian

University of Technology (17.8), Iran University Science Technology (17.3), Jadavpur University (16.6), National Taiwan University of Science Technology (15.7) and University of Tehran (14.9). Three institutes have an h-index of 17, Islamic Azad University, Jadavpur University and IIT Kharagpur, while Amirkabir University has an h-index of 16.

#### 4.3 Authors Highly Cited in ASOC

The authors most cited by Applied Soft Computing papers are shown in Table 6. The top spot is taken by Zadeh with 728 citations, followed by Deb with 661 citations at second place, and Kennedy with 621 citations at third place. This observation is also evident from the co-citation network of the authors in ASOC (Fig. 3) as the nodes represented by these three authors are the largest in size. As explained in the next section, the colored clusters in Fig. 3 indicate different research themes. Zadeh belonging to soft computing applications, Deb to multi-objective optimization problem and Kennedy to particle swarm optimization.

| Rank | Author Name | Citations |
|------|-------------|-----------|
| 1    | Zadeh LA    | 728       |
| 2    | Deb K       | 661       |
| 3    | Kennedy J   | 621       |
| 4    | Xu ZS       | 406       |
| 5    | Karaboga D  | 403       |
| 6    | Dorigo M    | 391       |
| 7    | Goldberg DE | 372       |
| 8    | Zitzler E   | 335       |
| 9    | Yager RE    | 261       |
| 10   | Storm R     | 251       |
| 11   | Pedrycz W   | 219       |
| 12   | Yildiz AR   | 216       |
| 13   | Yang XS     | 216       |
| 14   | Herrera F   | 210       |
| 15   | Ishibuchi H | 205       |
|      |             |           |

Table 6: Authors most cited by ASOC papers during (2004-2016)

#### 4.4 Author Co-citation Network

Fig. 3 illustrates the author co-citation network created from the references in the ASoC papers published during 2004 to 2016, using VOSviewer. Each node represents a referenced author and the size of a node represents the number of citations to that author. The line connecting two nodes in the network represents a co-citation relation, i.e., it shows that the two authors are cited together in the reference list of an ASOC paper. If certain authors are cited together more often, their papers are likely to be similar in content and the software places them closer on the map. Clusters of related authors can be identified in the network since the more frequently co-cited authors would belong to the same cluster representing a common research theme. This network essentially represents the knowledge base from which ASoC papers are derived.

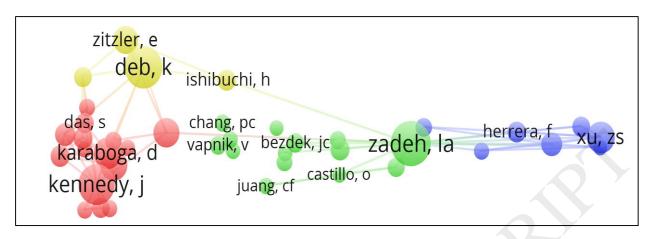



Fig. 3: Author Co-Citation network of ASOC (2004-2016)

The graph is strongly connected showing that most authors have been co-cited with oneanother. However, the green cluster consisting of Zadeh, Castillo, Bezdek, Chang has been mutually co-cited more than with others. This research area is likely to be more central to the knowledge pool in ASOC. The size of the nodes reflects the number of papers in the references attributed to the respective authors. The main clusters of co-cited authors and the research areas they represent are:

- 1) Zadeh, Castillo, Bezdek, Chang Soft Computing applications
- 2) Deb, Ishibuchi, Zitzler and another author Multi-objective optimization problem
- 3) Xu, Herrera and others Decision making
- 4) Karaboga, Kennedy, Das and others Particle swarm optimization

### 5. COUNTRY ANALYSIS OF APPLIED SOFT COMPUTING PUBLICATIONS

As Applied Soft Computing is a leading journal in the area, a number of researchers from the computer science fraternity have published their important research work there. The top 25 countries/territories from where papers were received are shown in Table 7. The countries are ranked according to the number of papers published; other indicators such as total citations, citations per paper and h-index are also mentioned.

According to the data from the Table 7, Peoples Republic of China is the most productive country with 682 papers followed by India (612), Iran (403), Taiwan (333), Spain (278), USA (222) and Turkey (212). In terms of total citations, China has the highest citations (8468) followed by India (8007), Iran (4963), Taiwan and Turkey (4556 each), USA (2786), Spain (2510), and England (2525). However, when it comes to citations per paper, Singapore stands out with 23.85 citations per paper, followed by Turkey with 21.49 cites/paper. Something worth noticing is that the top three positions are held by developing countries. Moreover, in the top 10 list, five places are occupied by developing countries, indicating their contribution. In terms of h-index that measures both quantity and quality, India has the highest, h=42, followed by China, h=40.

Table 7: ASOC papers (2004-2016): Most Productive Countries

| Rank Country/Territory | TP | ТС | СРР | h-index |
|------------------------|----|----|-----|---------|
|------------------------|----|----|-----|---------|

| 1  | Peoples R China | 682 | 8468 | 12.42 | 40 |
|----|-----------------|-----|------|-------|----|
| 2  | India           | 612 | 8007 | 13.08 | 42 |
| 3  | Iran            | 403 | 4963 | 12.32 | 33 |
| 4  | Taiwan          | 333 | 4556 | 13.68 | 32 |
| 5  | Spain           | 278 | 2510 | 9.03  | 24 |
| 6  | USA             | 222 | 2786 | 12.55 | 26 |
| 7  | Turkey          | 212 | 4556 | 21.49 | 28 |
| 8  | England         | 186 | 2525 | 13.58 | 26 |
| 9  | Malaysia        | 149 | 1470 | 9.87  | 21 |
| 10 | Canada          | 137 | 1591 | 11.61 | 21 |
| 11 | Italy           | 86  | 737  | 8.57  | 12 |
| 12 | Australia       | 84  | 1060 | 12.62 | 17 |
| 13 | Brazil          | 80  | 645  | 8.06  | 13 |
| 14 | Mexico          | 78  | 1229 | 15.76 | 18 |
| 15 | Japan           | 77  | 539  | 7.00  | 14 |
| 16 | Poland          | 71  | 635  | 8.94  | 15 |
| 17 | France          | 69  | 526  | 7.62  | 12 |
| 18 | South Korea     | 69  | 696  | 10.09 | 13 |
| 19 | Saudi Arabia    | 67  | 426  | 6.36  | 10 |
| 20 | Germany         | 56  | 515  | 9.20  | 11 |
| 21 | Singapore       | 47  | 1121 | 23.85 | 14 |
| 22 | Greece          | 45  | 769  | 17.09 | 16 |
| 23 | Pakistan        | 41  | 310  | 7.56  | 10 |
| 24 | Finland         | 33  | 483  | 14.64 | 13 |
| 25 | Portugal        | 31  | 248  | 8.00  | 10 |
|    |                 |     |      |       |    |

Fig. 4 shows the bibliographic coupling of the top 20 most productive countries/territories. When the reference lists of two papers have some common entries, the papers are said to be bibliographically coupled. The higher the intersection, or degree of overlap between the reference lists, the greater the coupling. The concept extended to countries would imply that two countries are bibliographically coupled if there is a degree of overlap between the papers cited by them. The clusters in Fig. 4 show that the China, India, Iran, Taiwan, Turkey, Brazil, Australia and Malaysia belong to a single red cluster and are likely to be working on similar research themes and citing the same literature in their reference lists or bibliography. USA, England, Spain, France, Germany, Italy, Mexico and Japan form another cluster, the green cluster. Canada, Saudi Arabia, South Korea and Poland form the blue cluster.

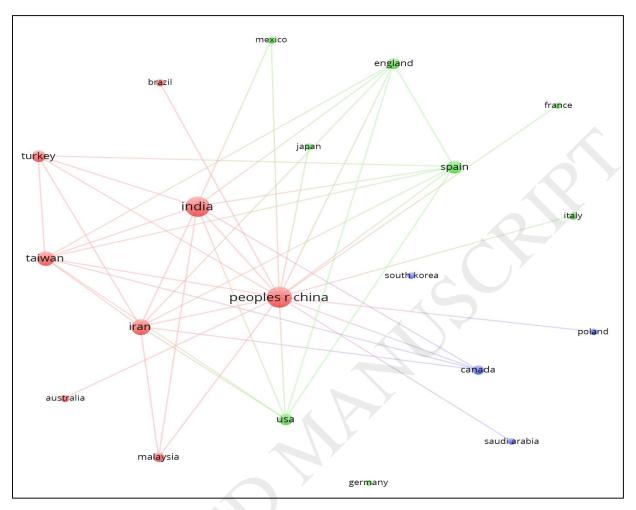



Fig. 4: Bibliographic Coupling of the 20 most productive countries/territories in ASOC Publications during (2004-2016)

#### 5.1 *Country Collaboration*

Co-authorship is an interesting feature in the development of research disciplines and publications. They are a measure of collaboration and knowledge exchange which can be considered at the level of individuals, institutions or countries. Fig. 5 shows the co-authorship of the ASOC publications between countries/territories. Each node in the network represents a country and each edge between two nodes represents collaboration. The size of a node corresponds to the number of co-authored papers produced by that particular country.

China, Taiwan and USA form the yellow cluster, indicating that they collaborate more with one another than with other countries. Similarly, India, Iran, Malaysia, England, Turkey, Australia, Japan and Singapore form a red cluster implying that they collaborate primarily with each other. The green cluster has lower levels of collaboration and includes Canada, Poland, South Korea and Pakistan. The remaining countries, Spain, Germany, France and Italy form the blue cluster and have visible co-authorships.

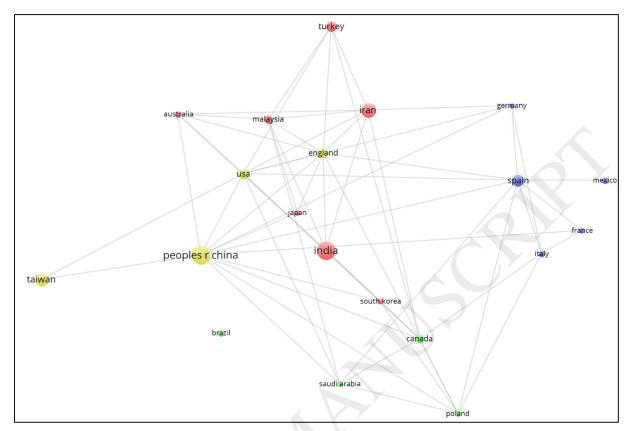



Fig. 5: Country co-authorship of the ASOC publications during (2004-2016)

#### 5.2 Temporal Analysis

Temporal analysis of the literature serves to identify productive and influential countries at various stages and can give some insight into research trajectories of different countries. Table 8 shows the leading countries in four different stages (2004-2007, 2008-2010, 2011-2013, and 2014-2016). From the analysis, over these time periods, we find that there has been a rise or fall in the relative ranks of countries as measured by their output in ASOC. In the first two stages India was leading with a total of 128 publications but in the later two stages China overtook India and is now the leading contributor. Western countries such as USA and England were among the top five in 2004-07 with a total of 42 papers, while Asian countries in the top 5 had 75 papers. In the next phase 2008-10, USA had 31 papers, while of the remaining countries three were Asian and had 190 papers. One Arab country, Iran had 39 papers. In the next phase, Europe returns as Spain with 114 papers, Asia had 609 papers, while Iran had 156 papers. In the last phase, Asia had 645 papers, European countries Spain and Turkey had 264 papers while Iran had 205 papers.

Something worth noticing is the CPP of China, which has been the highest during 2004-07, 2011-13, and 2014-16. However, during 2008-2010, Iran had the highest CPP. In terms of h-index, India had the highest (h=18) in 2004-07, USA had the highest in 2008-10 (h=31), China had the highest (h=32) in 2011-13, and again (h=19) in 2014-16.

| Years     | <b>Country/Territory</b> | ТР  | ТС   | CPP   | h-index |
|-----------|--------------------------|-----|------|-------|---------|
|           | India                    | 42  | 1126 | 26.81 | 18      |
|           | USA                      | 23  | 515  | 22.39 | 12      |
| 2004-2007 | England                  | 19  | 510  | 26.84 | 11      |
|           | Japan                    | 17  | 208  | 12.24 | 11      |
|           | China                    | 16  | 499  | 31.19 | 11      |
|           | India                    | 86  | 2399 | 27.90 | 25      |
|           | China                    | 59  | 1811 | 30.69 | 24      |
| 2008-2010 | Taiwan                   | 44  | 1254 | 28.50 | 18      |
|           | Iran                     | 39  | 1278 | 32.77 | 23      |
|           | USA                      | 31  | 749  | 24.16 | 31      |
|           | China                    | 226 | 4217 | 18.66 | 32      |
|           | India                    | 220 | 3293 | 14.97 | 29      |
| 2011-2013 | Taiwan                   | 163 | 2478 | 15.20 | 26      |
|           | Iran                     | 156 | 2795 | 17.92 | 26      |
|           | Spain                    | 114 | 1490 | 13.07 | 19      |
|           | China                    | 381 | 1941 | 5.09  | 19      |
|           | India                    | 264 | 1189 | 4.50  | 16      |
| 2014-2016 | Iran                     | 205 | 844  | 4.12  | 13      |
|           | Spain                    | 142 | 622  | 4.38  | 12      |
|           | Turkey                   | 122 | 536  | 4.39  | 12      |

Table 8: Most Productive and Influential Countries in Four Different Temporal Stages

### 6. Document co-citation analysis

The thematic areas of ASOC publications are also explored using Citespace (*see* details in methodology, Section 2). Fig. 6 shows the document co-citation clusters of ASOC publications. The title term of each cluster is determined by Citespace using log-likelihood ratios. For ASOC publications, there were a total of 117 clusters out of which the top 10 are shown in Table 9 along with the top term from log-likelihood ratios.

| Size | Mean(Year)                             | Торіс                                      |
|------|----------------------------------------|--------------------------------------------|
| 17   |                                        | _ • <b>P</b> • •                           |
| 4/   | 2004                                   | radial basis function network              |
| 44   | 2003                                   | application area                           |
| 43   | 2006                                   | adaptive parameter selection               |
| 41   | 2007                                   | differential evolution                     |
| 37   | 2008                                   | artificial bee colony algorithm            |
| 36   | 2006                                   | fuzzy cognitive map                        |
| 29   | 2008                                   | job shop scheduling problem                |
| 28   | 2002                                   | chaotic sequence                           |
| 25   | 2005                                   | intuitionistic fuzzy entropy measure       |
|      | 44<br>43<br>41<br>37<br>36<br>29<br>28 | 442003432006412007372008362006292008282002 |

| Table 9: | Cluster | Analys        | sis |
|----------|---------|---------------|-----|
|          | Clusici | <b>man</b> ya | 513 |

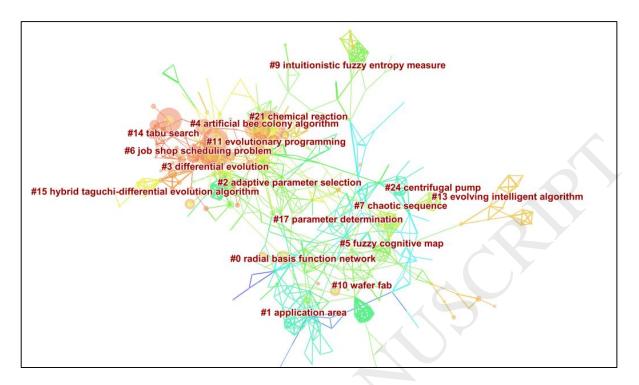



Fig. 6: Document co-citation clusters

From Table 9 and Figure 6 it is evident that the largest clusters are *radial basis function network*, *application area* and *adaptive parameter selection*. The oldest cluster is *chaotic sequence* in 2002 and the youngest clusters are *artificial bee colony algorithm* and *job shop scheduling problem*.

Table 10 shows the top 19 papers highly cited by ASOC publications with co-citation frequency of over 70. It indicates the knowledge core from which papers in ASOC are derived. The paper by Kennedy and Eberhart on *Particle Swarm Optimization (PSO)* is on top of the list with 347 citations, which also gives an idea that out of the total of 3680 ASOC publications 376 (~10%) were in some way based on PSO, i.e., it has had the greatest influence on research publications in ASOC. Zadeh's seminal paper on *Fuzzy sets* [2] with 267 citations comes next. The book by Goldberg on *Genetic Algorithms* [63] has been cited 243 times in ASoC since its publication in 1989 and ranks third. The book by Holland on *Adaptation in natural and artificial systems* [64], and the paper by Deb *et al.* on *Multiobjective Genetic Algorithms* [65], stand at fourth and fifth positions with 164 and 158 citations, respectively. Most of the highly cited references were published before 2000 except Deb [65], Eberhart et al. [76] in 2001, and Deb [69] in 2001, Clerc & Kennedy [73] in 2002, and Karaboga & Basturk [23] in 2008.

| Rank | Authors                                            | Title                                                                                                                                         | Source                                                             | Year | Frequency |
|------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|-----------|
| 1    | J. Kennedy and R.<br>Eberhart                      | Particle Swarm Optimization [62]                                                                                                              | IEEE International<br>Conference on Neural<br>Networks Proceedings | 1995 | 347       |
| 2    | L. A. Zadeh                                        | Fuzzy sets [2]                                                                                                                                | Information and Control                                            | 1965 | 267       |
| 3    | D. E. Goldberg                                     | Genetic algorithms in search, optimization, and machine learning [63]                                                                         | Book                                                               | 1989 | 243       |
| 4    | J. H. Holland                                      | Adaptation in natural and artificial systems. An introductory analysis with application to biology, control, and artificial intelligence [64] | Book                                                               | 1975 | 164       |
| 5    | K. Deb, A. Pratap,<br>S. Agarwal & T.<br>Meyarivan | A fast and elitist multi-objective genetic algorithm: NSGA-II [65]                                                                            | IEEE Transactions on<br>Evolutionary Computation                   | 2002 | 158       |
| 6    | R. Storn & K. Price                                | Differential Evolution – A Simple and Efficient<br>Heuristic for global Optimization over<br>Continuous Spaces [66]                           | Journal of Global<br>Optimization                                  | 1997 | 155       |
| 7    | T. Takagi & M.<br>Sugeno                           | Fuzzy identification of systems and its applications to modeling and control [67]                                                             | IEEE Transactions on<br>Systems, Man, and<br>Cybernetics           | 1985 | 115       |
| 8    | S. Kirkpatrick, C.<br>D. Gelatt & M. P.<br>Vecchi  | Optimization by Simulated Annealing [68]                                                                                                      | Science                                                            | 1983 | 107       |
| 9    | K. Deb                                             | Multi-objective optimization using evolutionary algorithms [69]                                                                               | Book                                                               | 2001 | 106       |
| 10   | L. A. Zadeh                                        | The concept of a linguistic variable and its application to approximate reasoning—I [70]                                                      | Information Sciences                                               | 1975 | 98        |
| 11   | J. S. R. Jang                                      | ANFIS: adaptive-network-based fuzzy<br>inference system [71]                                                                                  | IEEE Transactions on<br>Systems, Man, and<br>Cybernetics           | 1993 | 96        |
| 12   | J. C. Bezdek                                       | Pattern Recognition with Fuzzy Objective<br>Function Algorithms [72]                                                                          | Book                                                               | 1981 | 95        |
| 13   | M. Clerc & J.<br>Kennedy                           | The particle swarm - explosion, stability, and<br>convergence in a multidimensional complex<br>space [73]                                     | IEEE Transactions on<br>Evolutionary Computation                   | 2002 | 93        |
| 14   | V. N. Vapnik                                       | The nature of statistical learning theory [74]                                                                                                | Book                                                               | 1995 | 93        |
| 15   | M. Dorigo, V.<br>Maniezzo & A.<br>Colorni          | Ant system: optimization by a colony of cooperating agents [75]                                                                               | IEEE Transactions on<br>Systems, Man, and<br>Cybernetics           | 1996 | 82        |
| 16   | R. C. Eberhart, Y.<br>Shi & J. Kennedy             | Swarm Intelligence [76]                                                                                                                       | Book                                                               | 2001 | 74        |
| 17   | T. L. Saaty                                        | Analytic Hierarchy Process [77]                                                                                                               | Book                                                               | 1980 | 72        |
| 18   | D. Karaboga & B.<br>Basturk                        | On the performance of artificial bee colony (ABC) algorithm [23]                                                                              | Applied Soft Computing                                             | 2008 | 71        |
| 19   | J. R. Koza                                         | Genetic programming: on the programming of computers by means of natural selection [78]                                                       | Book                                                               | 1992 | 71        |

### 7. DISCUSSION AND CONCLUSION

In this paper, we have explored the 12 year (2004-2016) publications and citation history of the journal Applied Soft Computing using bibliometric methods and techniques to exhibit an aerial view and hidden publication structure of the ASOC. It is the youngest of several journals in similar and neighbouring areas, shown in Table 11. It ranks 2<sup>nd</sup> in terms of number of papers

and citations, 3<sup>rd</sup> in terms of number of citations per paper after TFS and INS, and 4<sup>th</sup> in terms of Impact Factor in a 10 year comparison.

| Journal                                                       | Induction Year | TP<br>(10 years) | TC<br>(10 years) | СРР  | Impact Factor |
|---------------------------------------------------------------|----------------|------------------|------------------|------|---------------|
| Information Sciences (INS)                                    | 1968           | 5125             | 102308           | 20.0 | 4.832         |
| Soft Computing (SC)                                           | 1997           | 1620             | 14096            | 8.7  | 2.472         |
| Knowledge-Based Systems (KBS)                                 | 1987           | 2092             | 31516            | 15.1 | 4.529         |
| Engineering Applications of Artificial Intelligence<br>(EAAI) | 1988           | 1617             | 22107            | 13.7 | 2.894         |
| IEEE Transactions on Fuzzy Systems (IEEE TFS)                 | 1993           | 1186             | 42013            | 35.4 | 7.651         |
| Applied Soft Computing (ASOC)                                 | 2001           | 3581             | 56584            | 15.8 | 3.541         |

Table 11: ASOC comparison with other related Journals

The bibliographic details of a total of 3680 papers were analyzed (~ 306 per year). ASOC published the largest number of papers in 2015 (654) and received the highest total citations in the year 2011 (10553). Four papers received more than 200 citations each, while ~15% papers still remain uncited.

The most productive and influential authors in ASOC were Pedrycz, University of Alberta, Castillo, Tijuana Institute of Technology and Jiao, Xidian University . The top research areas in the last five years in ASoC were *GAs*, *PSO and Multi-Objective Optimization MOO*. Islamic Azad University and Amirkabir University of Iran take first two ranks in the list of most productive institutions. Zadeh, University of California at Berkeley, Deb, Michigan State University, and Kennedy, Bureau of Labor Statistics hold the top positions as the individuals most cited by ASOC authors. Among countries, China, India and Iran are the top 3 most productive countries.

This study is a scientometric and bibliometric study of the ASOC journal, however, the limitation of this research area arises from the 'metric' aspect of the discipline. It deals with numbers of papers and citations. Numbers represent 'quantity', but citations do not unambiguously represent 'quality'. It is known that citations are subject to the biblical 'Matthew'effect which says, 'to whom it had been given, to him shall be given more' [79]. Also it has been seen that high productivity has been linked to high citations. The implication is that isolated highly cited papers by an author can be missed in studies that cumulate citations. The second limitation is that studies often cover a period of 10-25 years. If a paper is not cited within a short span of time after publication it is likely to be missed. This means that 'sleeping beauties' or those papers which pick up a significant number of citations after a long dormant phase are also likely to escape the attention of scientometricians [80].

Another limitation of the study is that it creates a profile of a journal but not that of the field it covers, which may be peopled by other journals, authors, institutions and countries. Certain limitations are inherent to the data retrieved from the WoS database. For example, not all journals are indexed in WoS. Citations from journals outside the ambit of WoS would be missed giving ASOC fewer citations than it has actually received.

In general, this paper provides the overall publication outline since the introduction of ASOC. It has played an important role in shaping the academic research. ASOC is certainly discovering developing trends in the domain of soft computing.

#### Acknowledgements

We are thankful to the anonymous reviewers and the associate editor for all of their valuable comments which helped us a lot in improving the paper significantly. Second author gratefully acknowledges the financial support received in the form of INSPIRE fellowship from the Department of Science and Technology, Government of India.

#### References

- [1] K. K. Rao and G. S. V. P. Raju, "An Overview on Soft Computing Techniques," in High Performance Architecture and Grid Computing, Springer, 2011, pp. 9–23.
- [2] L. A. Zadeh, "Fuzzy Sets," Information and Control vol. 8, no. 3, 1965, pp. 338–353.
- [3] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes," IEEE Trans. Syst. Man Cybern., vol. SMC-3, no. 1, 1973, pp. 28–44.
- [4] L. A. Zadeh, "Possibility theory and soft data analysis," Fuzzy sets, fuzzy logic, fuzzy Syst., 1996, pp. 481–541.
- [5] A. E. Eiben and M. Schoenauer, "Evolutionary computing," Inf. Process. Lett., vol. 82, no. 1, 2002, p. 1–6.
- [6] P. D. Wasserman, Neural computing. Van Nostrand Reinhold, New York, 1989.
- [7] https://www.journals.elsevier.com/applied-soft-computing/
- [8] D. Yu, "A scientometrics review on aggregation operator research," Scientometrics, vol. 105, no. 1, 2015, pp. 115–133.
- [9] Z. Xu, D. Yu, Y. Kao, and C.-T. Lin, "The structure and citation landscape of IEEE Transactions on Fuzzy Systems (1994-2015)," IEEE Trans. Fuzzy Syst., 2017, pp. 1–16.
- [10] D. Yu, Z. Xu, W. Pedrycz, and W. Wang, "Information Sciences 1968–2016: A retrospective analysis with text mining and bibliometric," Inf. Sci. (Ny)., vol. 418–419, 2017, pp. 619–634.
- [11] S. Laengle, J. M. Merigó, J. Miranda, R. Słowiński, I. Bomze, E. Borgonovo, R. G. Dyson, J. F. Oliveira, and R. Teunter. "Forty years of the European Journal of Operational Research: A bibliometric overview." European Journal of Operational Research 262, no. 3, 2017, 803-816.
- [12] F. Blanco-Mesa, J. M. Merigó, and A. M. Gil-Lafuente, "Fuzzy decision making: A bibliometric-based review," J. Intell. Fuzzy Syst., vol. 32, no. 3, 2017, pp. 2033–2050.
- [13] M. J. Cobo, M. A. Martínez, M. Gutiérrez-Salcedo, H. Fujita, and E. Herrera-Viedma, "25years at Knowledge-Based Systems: A bibliometric analysis," Knowledge-Based Syst., vol. 80, 2015, pp. 3–13.
- [14] M. M. A. Emrouznejad, "Ordered weighted averaging operators 1988-2014: A citation based literature survey," Int. J. Intell. Syst., vol. 29, no. 11, 2014, pp. 994–1014.
- [15] J. M. Merigó, F. Blanco-Mesa, A. M. Gil-Lafuente, R. R. Yager, "Thirty years of the International Journal of Intelligent Systems: A bibliometric review", International Journal of Intelligent Systems, vol. 32, no. 5, 2017, 526-554

- [16] J. M. Merigó, A. M. Gil-Lafuente, and R. R. Yager, "An overview of fuzzy research with bibliometric indicators," Appl. Soft Comput., vol. 27, 2015, pp. 420–433,.
- [17] D. Yu, D. F. Li, J. M. Merigó, and L. Fang, "Mapping development of linguistic decision making studies," J. Intell. Fuzzy Syst., vol. 30, no. 5, 2016, pp. 2727–2736.
- [18] D. Yu and S. Shi, "Researching the development of Atanassov intuitionistic fuzzy set: Using a citation network analysis," Appl. Soft Comput., vol. 32, 2015, pp. 189–198.
- [19] J. E. Hirsch, "An index to quantify an individual's scientific research output," Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 46, 2005, pp. 16569.
- [20] N. J. van Eck and L. Waltman, "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, vol. 84, no. 2, 2010, pp. 523–538.
- [21] C. Chen, "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," J. Assoc. Inf. Sci. Technol., vol. 57, no. 3, 2006, pp. 359–377.
- [22] R. Mallipeddi, P. N. Suganthan, Q.-Ke Pan, and M. F. Tasgetiren. "Differential evolution algorithm with ensemble of parameters and mutation strategies." Appl. Soft Comput., vol. 11, no. 2, 2011, 1679-1696.
- [23] D. Karaboga and B. Basturk, "On the performance of artificial bee colony (\uppercase {ABC}) algorithm," Appl. Soft Comput., vol. 8, no. 1, 2008, pp. 687–697.
- [24] D. Karaboga and C. Ozturk, "A novel clustering approach: Artificial Bee Colony (ABC) algorithm," Appl. Soft Comput., vol. 11, no. 1, 2011, pp. 652–657.
- [25] G. Wei, "Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making," Appl. Soft Comput., vol. 10, no. 2, 2010, pp. 423–431.
- [26] R. Rajabioun, "Cuckoo optimization algorithm," Appl. Soft Comput., vol. 11, no. 8, 2011, pp. 5508–5518.
- [27] A. Singh and S. Sundar, "An artificial bee colony algorithm for the minimum routing cost spanning tree problem," Soft Comput., vol. 15, no. 12, 2011, pp. 625–631.
- [28] Y. Wang, K.-W. Wong, X. Liao, and G. Chen, "A new chaos-based fast image encryption algorithm," Appl. Soft Comput., vol. 11, no. 1, 2011, pp. 514–522.
- [29] X. S. Yang, S. S. S. Hosseini, and A. H. Gandomi, "Firefly Algorithm for solving nonconvex economic dispatch problems with valve loading effect," Appl. Soft Comput., vol. 12, no. 3, 2012, pp. 1180–1186.
- [30] D. Karaboga and B. Akay, "A modified artificial bee colony (ABC) algorithm for constrained optimization problems," Appl. Soft Comput., vol. 11, no. 3, 2011, pp. 3021– 3031.
- [31] Y.-T. Kao and E. Zahara, "A hybrid genetic algorithm and particle swarm optimization for multimodal functions," Appl. Soft Comput., vol. 8, no. 2, 2008p, p. 849–857.
- [32] C. Blum, J. Puchinger, A. Roli, C. Blum, J. Puchinger, and A. Roli, "Hybrid metaheuristics in combinatorial optimization : A survey," Appl. Soft Comput., vol. 11, no. 6, 2015, pp. 4135–4151.
- [33] M. Taherkhani and R. Safabakhsh, "A novel particle swarm optimization algorithm with adaptive inertia weight," Appl. Soft Comput., vol. 38, no. 4, 2016, pp. 281–295.

- [34] J. W. Wang, C. H. Cheng, and K. C. Huang, "Fuzzy hierarchical TOPSIS for supplier selection," Appl. Soft Comput., vol. 9, no. 1, 2009, pp. 377–386.
- [35] E. Hart and J. Timmis, "Application areas of AIS: The past, the present and the future," Appl. Soft Comput., vol. 8, no. 1, 2008, pp. 191–201.
- [36] A. Jain and A. M. Kumar, "Hybrid neural network models for hydrologic time series forecasting," Appl. Soft Comput., vol. 7, no. 2, 2007, pp. 585–592.
- [37] S. X. Wu and W. Banzhaf, "The use of computational intelligence in intrusion detection systems: A review," Appl. Soft Comput., vol. 10, no. 1, 2010, pp. 1–35.
- [38] L. Mikhailov and P. Tsvetinov, "Evaluation of services using a fuzzy analytic hierarchy process," Appl. Soft Comput., vol. 5, no. 1, 2004, pp. 23–33.
- [39] C. Huang and J. Dun, "A distributed PSO SVM hybrid system with feature selection and parameter optimization," Appl. Soft Comput., vol. 8, no. 4, 2008, pp. 1381–1391.
- [40] O. Castillo and P. Melin, "A review on the design and optimization of interval type-2 fuzzy controllers," Appl. Soft Comput., vol. 12, no. 4, 2012, pp. 1267–1278.
- [41] H. Liu, Z. Cai, and Y. Wang, "Hybridizing particle swarm optimization wth differential evolution for constrained numerical and engineering optimization," Appl. Soft Comput., vol. 10, no. 2, 2010, pp. 629–640.
- [42] F. Pettersson, N. Chakraborti, and H. Saxén, "A genetic algorithms based multi-objective neural net applied to noisy blast furnace data," Appl. Soft Comput., vol. 7, no. 1, 2007, pp. 387–397.
- [43] D. Dasgupta, S. Yu, and F. Nino, "Recent Advances in Artificial Immune Systems: Models and Applications," Appl. Soft Comput., vol. 11, no. 2, 2011, pp. 1574–1587.
- [44] A. Banharnsakun, T. Achalakul, and B. Sirinaovakul, "The best-so-far selection in {Artificial} {Bee} {Colony} algorithm," Appl. Soft Comput., vol. 11, no. 2, 2011, pp. 2888–2901.
- [45] S. Srinivasulu and A. Jain, "A comparative analysis of training methods for artificial neural network rainfall-runoff models," Appl. Soft Comput., vol. 6, no. 3, 2006, pp. 295– 306.
- [46] T. Niknam and B. Amiri, "An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis," Appl. Soft Comput., vol. 10, no. 1, 2010, pp. 183–197.
- [47] S. N. Omkar, J. Senthilnath, R. Khandelwal, G. Narayana Naik, and S. Gopalakrishnan, "Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures," Appl. Soft Comput., vol. 11, no. 1, 2011, pp. 489–499.
- [48] D. Zaharie, "Influence of crossover on the behavior of Differential Evolution Algorithms," Appl. Soft Comput., vol. 9, no. 3, 2009, pp. 1126–1138.
- [49] D. Chen and C. Zhao, "Particle swarm optimization with adaptive population size and its application," Appl. Soft Comput., vol. 9, no. 1, 2009, pp. 39–48.
- [50] S. Panda and N. P. Padhy, "Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design," Appl. Soft Comput., vol. 8, no. 4, 2008, pp. 1418–1427.
- [51] K. Thangavel and A. Pethalakshmi, "Dimensionality reduction based on rough set theory:

A review," Appl. Soft Comput., vol. 9, no. 1, 2009, pp. 1–12.

- [52] B. Ashtiani, F. Haghighirad, and A. Makui, "Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets," Appl. Soft Comput., vol. 9, no. 2, 2009, pp. 457–461.
- [53] D. F. Li, "Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information," Appl. Soft Comput., vol. 11, no. 4, 2011, pp. 3402–3418.
- [54] R. Singh, A. Kainthola, and T. N. Singh, "Estimation of elastic constant of rocks using an ANFIS approach," Appl. Soft Comput., vol. 12, no. 1, 2012, pp. 40–45.
- [55] S. Suresh, R. Venkatesh Babu, and H. J. Kim, "No-reference image quality assessment using modified extreme learning machine classifier," Appl. Soft Comput., vol. 9, no. 2, 2009, pp. 541–552.
- [56] G. Li, P. Niu, and X. Xiao, "Development and investigation of efficient artificial bee colony algorithm for numerical function optimization," Appl. Soft Comput., vol. 12, no. 1, 2012, pp. 320–332.
- [57] S.-W. Lin, Z.-J. Lee, S.-C. Chen, and T.-Y. Tseng, "Parameter determination of support vector machine and feature selection using simulated annealing approach," Appl. Soft Comput., vol. 8, no. 4, 2008, pp. 1505–1512.
- [58] S. Alonso, I. J. Pérez, F. J. Cabrerizo, and E. Herrera-Viedma, "A linguistic consensus model for Web 2.0 communities," Appl. Soft Comput., vol. 13, no. 1, 2013, pp. 149–157.
- [59] L.-N. Xing, Y.-W. Chen, P. Wang, Q.-S. Zhao, and J. Xiong, "A knowledge-based ant colony optimization for flexible job shop scheduling problems," Appl. Soft Comput., vol. 10, no. 3, 2010, pp. 888–896.
- [60] M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepúlveda, and P. Melin, "Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation," Appl. Soft Comput., vol. 9, no. 3, 2009, pp. 1102–1110.
- [61] Z. Güngör, G. Serhadlıoğlu, and S. E. Kesen, "A fuzzy AHP approach to personnel selection problem," Appl. Soft Comput., vol. 9, no. 2, 2009, pp. 641–646.
- [62] J. Kennedy and R. Eberhart, "Particle Swarm Optimization,". In IEEE International Conference on Neural Networks. 1995, pp. 1942-1948.
- [63] D. E. Goldberg, "Genetic Algorithms in Search Optimization and Machine Learning," Addison Wesley Publisching. Addison-Wesley, Reading, MA, 1989.
- [64] J. H. Holland, Adaptation in natural and artificial systems :an introductory analysis with applications to biology, control, and artificial intelligence, MIT press, 1992.
- [65] K. Deb, S. Pratab, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NGSA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, 2002, pp. 182–197.
- [66] R. Storn and K. Price, "Differential evolution a simple and efficient heuristic for global optimization over continuous Spaces," J. Glob. Optim., vol. 11, no. 4, 1997, pp. 341–359.
- [67] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control,"In Readings in Fuzzy Sets for Intelligent Systems, 1993, pp. 387-403.
- [68] S. Kirkpatrick, J. C D Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing,"

"Optimization by simulated annealing." Science 220, no. 4598, 1983, 671-680.

- [69] K. Deb, Multi-objective optimization using evolutionary algorithms. vol. 16., John Wiley & Sons., 2001
- [70] L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning—I." Information Sciences 8, no. 3, 1975, pp. 199-249.
- [71] J-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system." IEEE Transactions on Systems, Man, and Cybernetics 23, no. 3, 1993, 665-685.
- [72] J. C. Bezdek, "Objective Function Clustering." In Pattern recognition with fuzzy objective function algorithms, pp. 43-93. Springer, Boston, MA, 1981.
- [73] M. Clerc and J. Kennedy, "The particle swarm explosion, stability, and convergence in a multidimensional complex space," IEEE Trans. Evol. Comput., vol. 6, no. 1, 2002 pp. 58– 73.
- [74] V. N. Vapnik, "The nature of statistical learning theory, ser. Statistics for engineering and information science," New York Springer, vol. 21, 2000 pp. 1003–1008.
- [75] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant systems: optimization by a colony of cooperative agents," IEEE Trans. Syst. Man Cybern. B, vol. 26, no. 1, 1996 pp. 1–13.
- [76] R. C. Eberhart, Y. Shi, and J. Kennedy. Swarm Intelligence. Elsevier, 2001.
- [77] T. Saaty, "The Analytic Hierarchy Process," New York McGraw-Hil, 1980.
- [78] J. R. Koza, Genetic Programming-On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, 1992.
- [79] R. K. Merton, "The Matthew effect in science: The reward and communication systems of science are considered." Science 159, vol. no. 3810, 1968 pp. 56-63.
- [80] A. F. J. Van Raan, "Sleeping beauties in science," Scientometrics, vol. 59, no. 3, 2004 pp. 467–472.
- [81] A. K. Shukla, R. Sharma, and P. K. Muhuri. "A Review of the Scopes and Challenges of the Modern Real-Time Operating Systems." International Journal of Embedded and Real-Time Communication Systems (IJERTCS), vol. 9, no. 1, 2018, 66-82.
- [82] C. Cancino, J.M. Merigó, F. Coronado, Y. Dessouky, and M. Dessouky, Forty years of Computers & Industrial Engineering: A bibliometric analysis. Computers & Industrial Engineering, vol. 113, 2017, 614-629.
- [83] J. M. Merigó, W. Pedrycz, R. Weber, and C. de la Sotta, Fifty years of Information Sciences: A bibliometric overview, Information Sciences, vol. 432, 2018, 245-268.
- [84] D. Yu, Z. Xu, and W. Wang. "Bibliometric analysis of fuzzy theory research in China: A 30-year perspective." Knowledge-Based Systems, vol. 141, 2018, 188-199.