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Abstract-The vast number of observed bibliometric and scientometric datasets display 
a definite downward deviation from a straight line in the upper tail, when plotted in a 
double logarithmic coordinate grid. For this reason customary theoretical distribution 
laws are very poor representations of the observed phenomena. This disadvantage also 
extends to recently suggested models such as the Yule, the two- and the three-parameter 
Waring distributions. The main types of the GIGP distribution are described and two im- 
portant limiting cases are discussed. The constrained minimum x2 method is developed 
for the estimation of the three parameters a, b, and y. Finally it is argued that the 
Kolmogorov-Smirnov goodness-of-fit test is not applicable in the field of bibliometrics. 

1. INTRODUCTION 

With a few exceptions, observed bibliometric size-frequency distributions are zero-truncated 
and reverse J-shaped, with extremely long upper tails. Their random variables are discrete 
and are advancing in steps of one unit. A good graphical picture is obtained by plotting 
their observed frequencies against the associated number of event counts in a double log- 
arithmic coordinate grid. Indeed, this is what Zipf (1949) did originally with amazing te- 
nacity and great enthusiasm. As he perceived all such plots as more or less linear, he 
formulated his inverse power law for size-frequencies. Earlier, Lotka (1926) had applied 
the same procedures to author productivity and postulated that the inverse power should 
be 2. 

What both these authors failed to see was the significant systematic departures of ob- 
servations from the straight line. All bibliometric studies are based on relatively large sam- 
ple sizes, and even the crudest of significance tests would have shown that the linear 
hypothesis should have been rejected. Unfortunately, neither Zipf nor Lotka applied any 
statistical tests to their data fits. This omission led to the false belief that the observed de- 
viations from the line were random and not systematic and significant. 

The largest deviations are known to occur at the “head” (low event counts) and in the 
“tail” (high event counts) of observed bibliometric distributions. In particular, Vlachjl 
(1980) has given many useful examples to show that the plotted points in the upper tail de- 
viate strongly downwards from the straight line drawn through the main body of 
observations. 

It may be appropriate here to quote Kunz (1988): 

Vlachy pointed out that practically all compiled Lotka distributions deviated at some dis- 
tance from their heads from linearity, but theoreticians did not recognize the importance 
of this fact and further extrapolated initial results till infinity. 

The success breeds success phenomenon has its limits. A saturation takes place and in- 
stead of accelerating of a production rate, prolific authors are satisfied with their posi- 
tions and produce less than could be expected from the Lotka law. 

2. THE MAIN TYPES OF SIZE FREQUENCY DISTRIBUTIONS 

In Fig. 1, five types of reverse J-shaped, observed scientometric size-frequency distri- 
butions are drawn schematically in a double logarithmic grid. Type (a) refers to a down- 
ward sloping line as envisaged by Zipf and Lotka. 
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Fig. 1. Five types of reverse J-shaped scientometric frequency distributions in double logarithmic 
grid. 

Very rarely do observations show such an oversimplified trend. Type (b) is convex at 
the head of the distribution and asymptotically approaches a downward sloping line at the 
tail. Data sets corresponding to this particular trend are also extremely rare. Mathemati- 
cally this type (b) is represented by the Yule and Waring distributions. Type (c) has con- 
vexity at both ends of the distribution and is frequently encountered in reality. Type (d) is 
linear at the head and in the middle and displays convexity in the tail. This trend is very 
common. Finally, type (e) shows concavity at the head, a linear portion in the middle, and 
convexity at the upper tail. Such a pattern also occurs very frequently in observed 
distributions. 

3. THE TAIL BEHAVIOUR OF BIBLIOMETRIC DISTRIBUTIONS 

Sichel(l986) used Stirling’s theorem to show that the upper tail of the Generalized In- 
verse Gaussian-Poisson (GIGP) distribution becomes 

CO’ 
4(r) - yl--y (1) 

where the discrete random variable r is large, --03 < y < 03, 0 < 0 4 1, and C is a normal- 
izing constant. Taking logarithms on both sides of eqn (1) gives 

In@(r) =lnC- (1 --y)lnr+ (1nB)e’“‘. 

Now write 

Y = ln4(r), 

X= lnr, 

A = lnC, 

-B = In 19. 
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This leads to 

Y=A - (1 -y)X-Bf?. (2) 

From (2) we infer that in a double logarithmic grid the GIGP tail is first linear with 
a negative slope as long as y < 1. For very large r, the tail curve will break away downwards 
from the line (i.e., it becomes convex). Hence it follows that the GIGP distribution con- 
forms to the most often observed tail behaviour of bibliometric or scientometric size- 
frequency distribution, as depicted in Fig. 1 for the types (c), (d), and (e). 

From eqn (2) one can see that for 0 = 1 exactly, B = 0 exactly 

Y=A - (1 -y)X. (3) 

This means that the GIGP tail could also be linear throughout, corresponding to the 
Zipf and Lotka distributions shown as types (a) and (b) in Fig. 1. 

Some authors have suggested the Waring distribution (Burrell, 1988) in its 2- or 3-pa- 
rameter form as a model for bibliometric data. Others (Kochen el al. 1982) prefer the Yule 
distribution, which is a special case of the Waring. With the help of Stirling’s theorem it 
is easy to show that the Waring and Yule distributions have linear tails in a double loga- 
rithmic grid, and hence they are unsuitable for representing the upper tails of most observed 
bibliometric size-frequency data, as indicated for types (c), (d), and (e) in Fig. 1. 

There is another advantage to the GIGP model. As long as 0 < 1, all population mo- 
ments do exist, even if 8 = 0.99999. This cannot be said of the Waring or Yule distributions, 
where some of the population moments are infinitely large. In the worst scenario, the War- 
ing and Yule distributions have no population arithmetic means at all! 

4. THE ENTIRE SWEEP OF BIBLIOMETRIC DISTRIBUTIONS 

IN A DOUBLE LOGARITHMIC GRID 

The Yule distribution can only take the form of type (b) in Fig. 1, whereas the War- 
ing distribution is capable of representing types (a) and (b) only. In contrast, the GIGP dis- 
tribution easily models all five cases given as types (a), (b), (c), (d), and (e) in Fig. 1. 

The zero-truncated GIGP distribution may be written as 

#(r) = [(cY/b)YKy(&) -K,(a)]-’ [(a* - ;,2)i2a1r K+y(a), for r = 1,2,3. . .a, 

(4) 

where cy 5: 0, b 2 0, --03 < y < oc, and K:,(z) is the modified Bessel function of the second 
kind of order v and argument z. Readers of a previous paper by Sichel(l985) may notice 
that in the new parameterization 

b=cd=?, (5) 

with 0 < 13 5 1. If one is interested in parameter 8, one simply obtains from (5) 

8 = 1 - (b/ty)2. (6) 

As previously mentioned by Sichel (1982), parameter r3 is largely responsible for the 
tail of the distribution, in contrast to parameter CY, which determines the shape of the head. 
Parameter y is important for the entire sweep of the GIGP. 

Based mainly on experience, some useful rules of thumb have now emerged. 

l If the head of the plotted observations in the double logarithmic grid is linear, a! will 
be small, and if it is concave, cx will be very small and may be set as CY = 0 a priori. 
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If the head is convex, cx will be medium to large and must be estimated from the 
data. 
If the downward break-away of the tail observations from the straight line drawn 
through the main body of the data in a double logarithmic grid is substantial, pa- 
rameter ~9 will be relatively small, say 0.6-0.8. This is usually, but not always, as- 
sociated with a low arithmetic mean E 
If the break-away of plotted tail observations from the straight line is minimal, we 
have 8 -P 1. This is usually, but not always, accompanied by a high arithmetic mean 
E It must, however, be pointed out most emphatically, that 8 = 0.999 still displays 
a very perceptible downward deviation from the line in the upper tail of the 
distribution. 
The slope of a line drawn through the middle portion of the observed frequency plot 
in a double logarithmic grid gives some indication of the magnitude of parameter 
y. The steeper this line, the greater parameter y (with a negative sign). This rule ap- 
plies if 0 is fairly large, say 0 > 0.96, with a relatively high arithmetic mean E An 
exception may arise if the arithmetic mean is low and the reducing action of a small 
0 bends the line prematurely downwards. 

To facilitate the graphical interpretation of the slope constant -7, it may be useful to 
plot “guidelines” in addition to the observed frequencies in the double logarithmic grid. We 
stipulate that all these guidelines should go through the point defined by r = 1 and 4( 1) = 
100. Hence in logarithmic units 

X = In 1 = 0, 

Y = In 100. 

From eqn (3) we find for these two values A = In 100. 
For the general eqn (3) it follows that 

ln4(r) = In 100 - (1 - y)lnr. (7) 

Now set 4(rS) = 1, that is, In +(rS) = In 1 = 0, which makes eqn (7). 

In 100 - (1 - Y)lnr, = 0. (8) 

Finally we solve equation (8) for r,: 

r, = (loo)“‘-?. (9) 

All guidelines go through the logarithms of r = 1 and C#J( 1) = 100. The second points 
on these lines are the logarithms of r,, as defined by eqn (9), and $(rs) = 1. 

Below is given a table for the r, values of the second points on the guidelines, for var- 
ious parameters y. 

Y r, = (loo)“‘-? 

-2 4.642 
-3/2 6.310 
-1 10.000 
-l/2 21.544 

0 100.000 
l/2 10000.000 

In general practice a single guideline for y = -l is quite sufficient. 
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5. TWO LIMITING DISTRIBUTIONS FOR THE GIGP 

9 

If in eqn (4) parameter b -+ 0, two limiting probability distributions arise: The first case 
occurs if (Y --) 0 and 0 < 0 < 1, because lim,,O b = lim,,O (Y- = 0, from eqn (5). We 
make use of the Bessel function approximation 

2 “r(Y) 
K(z) - ; y- 0 (10) 

which is valid if z < v. 
Substitution of 

and 

2 
K,+,(a) - (y 0 r+‘yrtr + y) 

2 

into eqn (4) leads to 

and hence eqn (11) becomes 

d4r) = 

Now from eqn (5) we have 

for r = 1,2,3. . .03. (11) 

d(r) = 
[(l - e)-7 - 11-i r(r+ y) 

r(Y) I 
8’ 

9 for r = 1,2,3. _ .a. (12) 
r. 

Equation (12) is the traditional zero-truncated negative binomial distribution with y > 0 and 
o<e< 1. 

If in (12) we make -1 < y c 0 for 0 < 8 < 1, we obtain Engen’s (1974) extended neg- 
ative binomial distribution: 

+(r) = Y[I - (1 -w-l w - 7) or 

ru - 7) r! ’ 
for r = 1,2,3. , . 00. (13) 

Finally, if we set in (12) y = 0 exactly, we obtain Fisher’s logarithmic series distribution 

4(r) = [-ln(1 - f3)]-’ F for r = 1,2,3. . . m. (14) 

To summarize: The first limiting distribution is obtained if cx + 0 (and hence b + 0). 
The zero-truncated GIGP becomes a two-parameter distribution with y either positive (neg- 
ative binomial), or y negative (extended negative binomial), or y = 0 (Fisher’s LSD). Pa- 
rameter 8 is defined in the interval 0 < 8 < 1. 
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The second limiting distribution is reached if 6 + 1 and, concomitantly, b -+ 0 once 
again. Further y < 0. 

Substitution of K, (6) - (2/b)Y [I? (y)/2] into (4) gives 

--K-,(o) 7 1 --I t@/2)’ K (a) r+y 9 for r = 1,2,3.. . m. (15) 

As y is negative, we may reverse the sign of y in (15) and then write 

[ 

r-(-Y) #l(r) = (2/cY)Y ----2-- --KT(@) yl r y 
1 

-l (@/W K _ (*) 

f (16) 

where now y is taken as positive. 
This limiting distribution has two parameters: CY > 0 and y < 0 if eqn (15) is used. Its 

higher population moments are infinitely large and in extreme cases the mean and variance 
may not exist. Clearly then, if B --+ 1 and b + 0, the GIGP becomes a stable Paretian dis- 
tribution like those of Zipf, Lotka, and Yule. Fortunately, most real scientometric or bib- 
liometric data are fitted well by the GIGP long before this limiting condition is reached. 

6. PARAMETER ESTIMATION FOR THE GIGP DISTRIBUTION 

Stein et a/. (1987) described a Maximum Likelihood method for the joint estimation 
of the three parameters y, b, and 01 if the observed distributions include the zero-events. 
As most scientometric distributions are zero-truncated, the MLE method becomes far too 
complicated. Some authors try to overcome this difficulty by shifting the random variable 
r by one unit (i.e., they write x = r - 1 where now x = 0,1,2, . . . CQ). This approach is not 
to be recommended, as it changes the whole GIGP distribution shape and as the credibil- 
ity into the theoretical aspects of the GIGP model is seriously undermined. 

Instead, we equate the observed proportion of singletons to the corresponding pop- 
ulation proportion of the zero-truncated GIGP. Further, we equate the observed sample 
mean to the population mean of the zero-truncated GIGP. For a given initial y we solve 
the two simultaneous equations and, after determining the expected frequencies, we calcu- 
late the x2 statistic. We now change the y parameter up and down and re-estimate param- 
eters cy and b until the x2 statistic is minimized. This method may be called a “constrained 
minimum x2 estimation.” 

This technique has several important theoretical underpinnings: 

1 Anscombe (1950) and Sichel (1982) have shown that, if the first cell proportion in 
a discrete distribution is exceeding 30% of all frequencies, we obtain very efficient 
parameter estimates by making use of this first cell proportion. Virtually all ob- 
served scientometric distributions have more than 30% of frequencies in the first 
cell 

2. For the GIGP, the sample mean is an MLE estimator. 
3. For large sample sizes, as found in observed bibliometric distributions, minimum 

x2 and MLEs give almost identical results, as may be theoretically proved. 
4. Even if a traditional MLE procedure is used, we still would have to determine a x2 

test for goodness-of-fit subsequently, to show that the chosen theoretical distribu- 
tion (in our case the GIGP) is a reasonable model for the observed frequencies. 

The whole constrained minimum x2 estimation method has been programmed for the 
GIGP model and no difficulties have been encountered. 

7. WHICH GOODNESS-OF-FIT TEST? 

Many authors working in the bibliometric field use the Kolmogorov-Smirnov one-sam- 
ple test for describing the goodness of fit of their data to a chosen theoretical distribution 
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model. Some of the authors pay lip service to the theoretical condition that the K-S test is 
strictly applicable only to continuous data and distributions. They then proceed to quote 
one or other authority who said that the K-S test is “conservative” if applied to discrete 
data. 

None of the users of the K-S test mention that it is incorrect to first estimate param- 
eters from the data and then apply existing tables to establish significant or nonsignificant 
departures from the chosen distribution model. Being a nonparametric test, this wrong pro- 
cedure leads invariably to the acceptance of the hypothesis. Furthermore, the K-S test is 
only superior in power to the x2 test if the sample size is smaller or equal to 30 observa- 
tions. Bibliometric and scientometric data sets are measured in hundreds or thousands of 
observations. In such cases, the x2 test has a far higher power of discrimination as it com- 
pares a good number of cells, whereas the K-S test depends entirely on a single maximum 
deviation of the cumulative distributions, without taking into account the other deviations 
before or after the maximum difference. 

The present investigator has applied the conventional x2 test to the many published 
bibliometric data sets where other authors used the K-S test to justify the choice of a partic- 
ular distribution model. Almost invariably the x2 test rejected these models, whereas the 
K-S test accepted the given hypotheses. The reader is referred to the excellent discussion on 
the merits and demerits of the Kolmogorov-Smirnov test by Stephens (1983). The x2 test of 
goodness of fit is applicable for both continuous and discrete data sets and distributions. 

As bibliometric laws have large frequencies for the random variable at r = 1,2,3. . . , 
no difficulties arise with respect to grouping except for the very high tail. To quote Nel- 
son (1989) “Another disadvantage of the chi-square statistic is that in the tail of the dis- 
tribution frequencies must be grouped, so it is not always sensitive to differences in this 
area.” However, it should be pointed out that usually we have quite a few individual cell 
groupings in the upper tail due to the enormous scattering of individual events for the larger 
TS. Under such conditions it is very likely that the x2 test will monitor a significant depar- 
ture for these high-frequency terms if the chosen distribution model is inappropriate. 

Another worthwhile method of testing the fit or nonfit in the upper tail is to plot in- 
dividual (ungrouped) observed frequencies in the double logarithmic coordinate grid. The 
superimposition of the theoretically expected frequencies -also ungrouped - will reveal to 
the eye whether the fit of the chosen distribution law is acceptable (or not) for the larger 
event numbers. This particular method has been used in the application section of this 
study. 

Nelson (1989) also correctly mentions that traditional hypothesis testing using chi- 
square is not strictly applicable in the context of bibliometric data sets “since these are very 
large samples which are not simple random samples, but chi-square can be used as a com- 
parison statistic.” One should add to these remarks that probability levels of significance 
should be looked at as goodness-of-fit criteria, not to be interpreted in the customary sense 
of probability theory. 

To sum up: The Kolmogorov-Smirnov test should never be used for bibliometric fre- 
quency distributions, whereas the x2 test of goodness-of-fit statistic is very useful to estab- 
lish whether a proposed theoretical model is feasible and credible. 

8. APPLICATIONS 

The first example refers to the number of journals having r = 1,2,3. . . articles on 
schistosomiasis during the period 1852-1962, as listed by Goffman and Warren (1969). Al- 
together there were n = 1738 journals carrying N= 9914 articles. The observed frequency 
distribution is given in the first two columns of Table 2 and the plot of ln(frequency) against 
In r is shown in Fig. 3. From the latter we see that the start of the graph is almost linear, 
which indicates that parameter CY will be relatively small. Further, the general sweep of the 
observations in Fig. 3 displays a greater negative slope than the dotted guideline referring 
to y = - 1. This means that we should expect a parameter y < -i . Finally, because of the 
almost linear trend even in the upper tail of the graph, we should expect a 8 parameter 
slightly smaller than 1. 
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Table 1. Showing the relationship between the parameter estimates and the minimization of x2, 
for schistosomiusis literature 

4 h b e X2 d.f. p(x’1d.f.) 

-0.4594828 0 0 0.9879963 31.098 30 0.411 
-0.500 0.116942 0.0118967 0.9896506 26.289 30 0.660 
-0.600 0.339000 0.0281169 0.993 1209 19.806 30 0.921 
-0.700 0.529827 0.0341804 0.9958382 21.315 30 0.878 
-0.800 0.704827 0.0327262 0.9978441 30.146 30 0.458 
-0.900 0.869578 0.0252034 0.9991600 46.976 30 0.025 
-1.000 1.026694 0.0134436 0.9998285 73.999 30 0.000 
-1.100 1.176631 0.0019895 0.9999971 115.402 30 0.000 
-1.1537 1.253617 0 1 145.443 30 0.000 

Minimum x2 

-0.628 0.394539 0.0306740 0.993955s 19.578 30 0.927 

As mentioned before, we estimate the parameters via the constrained minimum x2 
method. Hence the mean F = N/n = 5.704258 and the proportion of singletons is &( 1) = 
friq( 1)/n = 0.5224396. These two observed statistics are kept the same right through the 
estimation process. 

We start with an initial 9 = -i parameter and solve the two simultaneous equations 
for & and 6. We find & = 0.116942 and 6 = 0.0118967, from which 6 = 1 - (b/G)’ = 
0.9896506. We now calculate the x2 statistic from the first two columns in Table 2 using 
the above parameter estimates for the expected frequencies. This gives x2 = 26.289. Next 
we repeat the whole process with 9 = -0.6, giving us different estimates for &, 6, and 6, 
and also a different x2. 

Table 1 shows the solutions for the estimates of the parameters for 10 different +s. In- 
cluded in this table are the two limiting distributions for the GIGP: 

l 9 = -0.4594828, & = 0, 6 = 0, and 6 = 0.9879963. This is an “extended negative bi- 
nomial distribution,” first described by Engen (1974). 

loo--0.10 
Schirtoromiu~i~(r = 1.2,3, . ..) 

-1.0 

W..O.OB -0.9 

mQ.,o.oe 

E 

I 
I w-~o.o6 -0.e n 

A 

. 0 

R 40-.0.04 

m-PO.03 

=*.0.02 
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Fig. 2. Goodness-of-fit test statistic, x2, and parameter estimates iu and b as a function of param- 
eter 4, compiled from Table 1. 
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Table 2. Observed and expected frequency distributions 
for s~hjsfoso~~~~s literature during the period 

1852-1962. Parameters estimated via the 
constrained minimum x2 method 

Number Observed Expected 
of number of number of 

articles journals journals 
r f&(r) f@(r) 

1 908 908.000 
2 266 274.251 
3 137 130.484 
4 76 77.788 
5 57 52.394 
6 44 38.047 
7 27 29.070 
8 29 23.040 
9 19 18.774 

10 14 15.632 
11 11 13.245 
12 6 11.383 
13 10 9.901 
14 10 8.699 
15 9 7.710 
16 10 6.885 
17 8 6.189 
18 10 5.596 
19 4 5.086 

20-21 7 8.904 
22-23 6 7.542 
24-25 5 6.474 
26-27 2 5.620 
28-30 7 7.166 
3 l-33 7 5.983 
34-36 4 5.070 
37-40 6 5.665 
41-44 4 4.700 
45-50 3 5.709 
51-60 5 7.053 
61-70 5 5.053 
71-90 5 6.655 
91-120 7 5.556 

121 and over 10 8.676 

Total 1738 1738.000 

Number of journals: n = 1738 
Number of articles: N = 9914 
Number of journals with only 

one article: f$q(l ) = 908 
Average number of articles per 

journal: ? = 5.704257768 
Observed proportion of journals with 

only one article: $( 1) = 0.522439585 

Parameter Estimates 
9 = -0.628 
h = 0.394539 
6 = 0.0306740 
ei = 1 - (b/6)2 = 0.9939555 

Number of cells: 34 
Degrees of freedom: 30 
p(x’/d.f.) = 0.927 
x2 = 19.578 

OBSERVED - EXPECTED 

0 1 2 3 4 S 

LN Ir) 

Fig. 3. Observed and expected frequencies: Schistosomiasis literature plotted on double logarith- 
mic grid. N = 9914, n = 1738, freq(1) = 908, 9 = -0.628, d = 0.3945, d = 0.99396. 

IPH ZB:l-B 
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l + = -1.1537, 4 = 1.253617, 6 = 0, and fi = 1. This is a stable Pareto distribution for 
which some of the lower population moments exist, but higher moments tend to 
infinity. 

The “best” parameter estimates are those that minimize x2, given at the bottom of 
Table 1, that is, T = -0.628, & = 0.394539, 6 = 0.0306740, and 6 = 0.9939555, with a 
x2 = 19.578 and an associated probability of p = 0.927 for 30 degrees of freedom. The full 
comparison of observed and expected frequencies is shown in Table 2. It will be seen that 
there are 15 cell groupings in the tail of the distribution. The lowest expected frequency is 
4.7. Another comparison of goodness-of-fit is given in Fig. 3, where the expected frequen- 
cies (ungrouped) are shown as the solid curve. It will be noticed that the fit in the upper 
tail is very plausible. 

The contents of Table 1 are drawn as curves in Fig. 2. In this diagram the functional 
relationship between $, 6, &, and x2 is clearly demonstrated. With increasing +: 

6 starts at zero, rises to a maximum, and comes back to zero. The two zeros indi- 
cate the two limiting distributions of the GIGP. 
& decreases monotonically and reaches zero at the traditional NBD or at the ex- 
tended NBD limiting distribution. 
x2 follows a parabolic trend, where its minimum leads to the “best” parameter es- 
timates for 6, 6, and +. 

The next example is from Rao (1989) giving the number of journals with r = 1,2,3. . . 
articles in the International Bibliography of Economics. The observed frequency distribu- 
tion is listed in the first two columns of Table 3, and the observations are plotted in a dou- 
ble logarithmic grid in Fig. 4. According to Rao, the negative binomial distribution, which 
he tried as a model, did not fit these data at all. From Fig. 4 we clearly see that 

Table 3. Observed and expected frequency distributions 
for articles in the International Bibliography of 

Economics. Parameters estimated from 
mean and first observed proportion 

Number Observed Expected 
of number of number of 

articles journals journals 
r fr;q(r) frZq(r) 

2 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15-16 
17-18 
19-21 
22-24 
25-27 
28-37 

38 and over 

229 
138 
88 
61 
40 
29 
20 
14 
10 
12 
7 
9 

11 
6 

10 
8 

12 
8 
8 

14 
10 

7.740 
6.706 

10.997 
8.581 
9.728 
7.134 
5.367 

10.601 
11.114 

Total 144 744.000 

229.000 
135.768 
84.462 
56.621 
40.405 
30.23 1 
23.441 
18.682 
15.213 
12.605 
10.594 
9.010 

Number of journals: n = 744 
Number of articles: N = 4130 
Number of journals with only 

one article: f&q( 1 ) = 229 
Average number of articles per 

journal: F = 5.55107527 
Observed proportion of journals with 

only one article: J( 1) = 0.3077957 

Parameter Estimates 
y = -0.5 a priori 
& = 1.452712 
b = 0.264343 
6 = 1 - (b/d)’ = 0.9668887 

Number of cells: 21 
Degrees of freedom: 18 
p(x*/d.J) = 0.932 
x* = 9.995 



The generalized inverse Gaussian-Poisson distribution 15 

Fig. 4. Observed and cxpect,ed frequencies for articles in the in~ernationai bibliography of eco- 
nomics, plotted on double ~~garithrni~ grid. N = 4130, n = 744, freq{lf = 229, y = -0.5 a priori, 
iu = 1.4527, @ = 0.96689, 

l The start of the observations is convex, which indicates a reIativeIy Iarge cx 
parameter. 

* The middle portion of the cuwt: is drnost parallel to the y = -5 dotted guide fine. 
This suggests that we could use y = -$ as given a priori. 

l The upper tail deviates strongly do~w~ds from the line projected through the mid- 
dle portion of the observations. In consequence thereof, we should expect a 8 pa- 
rameter less than 0.98. 

Table 4. Observed and expected frequency distributions 
for index terms of the MEDLARS database. 

Parameters estimated from mean and 
first observed proportion 

Number 
of 

postings 
r 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO-It 
12-13 
14-$6 
27-20 
Zf-25 
26-33 
34-48 
49-52 
53-57 
58-64 
65-76 

77 and over 

Total 

Observed 
number of 

terms 
.f+WI 

2598 
640 
362 
245 
1.51. 
g 

70 
62 
96 
s2 
69 
52 
44 
45 
41 
4 
3 
4 

: 

4726 

Expected 
number of 

terms 
_HqW 

2598.000 
689.354 
345.296 
213.627 
147.262 
108.452 
83.520 
66.427 
54.136 
82.904 
60.378 
64.658 
57.433 
45.932 
42.807 
36.719 

5.275 
5.128 
5.220 
5.588 
7.884 

4726.ooO 

Number of journais: n = 4?26 
Number of postings: N = 18304 
Number of terms with only 

one posting: f&q( i ) = 2598 
Average number of postings 

per term: r = 3.873042742 
observed proportion of terms with 

only one posting: d;( I f = 0.549724925 

Parameter Estimates 
p = -0.45404 
1y = 0 a priori 
4 = 0 a priori 
@ = 0,9720139 

Number of cdls: 21 
Degrees of freedom: 18 
x2 = 19.81 I 
p(&?.f.f = 0.344 
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Fig. 5. Observed and expected frequencies for index terms in MEDLARS database, plotted on 
double logarithmic grid. N = 18304, n = 4726, freq(1) = 2598, 4 = -0.45404, cx = 0 a priori, 
fj = 0.972014. 

Parameters 01, b, and 0 were estimated from the observed 7 and (r;( 1) with parameter y = 
-4 given a priori. Observed and expected frequencies are shown in Table 3 and Fig. 4. 
The fit is extremely good, as x2 = 9.995, for 18 degrees of freedom with an associated 
probability of p = 0.932. From the above it follows that the GIGP distribution, in contrast 
to the NBD, is a good model for the data on articles in economic journals. 

The last observed bibliometric distribution is taken from Nelson and Tague (1985). The 
latter authors tried to model the index terms in the Medlars database by using a number 
frequency distribution for terms with low rs and a rank frequency distribution for high rs. 
The data are shown in the first two columns of Table 4, and they are plotted in a double 
logarithmic grid in Fig. 5. The frequency grouping is exactly the same as in Nelson and 
Tague’s original paper. From Fig. 5 we see that 

0 The start of observations displays concavity, which means we could choose param- 
eter (Y = 0 as given a priori. 

l The middle portion of the observations has a stronger negative slope than the y = 
-4 dotted guide line. However, to expect a y < -& is fallacious in this case, as the 
downward break-away from the line through the centre of observations is sub- 
stantial. 

l Because of the downward deviation of observations from the line in the tail, we 
should obtain a 0 parameter estimate, which is less than 0.98. 

Parameter estimates were obtained from the observed r and i(l), with CY taken as zero a 
priori. A comparison of observed and expected frequencies is given in Table 4 and Fig. 5. 
The fit is satisfactory for x2 = 19.811 and 18 degrees of freedom. The associated proba- 
bility is p = 0.344. 
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