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Abstract - PI, rigarous analysis of Zipf’s Iaw is made using an index for the sequence of 
observed values of the variables in a Zipf-type relationship. Three important properties 
relating rank, count, and frequency are identified. Using this approach, the shape of 
Zipf-type curves can be described in terms of three distinct regions and two parameters 
of the Mandelbrot-Zipf law. This result has considerable practical significance, since it 
provides rigorous foundations for the application of Zipf’s law. 

One of rhe most widely cited laws of human behavior is based on Zipf’s [l] observation 
that if one takes the words making up an extended body of text and ranks them by their 
number of occurrences, then the rank r multiplied by its corresponding frequency of occur- 
rence, g(r), will be approximately constant, that is, 

where a is a positive constant. Zipf’s law has been applied to the study of many different 
kinds of human phenomena. Recent applications include program complexity in software 
engineering by Shooman 121, keyword distribution in bibliographic data base design by 
Fedorowicz 13-61 and design of very large data bases by Wiederhold f7]? data compacting 
in computer networking by Ting (81, informatian retrieval by Smith and Devine f93, and 
statistical analysis of text by Chen [lo]. 

A major difficulty in using the law is that frequency-rank data typically fail to fol- 
low a simple linear log-log relationship, as shown in Fig. 1. In the figure, Latin words 
exhibit the typical concave frequency-rank pattern that has been found in English words 
fl, p_ 1231, German words {I? p. 1171, and Norwegian words [I, p_ 1281. In contrast to 
these findings, a convex frequency-rank pattern was found in Chinese characters [l, p. 911 
and in Gothic root morphemes [l, p. 911. iMore flexible models, such as those proposed 
by Simon [ 121, Mandelbrot [ 133, and Sichel [14-X 81, have assumed an a priori relationship 
between the count, rank, and frequency of words. In this paper, we propose a new for- 
mulation of Zipf’s law that takes explicit account of the typical characteristics observed 
in Zipf-type data. 

In particular, we use an index to designate sequential observations of the ranked data. 
This formulation of Zipf’s law is shown to have three important rank-count-frequency 
properties that are subsequently used to study the common shapes of Zipf-type curves. The 
various possible curve forms are then classified in terms of three regions of rank and two 
parameters associated with an earlier formulation of the law by Mandelbrot f13]. 

As a prelude to examining the paper, Section 2 examines the traditional frequency- 
count and frequency-rank approaches and the associated problems. Section 3 discusses the 
index approach. Section 4 derives the slope of Zipf-type curves, and the shapes of the curves 
with respect to three important regions are discussed in Sections S and 6. Finally, Section 
7 represents the conclusion. 
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Fig, t. &$-type {or frequ~ncy~rank~ piot for Engiish and Latin \Nords [It, pa 441. Note that ranks 
one and two of English words have been modified to fit the data. Zipf’s original figure jitggesrs 
that they have the same frequency of occurrence and IS a mistake. The authors thank one of the 

referees for pointing this out. 

Zipf-type data on word occurrences are based on observations of four entities: (a) 
word count, n, that is, the number of occurrences of a certain word contained in a text; 
(b) the count frequency, f( n), or the number of words of each count; (c) the word rank, 
r, that is, the cumulative frequency of words of the same or greater count; and (d) the rank 
frequency, g(r), that is, the number of words of the same rank. Note that when several 
words have the same count, they are assumed to have the same m~~rnaI-rank* which is the 
largest possible rank. Other ranking methods use the minimum-rank, average-rank, and 
random-rank [19]. Zipf [I] assigned the random-rank to all words with the same frequency 
of occurrence. The differences between Zipf’s random-rank and our maximal-rank meth- 
ods can be seen most clearly when viewed in terms of the index approach introduced in Sec- 
tion 4, as discussed later. 

Two approaches are taken with Zipf’s law: (a) frequency-rank and (b) frequency- 
count. When the different words in a large text are ranked in the order of decreasing fre- 
quency of occurence, a frequency-rank distribution, g(r) versus r, is obtained, as shown 
in eqn (1). An alternative approach is to arrange the words in increasing order of occur- 
rence or count to obtain a frequency-count distribution [ZO],f(n) versus n, for example, 

ffn) = bn-2, n = i,2,3,. . . (2) 

This equation is the same as Lotka’s law of scientific productivity [21]. 
Two drawbacks are associated with most formulations proposed in the literature. First, 

they assume the independent variabtes r and n run from one to infinity and, second, they 
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assume that r and n are consecutive without any “jump” or gaps. Typically, the observed 

values of count and rank, beyond the first smaller values, will “jump” to larger values in 

progressively larger steps; that is, they contain “gaps” and do not run consequently from 
one to infinity. The nature of the gaps has a significant impact on the shapes of Zipf-type 
curves and cannot be ignored. One common problem with this assumption is to invalidate 
goodness-of-fit tests. 

For example, consider the zero-truncation generalized inverse Gaussian-Poisson 
(GIGP) distribution proposed by Sichel [l-1-18]: 

f(M) = [( 1 - e’)+Ky,{cYJ 1 - 8,)“‘) 1-1 K 
f?! 

n+y,(%) 

n =0,1,2,3 ,... 

where the three parameters are --co < yc < 03, 0 d Bt S 1 and 01, 2 0. K,(z) is the mod- 
ified Bessel function of the second kind of order Y with argument z, and t stands for the 
length of the time period to be considered. In Table 1 of Sichel’s paper [15], f(89) = 
f(255)=1andf(n)=Oforn=90,91,... ,254. However, the GIGP distribution ignored 
the gap (between 89 and 255) and “predicts”f(n) > 0 for n = 90,91,. . . ,254. 

A more realistic approach is to associate an index, i = 1,2,. . , m, with each step or 
observed value of count and rank, as discussed below. 

3. THE INDEX APPROACH 

We introduce the notion of an index i = 1,2,. . . ,m and let n, and r, denote the ith 
different observed value of count and rank, respectively, so that n,,, > n, and T,+~ > r,. 

Let f( n,) and F( n,), respectively, denote the number of words having a count of exactly 
n, and no less than n,. Also, let g(r,) denote the frequency of occurrence of words with 
the rank r,. The data in Table 1 are taken from Good [22], who had analyzed a sample of 
English nouns in Macaulay’s essay on Bacon. The frequency-rank or Zipf-type plot of the 
data is shown in Fig. 2. 

The indices i = 1,2,. . . ,M, can be divided into three groups: where i is small, where 

i is close to m, and otherwise. For small i, usually n, = i. For instance, in Table 1, n, = i, 

for i = 1,2, . ,41. For i close to m, usually f( n,) = 1. For instance, in Table 1, f( n,) = 
1, for i = 43,. . ,jO. Let i, be the maximum i such that n, = i and let i, be the minimum 
i such that f(n,) = 1 and f(n,_,) # 1. Then we have the following three important 
properties: 

n, = i, 15 is i,. (3) 

(For example, in Table 1, n, = i for 1 d i 5 41.) 

f(n,) = 1, i,i=iSm. (4) 

(For example, in Table 1, f( n,) = 1 for 43 5 i 5 50.) 

n, = i andf(n,) z 1, i, + 1 5 i S i, - 1. (5) 

(For example, in Table 1, n, s i andf(n,) z 1 for i = 42.) 

In terms of the index notations, one also sees the following relationships between r, 

n, F, and g. Proofs are given by Chen [lo] and Hubert [23]. For i = 1,2,. . . , m, 

f, = F(4n-r+,). (6) 
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Fig. 2. Zipf-type plot of Good’s data (221. 

(For example, t10 = 11 and F(K,,) = 11 [both 

g(r*> = n,_j+1. 

(For example, g(rlo) = 41 and n41 = 41 [both 

The empirical relationships in eqns (6) and (7) can be used 

THEOREM 1: For i = I,&. . . ,m, 

g(r,) = a(r, + b)’ 

iff F(q) = dn; - b 

from Table 11.) 

from Table 11.) 

to prove the following: 

(8) 

(9) 

ce=i,da’=I,andb>-1. where a, b, c, d, and e, are constants, and a, d > 0, c, e < 0, 
Proof: Using equations (6), (7), and (8), we have 

(7) 

nm-,+i = Q(F(??,_,+,) + bY, i = 1,2,, . . ,m 

which is equivalent to eqn (9). A different proof of Theorem 1 can be found in Chen and 
Leimkuhler [24]. El 

Equations (8) and (9) are realistic formulations of Zipf’s law and Lotka’s law in terms 

of index levels of rank and count. Equation (81, without the index notation, was first 
derived by Mandelbrot [12] and is often called the Mandelbrot-Zipf law. Equation (9), on 
the other hand, was derived through the indexed Mandelbrot-Zipf law and could be called 
the Mandelbrot-Lotka law. For further details on the formulations of the laws, see Chen 
and Leimkuhler 1251. 

4. THE SLOPE OF ZIPF-TYPE CURVES 

There are several variations of Zipf-type curves. Figures 1 and 2 show three classes 
of the curves. Each figure represents a typical example(s) of variation and is well known 
in the literature. Figure 1 shows the Zipf’s plot of the data taken from Zipf Ill]. It shows 
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Table i. Zipfian approach of Good’s data [22]. 
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A B C D E F G 

i 6 f fnt) 4f(%) F(n,) r, g(r6) 

1 1 
2 2 

3 3 
4 4 

;: ; 
7 7 

8 a 
9 3 

10 10 
11 I1 
12 12 
13 13 
14 14 

IS IS 
16 16 
17 17 
18 IS 
19 19 
20 20 
21 21 

22 22 
23 23 
24 24 
25 25 
26 26 
21 27 
2s 28 

29 29 
30 30 
31 31 
32 32 
33 33 
34 34 
3.5 35 

36 36 
37 37 

38 38 
39 39 
40 40 
41 41 
42 45 

43 48 
44 57 
45 58 
46 65 
47 76 
4s 81 
49 89 

50 255 

990 990 2,048 1 255 
367 734 1,058 2 89 
173 519 691 3 81 
112 448 518 4 76 
72 360 406 5 65 
47 282 334 6 58 
41 287 287 7 57 

31 248 246 8 4s 
34 306 215 f0 45 

17 170 181 11 41 
24 264 164 12 40 
19 228 130 16 39 
10 130 121 18 38 

10 140 111 19 37 

13 195 10f 20 36 
3 48 as 21 35 

10 170 a5 22 34 
7 126 75 23 33 

6 114 68 24 32 
5 100 62 26 31 

1 21 57 29 30 

4 88 56 30 29 

7 161 52 34 28 
2 48 45 31 27 
1 25 43 42 26 

5 130. 42 43 25 

3 81 37 45 24 
4 112 34 52 23 

1 29 30 56 22 

3 90 29 57 21 

2 62 26 62 20 
1 32 24 68 19 

1 33 23 75 18 
1 34 22 85 17 

I 35 21 88 16 

1 36 20 101 15 
I 37 19 ill 14 

2 76 18 121 13 

4 156 16 140 12 

1 40 12 164 11 

1 41 11 181 10 

2 90 10 215 9 

1 48 a 246 8 

1 57 7 287 7 

1 58 6 334 6 

1 65 5 406 5 

1 76 4 518 4 

1 81 3 691 3 

1 89 2 1,058 2 

1 255 1 2,048 1 

Sum 2,048 8,045 

Column A = index i, i = 1, 2,. _ , m; m = 50 in this case. 

Column B = number of occurrences. 

Column C = number of words f(n,). 

Column D = Column B * Column C. 

Column E = F(n,f = 2 j(n,) = number of words with occurrences no 
r-l 

less than n,. 

Column F = cumulation of Column C from the bottom. 
= rank r, of words having a corresponding given number of 

occurrences. 

Column G = g(r,) = ffm-,+t 
= the frequency of occurrence of words with rank r,. 
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a linear curve (English words) and a curve (Latin words) with the concavity to the origin. 
Figure 2, on the other hand, shows a curve with the convexity to the origin. The three 
classes of curves do show a common characteristic, that is, a linear decreasing pattern to 
the right of the plots. 

Several general formulations of Zipf’s distribution, for example, Good [22], Sichel 
[14-181, and Simon [12], have been proposed to model the various shapes of Zipf-type 
curves. However, because they ignored the gaps, their formulations have failed to model 
the variations. As we will see later, the nature of gaps plays an important role in the shape 

of a Zipf-type curve. This fact is identified through the study of slopes by using the index 

approach to analyze the classes of Zipf-type curves reported in the literature. Consider the 
slopes of the Zipf-type curve 

s 
J 

= logg(r,+,) - logg(r,) 
logr,,, - log ‘, ’ 

j = 1,2 9 . . . , m-l 

The following lemma shows an equivalent form of the slopes. 

LEMMA 1: Forj = 1,2,. . . ,m - 1, 

s, = 

log 

F(n,-,I 

F(nrn-,+,I 

(10) 

Proof: Apply eqns (6) and (7), one has eqn (10). zl 
From Lemma 1 and the three properties of eqns (3), (4), and (5), we can derive the 

following theorem. The proof can be found in the Appendix. 

THEOREM 2: 

a.Forl Sj(=m-i,, 

%I-, 
log - 

nfn-,,I 
s, = 

j-t 1 
log - 

j 

b. Form-i,,+ 1 SjSm-iil- 1, 

log 
m-j 

m-i+1 

(11) 

(12) 
, 

j+ 1 
log - 

.i 

c.Form-i,SjSm-1, 

log 
m -j 

m-j-t-1 
s, = (13) 

1% 
F(m -j) ’ 

F(m -j+ 1) 

Wedefine:1~j~m-ii,,m-i,+l~j~m-iil-l,andm-i,~j~m-l,as 
region I, region II, and region III, respectively, and study the underlying mechanisms for 
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the shape of a Zipf-type curve within each region. Before continuing, we discuss the dif- 

ferences between Zipf’s random-rank and our maximal-rank methods as follows. 
Consider Table 1, which shows two words contributing 45 occurrences each, with each 

assigned the maximal-rank 10. In Zipf’s random-rank approach, the assigned ranks for the 
two words will be 9 and 10, respectively. Basically, there are no differences between the 
two approaches, except for region III. In Zipf’s approach, there are steps for large values 
of rank as shown in Figure 1, while in our approach, there are only connected dot points. 
The advantages in using maximal-rank versus random-rank are the following: 

1. 

2. 

3. 

The maximal-rank approach is reversible. That is, we can convert the frequency- 
rank distribution into the frequency-count distribution and vice versa through eqns 
(6) and (7). Reversibility is very important for the comparison of those theoreti- 
cal explanations of Zipf’s law, because some researchers used the frequency-count 

approach (e.g., Simon [ 121 and Sichel [ 14- 18)) and some used the frequency-rank 
approach (e.g., Mandelbrot [13]). The random-rank method makes the reversibility 
impossible. 
The maximal-rank approach shows a simple functional relationship between rank 
and frequency. Zipf’s original intention was to find a simple equation to fit the phe- 

nomenon he observed. However, the use of random-rank makes things more com- 
plicated, because step functions are not simple functions. 
The maximal-rank approach avoids the controversy of assigning rank in the case 
of ties. This may happen in some applications of Zipf’s law where the order of 

ranks is sensitive. 

5. REGION 1 AND THE MANDELBROT-ZIPF LAW 

Equation (11) indicates that the shape of a Zipf-type curve in the region 1 Sj 5 m - 
i, depends on the scattering pattern of n,/n,+, , i, 5 i 5 m - 1. To analyze further, con- 
sider eqns (7) and (11). We have 

g(r,+i) 
log- 

gtrJ) 

= lSjSm-i, 

Equation (4) shows F(n,) = m - i + 1 for i, 5 i d m, which is equivalent to F(n,_,+,) = 
j for 1 5 j s m - i, + 1. From equation (6), we obtain rj = j for 1 5 j 5 m - i, + 1. 
Thus, 

logg(j+ 1) 
g(j) 

s, = 

lo&f ’ 

lSjSm-ii, 

j 

(14) 

The last equation shows the distribution of g(j), 1 5 j (= m - i, + 1, plays the crucial role 
in determining the shape of the first region. A reasonable choice of the function is 10 

assume eqn (8) is true, because it is a general form of the Mandelbrot-Zipf law and is fles- 
ible enough to model the data of g(j), especially for 1 5 j S m - i, + 1. 

By using the index approach, we deduce the following corollary: 

COROLLARY 1: In region Z, the Zipf-type curve is 

a. Concavely decreasing iff b < 0, 

b. Linearly decreasing iff b = 0, 
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c. Convexly decreasing iff b > 0, 

where b > -1 is the shirt coefficient of the Mandelbrot-Zipf law of eqn (8). 
Proof. From eqns (8) and (14), we obtain 

s, = c 
log(l+h) l=j=m_i < < 

/ 3, ’ u (19 

If b = 0, then s, = c < 0 is linearly decreasing. If b rf: 0, then we apply Taylor expansion 

of the natural logarithm (p. 51, Feller [76]) to the numerator of eqn (15) and obtain 

log (Ii&) = (j + b)-’ - ; (j + b)-’ + ; (j + b)-3 -. . = (j + b)-’ 

Similar technique applies to the denominator of equation (15) and we have 

1 
s,, G c - 

1,; 

When - 1 < b < 0, the last equation shows that s, is a decreasing function of j, and thus 
the curve in this region is concave. When b > 0, the last equation indicates that s, is an 

increasing function ofj and therefore the curve in this region is convex. 3 

Corollary 1 makes a significant modeling contribution by identifying parameter b as 
the crucial factor in determining the shape of a Zipf-type curve in region I. The Zipf-type 
curve looks linear if b = 0. If -1 < b < 0, the curve in region I is concave and if b > 0, 
the curve is convex. 

6. REGIONS II AND III: LINEARITY 

Equation (12) indicates that the shape of a Zipf-type curve in region II, where m - 
i, + 1 Sj 5 m - i, - 1, is approximately linear. We show this as follows. 

COROLLARY 2: In region II, the Zipf-type curve is approximately linear. 
Proof: Consider m - i, + 1 4 j 5 m - i, - 2, 

log 
m-j-l 

s,+, m-j 
log j+l 

j 
-= - 

SJ 
log 

m-j 
m-j+1 

log -_ 

log(l-~;~~log(l+~~ 

= 

log 1 - 
c 

,_),,) lo,(l+J&) =l 

0 

Equation (13) indicates that the shape of a Zipf-type curve in region III, where 
m - i, 5 j 5 m - 1, depends heavily on the values of F(i), 1 S i d i, + 1. To analyze 
further, we need some assumption on F(i), 1 5 i d iL + 1. A reasonable choice is to 
assume eqn (9) is true, since it is a general form of the Mandelbrot-Lotka law and is flex- 
ible enough to model the data of F(i), especially for 1 S j % i, + 1. 

From eqns (9) and (13), \ve derive that for m - i, 5 i 5 m - 1, 
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log 
m-j 

m-j+1 
s, = (16) 

log 
(m -j)' - b/d 

(m-j+ l)‘-b/d 

Evaluating eqn (16) on a computer, we find that s, G e -’ = c. This is because b/d is rela- 
tively small and eqn (16) becomes an identity equation. We summarize the result as follows: 

COROLLARY 3: In region III, the Mandelbrot-Lotka law implies an approximately linear 
Zipf-type curve with slope equal to c, the exponent coefficient of the Mandelbrot-Zipf law 

of eqn (8). 

7. CONCLUSION 

In this analysis, we take explicit account of the sequence of observed values of the vari- 

ables in a Zipf-type relationship by means of an index. This approach identifies three 
important properties relating count, rank, and frequency, as shown in eqns (3), (4), and 
(5). Using these properties, an analysis is made of the shapes of three classes of Zipf-type 
curves. Three significant regions are identified. Fig. 3 summarizes the findings in the regions 
in terms of two shape parameters. 

The first region is concavely decreasing, linearly decreasing, or convexly decreas- 
ing. The deciding factor for the shape is the distribution gaps between n,‘s. The 
shift coefficient b in the Mandelbrot-Zipf law provides a parametric explanation 
of the concavity, linearity, and convexity. 
The second region is approximately linear. This property is robust; that is, in all 
of the Zipf-type curves, the middle region is linear. 

The third region is approximately linear with slope equal to c, the exponent coef- 
ficient of the Mandelbrot-Zipf law. 

This formulation of Zipf’s law makes it possible to account for the variations normally 
encountered with Zipf-type data. This result has considerable practical significance, since 
it provides rigorous foundations for the application of Zipf’s law, for example, in com- 

puter science [2-lo], communications [27], language structure [28], anthropology [29], psy- 
chology [30], and information science [31]. 

APPENDIX 

Proof of Theorem 2 

From eqn (lo), for i = 1,2, . . . , m - 1, 

log -JL 
n, + 1 

s,_, = 
F(n,) 

log ___ 
F(n,+r ) 

(17) 

The three groups of indices identified in eqns (3), (4), and (5) play an important role 
in the following proof. 

c. For 1 S i 5 i,, eqn (3) implies 

log --!- 
i+ 1 

s,_, = 

log 
F(i) 

F(i + 1) 

(18) 
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Region II Region III 

log ri 

Fig. 3. L’arious banations of Zipf-type curves within the three regions. 

Equation (18) is equivalent to 

log 
m-j 

m-j+1 
s, = 

log 
F(m -j) 

F(rn -j+ 1) 

7 m-i(SjSm-1 

b. For i, + 1 5 i 5 i, - 1, eqn (5) implies 

m-i+1 
k=f 

and 

i 
log - 

i+ 1 
s,,_, = 

log 
m-i+1 

m-i 

(13) 

(19) 
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Equation (19) is equivalent to 

log 
m-j 

m-j+1 
s, z 

logJf ’ 

m-i,+lSjSm-~l,-l 

_i 

a. For i, 5 i S m - 1, eqn (4) implies 

log -5 ._ 
Nl+l 

s,_, = 

log 
m-i+ 1 

m-i 

Equation (20) is equivalent to 

SJ = 

j+l ’ 
log - 

.i 

(12) 

(11) 
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