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Abstract — A rigorous analysis of Zipf’s law is made using an index for the sequence of
observed values of the variables in a Zipf-type relationship. Three important properties
relating rank, count, and frequency are identified. Using this approach, the shape of
Zipf-type curves can be described in terms of three distinct regions and two parameters
of the Mandelbrot-Zipf law. This result has considerable practical significance, since it
provides rigorous foundations for the application of Zipf’s law,

1. INTRODUCTION

One of the most widely cited laws of human behavior is based on Zipf’s {1] observation
that if one takes the words making up an extended body of text and ranks them by their
number of occurrences, then the rank r multiplied by its corresponding frequency of occur-
rence, g(r), will be approximately constant, that is,

glri=ar~l, r=123,... O

where a is a positive constant. Zipf’s law has been applied to the study of many different
kinds of human phenomena. Recent applications include program complexity in software
engineering by Shooman [2], keyword distribution in bibliographic data base design by
Fedorowicz [3-6] and design of very large data bases by Wiederhold {7}, data compacting
in computer networking by Ting {8], information retrieval by Smith and Devine [9], and
statistical analysis of text by Chen [10].

A major difficulty in using the law is that frequency-rank data typically fail to fol-
low a simple linear log-log relationship, as shown in Fig. 1. In the figure, Latin words
exhibit the typical concave frequency-rank pattern that has been found in English words
[1, p. 123], German words {1, p. 117}, and Norwegian words [1, p. 128]. In contrast to
these findings, a convex frequency-rank pattern was found in Chinese characters [1, p. 91]
and in Gothic root morphemes [1, p. 91]. More flexible models, such as those proposed
by Simon {12), Mandelbrot {13], and Sichel [14~18], have assumed an a priori relationship
between the count, rank, and frequency of words. In this paper, we propose a new for-
mulation of Zipf’s law that takes explicit account of the typical characteristics observed
in Zipf-type data.

In particular, we use an index to designate sequential observations of the ranked data.
This formulation of Zipf’s law is shown to have three important rank-count-frequency
properties that are subsequently used to study the common shapes of Zipf-type curves. The
various possible curve forms are then classified in terms of three regions of rank and two
parameters associated with an earlier formulation of the law by Mandelbrot {13].

As a prelude to examining the paper, Section 2 examines the traditional frequency-
count and frequency-rank approaches and the associated problems. Section 3 discusses the
index approach. Section 4 derives the slope of Zipf-type curves, and the shapes of the curves
with respect to three important regions are discussed in Sections 5 and 6. Finally, Section
7 represents the conclusion.
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Fig. 1. Zipftype {or frequency-rank) plot for English and Latin Words {11, p. 44]. Note that ranks

one and two of English words have been modified to fit the data. Zipf's onginal figure suggests

that they have the same frequency of occurrence and is a mistake. The authors thank one of the
referees for pointing this out.,

2. FREQUENCY-COUNT AND FREQUENCY-RANK DISTRIBUTIONS

Zipf-type data on word occurrences are based on observations of four entities: ()
word count, #, that is, the number of occurrences of a certain word contained in a text;
(b) the count frequency, f(n), or the number of words of each count; (c) the word rank,
r, that is, the cumulative frequency of words of the same or greater count; and (d) the rank
frequency, g{r), that is, the number of words of the same rank. Note that when several
words have the same count, they are assumed to have the same maximal-rank, which is the
largest possible rank. Other ranking methods use the minimum-rank, average-rank, and
random-rank [19]. Zipf [1] assigned the random-rank to all words with the same frequency
of occurrence. The differences between Zipf’s random-rank and our maximal-rank meth-
ods can be seen most clearly when viewed in terms of the index approach introduced in Sec-
tion 4, as discussed later.

Two approaches are taken with Zipf's law: (a) frequency-rank and (b) frequency-
count. When the different words in a large text are ranked in the order of decreasing fre-
quency of occurence, a frequency-rank distribution, g(r) versus r, is obtained, as shown
in eqn (1). An alternative approach is to arrange the words in increasing order of occur-
rence or count to obtain a frequency-count distribution [20], f(#) versus n, for example,

Fmy=56n"% n=1,23,... @)
This equation is the same as Lotka’s law of scientific productivity [21].

Two drawbacks are associated with most formulations proposed in the literature. First,
they assume the independent variables r and » run from one to infinity and, second, they
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assume that r and » are consecutive without any “jump” or gaps. Typically, the observed
values of count and rank, beyond the first smaller values, will “jump” to larger values in
progressively larger steps; that is, they contain “gaps” and do not run consequently from
one to infinity. The nature of the gaps has a significant impact on the shapes of Zipf-type
curves and cannot be ignored. One common problem with this assumption is to invalidate
goodness-of-fit tests.

For example, consider the zero-truncation generalized inverse Gaussian-Poisson
(GIGP) distribution proposed by Sichel [14-18]:

a8,

Sfn/ry = (1 = 0)7" K, far, (1 = 6,)1%) |7 o Kty (o)

n=0,1,2,3,...

where the three parameters are ~® <y, < 0, 0 =6, =1 and o, 2 0. K,(z) is the mod-
ified Bessel function of the second kind of order » with argument z, and ¢ stands for the
length of the time period to be considered. In Table 1 of Sichel’s paper [15], f(89) =
£(255) =1and f(n) =0 for n =90,91,...,254. However, the GIGP distribution ignored
the gap (between 89 and 255) and “predicts” f(n) > 0 for n = 90,91, . ..,254.

A more realistic approach is 1o associate an index, i = 1,2,...,m, with each step or
observed value of count and rank, as discussed below.

3. THE INDEX APPROACH

We introduce the notion of an index / = 1,2,...,m and let n, and r, denote the ith
different observed value of count and rank, respectively, so that n,,; > n, and .o > 7.
Let f(n,) and F(n,), respectively, denote the number of words having a count of exactly
n, and no less than n,. Also, let g(r,) denote the frequency of occurrence of words with
the rank r,. The data in Table 1 are taken from Good [22], who had analyzed a sample of
English nouns in Macaulay’s essay on Bacon. The frequency-rank or Zipf-type plot of the
data is shown in Fig. 2.

The indices i = 1,2, ...,m, can be divided into three groups: where i is small, where
i is close to m, and otherwise. For small /, usually n, = /. For instance, in Table 1, n, =/,
fori=1,2,...,41. For i close to m, usually f(n,) = 1. For instance, in Table 1, f(n,) =
1, for i = 43,...,50. Let i, be the maximum / such that n, =/ and let i, be the minimum
i such that f(n,) = 1 and f(n,_;) # 1. Then we have the following three important
properties:

n=i, 1Zisi. 3)
(For example, in Table 1, n, =ifor 1 =i =41.)
finpy=1, i, Sism @
(For example, in Table 1, f(n,) =1 for 43 =i = 50.)
n=iand f(n)=1,[+1=i=si,-1. 3
(For example, in Table 1, n, =i and f(n,) = 1 fori = 42.)

In terms of the index notations, one also sees the following relationships between r,
n, F, and g. Proofs are given by Chen [10] and Hubert [23]. For i = 1,2,...,m,

re=F(Nm-1). (6)
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Fig. 2. Zipf-type plot of Good’s data [22].

(For example, rjp = 11 and F(ny) = 11 {both from Table 1].)
g{r) = np_i1. Q)
(For example, g(ro) = 41 and n4; = 41 [both from Table 1].)
The empirical relationships in eqns (6) and (7) can be used to prove the following:
TueOREM 1: Fori=1,2,...,m,
glr) =a(r, + b)* (8)
iff F(n,) =dn® — b 9

where a, b, ¢, d, and e, are constants, and a,d > 0,c,e<0,ce=1,da*=1,and b > —1.
Proof: Using equations (6), (7), and (8), we have

Aoy = Q(F (M) + b)Y, i=12,...,m

which is equivalent to eqn (9). A different proof of Theorem 1 can be found in Chen and
Leimkuhler [24]. O

Equations (8) and {9) are realistic formulations of Zipf’s law and Lotka’s law in terms
of index levels of rank and count. Equation (8), without the index notation, was first
derived by Mandelbrot [12] and is often called the Mandelbrot-Zipf law. Equation (9), on
the other hand, was derived through the indexed Mandelbrot-Zipf law and could be called
the Mandelbrot-Lotka law. For further details on the formulations of the laws, see Chen
and Leimkuhler [25].

4, THE SLOPE OF ZIPF-TYPE CURVES

There are several variations of Zipf-type curves. Figures 1 and 2 show three classes
of the curves. Each figure represents a typical example(s) of variation and is well known
in the literature. Figure ! shows the Zipf’s plot of the data taken from Zipf [11]. It shows



Analysis of Zipf’s law 175

Table 1. Zipfian approach of Good’s data [22}.

A B C D E F G
i n, Jin) nflny  F(n) r, g(r)
1 1 990 990 2,048 1 253
2 2 3167 734 1,058 2 89
3 3 173 519 691 3 81
4 4 112 448 518 4 76
5 5 72 360 406 S 65
6 6 47 282 334 6 58
7 7 41 287 287 7 57
8 8 31 248 246 8 48
9 9 34 306 215 10 45

10 10 17 170 181 il 41

8% 11 24 264 164 12 40

12 12 19 228 140 16 39

13 13 10 130 121 18 38

i4 14 10 140 it 19 37

15 15 13 195 101 20 36

16 16 3 48 88 21 3s

17 17 10 170 85 22 34

18 18 7 126 75 23 33

19 19 6 114 68 24 32

20 20 5 100 62 26 31

21 21 i 21 37 29 30

22 22 4 88 56 30 29

23 23 7 161 52 34 28

24 24 2 48 43 37 27

25 25 1 25 43 42 26

26 26 5 130- 42 43 25

27 27 3 81 37 45 24

28 28 4 112 34 52 23

29 29 1 29 30 56 22

30 30 3 S0 29 57 21

31 31 2 62 26 62 20

32 32 { 32 24 68 19

33 33 1 33 23 75 18

34 34 § 34 22 83 17

35 35 i 35 21 88 16

36 36 1 36 20 101 15
7 37 H 37 19 i1l 14

38 38 2 76 18 121 13

39 39 4 156 16 140 12

40 40 1 40 12 164 11

41 41 1 41 11 181 10

42 45 2 90 10 215 9

43 48 1 48 8 246 8

44 57 i 57 7 287 7

45 58 1 58 6 334 [

46 63 1 65 5 406 5

47 76 1 76 4 518 4

48 81 1 81 3 691 3

49 89 1 89 2 1,058 2

50 255 i 255 i 2,048 i

Sum 2,048 8,045

Column A =index i, i=1, 2,...,m; m= 50 in this case.
Column B = number of occurrences.
Column C = number of words f(n,).
Column D = Column B * Column C.

Column E=F(n) = Zf(nk) = number of words with occurrences no

less than »n,.
Column F = cumulation of Column C from the bottom.
= rank r, of words having a corresponding given number of
occurrences.
Column G =g(r,) = Nm_ip1
= the frequency of occurrence of words with rank r,.
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a linear curve (English words) and a curve (Latin words) with the concavity to the origin.
Figure 2, on the other hand, shows a curve with the convexity to the origin. The three
classes of curves do show a common characteristic, that is, a linear decreasing pattern to
the right of the plots.

Several general formulations of Zipf’s distribution, for example, Good [22], Sichel
[14-18], and Simon [12], have been proposed to model the various shapes of Zipf-type
curves. However, because they ignored the gaps, their formulations have failed to model
the variations. As we will see later, the nature of gaps plays an important role in the shape
of a Zipf-type curve. This fact is identified through the study of slopes by using the index
approach to analyze the classes of Zipf-type curves reported in the literature. Consider the
slopes of the Zipf-type curve

¢ - logglr,.i) —logg(r)
/ logr,.., —logr,

The following lemma shows an equivalent form of the slopes.

LEMMA L: Forj=1,2,...,m — 1,
log <———n'"_/ >
nm—j+l

5 = —— e L (10)

log L m=y)

og ——————

F(nm—j-{»l)
Proof: Apply eqns (6) and (7), one has eqn (10). 1

From Lemma 1 and the three properties of eqns (3), (4), and (5), we can derive the
following theorem. The proof can be found in the Appendix.

THEOREM 2:

a Forl=j=m-—i,

5, = (11)

b.Form—i,+1=sj=m-i-1,

_m-J_

cForm—-isj=m-1,

log _M=J

S =1
s, = . (13)
F(m~j)
F(m—j+1)

Wedefine: l=sj=sm—-i,m—i,+1=sj=m-i—l,andm—-§=j=m-—1, as
region I, region 11, and region III, respectively, and study the underlying mechanisms for
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the shape of a Zipf-type curve within each region. Before continuing, we discuss the dif-
ferences between Zipf’s random-rank and our maximal-rank methods as follows.

Consider Table 1, which shows two words contributing 45 occurrences each, with each
assigned the maximal-rank 10. In Zipf’s random-rank approach, the assigned ranks for the
two words will be 9 and 10, respectively. Basically, there are no differences between the
two approaches, except for region I11. In Zipf’s approach, there are steps for large values
of rank as shown in Figure 1, while in our approach, there are only connected dot points.
The advantages in using maximal-rank versus random-rank are the following:

1. The maximal-rank approach is reversible. That is, we can convert the frequency-
rank distribution into the frequency-count distribution and vice versa through eqns
(6) and (7). Reversibility is very important for the comparison of those theoreti-
cal explanations of Zipf’s law, because some researchers used the frequency-count
approach (e.g., Simon [12] and Sichel [14-18]) and some used the frequency-rank
approach (e.g., Mandelbrot [13]). The random-rank method makes the reversibility
impossible.

2. The maximal-rank approach shows a simple functional relationship between rank
and frequency. Zipf’s original intention was to find a simple equation to fit the phe-
nomenon he observed. However, the use of random-rank makes things more com-
plicated, because step functions are not simple functions.

3. The maximal-rank approach avoids the controversy of assigning rank in the cass
of ties. This may happen in some applications of Zipf’s law where the order of
ranks is sensitive.

5. REGION | AND THE MANDELBROT-ZIPF LAW

Equation (11) indicates that the shape of a Zipf-type curve in the region | Ej = m —
i, depends on the scattering pattern of n,/n,,, i, =i = m — 1. To analyze further, con-
sider eqns (7) and (11). We have

10g nm—/ I g(r/+1)
nm——/-H g(rj) lsj= .
Sj = = s =Jj=m-—=1,
logjL, IOgJ—t—
J

Equation (4) shows F(n,) =m —~ i + 1 for i, = { = m, which is equivalent to F(n,_,,,) =
jforl =j=m—i,+ 1. From equation (6), we obtain r;, =jfor 1l =j=m —i, + 1.
Thus,

g+ 1)
log ————
gl _ .
S,=—.-—1—, lsjEm—1, (14)
+
log ‘j__
J
The last equation shows the distribution of g(j), 1 =/ = m — i, + 1, plays the crucial role
in determining the shape of the first region. A reasonable choice of the function is 10
assume eqn (8) is true, because it is a general form of the Mandelbrot-Zipf law and is flex-
ible enough to model the data of g(/), especially for 1 £Ej=m — i, + 1.
By using the index approach, we deduce the following corollary:

COROLLARY 1: In region I, the Zipf-type curve is
a. Concavely decreasing iff b < 0,

b. Linearly decreasing iff b = 0,
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c. Convexly decreasing iff b > 0,

where b > —1 is the shift coefficient of the Mandelbrot-Zipf law of eqn (8).
Proof. From eqgns (8) and (14), we obtain

1
1g1+7—-—
O( J+b>

s, =c , 1=j=m-—-1, (135
1
log<1+-.>
J

If b=0, thens, = ¢ < 0 is linearly decreasing. If b # 0, then we apply Taylor expansion
of the natural logarithm (p. 51, Feller {26]) to the numerator of eqn (15) and obtain

1 l 1
log (1 4+ —— ) =(j BN S+ S = !
0g<+j+b> (/+b) 2(J+b) +3(J+b) (J+0)

Similar technique applies to the denominator of equation (15) and we have

—

When —1 < b < 0, the last equation shows that s, is a decreasing function of j, and thus
the curve in this region is concave. When & > 0, the last equation indicates that s, is an
increasing function of j and therefore the curve in this region is convex. -]

Corollary 1 makes a significant modeling contribution by identifying parameter b as
the crucial factor in determining the shape of a Zipf-type curve in region [. The Zipf-type
curve looks linear if » = 0. If —1 < b < 0, the curve in region I is concave and if » > 0,
the curve is convex.

6. REGIONS II AND [1I: LINEARITY

Equation (12) indicates that the shape of a Zipf-type curve in region II, where m —
i, +1=j=m—i — 1, is approximately linear. We show this as follows.

COROLLARY 2: In region II, the Zipf-type curve is approximately linear.

Proof: Consider m — i, + 1 Sjsm — i, — 2, O
m—j—1. j+1
log J - 1ogj -
Sl o mot /
e

m - j J+2
- 0g -
m—j+1 J+1

1
Iog<l—;,> log<l+—.>
m-—j J

1 1
oe (1 - 2t ) s (1 )
m-—j+1 J+1

Equation (13) indicates that the shape of a Zipf-type curve in region III, where
m — i, =j=m— 1, depends heavily on the values of F(i), | £i =i + 1. To analyze
further, we need some assumption on F(i), | =i = i, + 1. A reasonable choice is to
assume eqn (9) is true, since it is a general form of the Mandelbrot-Lotka law and is flex-
ible enough to model the data of F (i), especially for l =j =1 + 1.

From eqns (9) and (13), we derive that for m — iy, =i =m — 1,
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log 22—
m—j+ 1
s, = (16)
(m—j) —b/d

1
O m =i+ 1y —b/d

Evaluating eqn (16) on a computer, we find that s, = e ™' = ¢. This is because b/d is rela-
tively small and eqn (16) becomes an identity equation. We summarize the result as follows:

COROLLARY 3: In region III, the Mandelbrot-Lotka law implies an approximately linear
Zipf-type curve with slope equal to c, the exponent coefficient of the Mandelbrot-Zipf law
of egn (8).

7. CONCLUSION

In this analysis, we take explicit account of the sequence of observed values of the vari-
ables in a Zipf-type relationship by means of an index. This approach identifies three
important properties relating count, rank, and frequency, as shown in eqns (3), (4), and
(5). Using these properties, an analysis is made of the shapes of three classes of Zipf-type
curves. Three significant regions are identified. Fig. 3 summarizes the findings in the regions
in terms of two shape parameters.

1. The first region is concavely decreasing, linearly decreasing, or convexly decreas-
ing. The deciding factor for the shape is the distribution gaps between n,’s. The
shift coefficient b in the Mandelbrot-Zipf law provides a parametric explanation
of the concavity, linearity, and convexity.

2. The second region is approximately linear. This property is robust; that is, in all
of the Zipf-type curves, the middle region is linear.

3. The third region is approximately linear with slope equal to ¢, the exponent coef-
ficient of the Mandelbrot-Zipf law.

This formulation of Zipf’s law makes it possible to account for the variations normally
encountered with Zipf-type data. This result has considerable practical significance, since
it provides rigorous foundations for the application of Zipf’s law, for example, in com-
puter science [2-10], communications [27], language structure [28], anthropology {29], psy-
chology [30], and information science {31].

APPENDIX
Proof of Theorem 2
From eqn (10), fori=1,2,...,m — 1,

nl
log
n+1
Smey = T (17)
F(n,)

g
F(”H—I)

lo

The three groups of indices identified in eqns (3), (4), and (5) play an important role
in the following proof.

c. For 1 =/ =i, eqn (3) implies

Sy = (18)
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Region I Region II Region II1

log g(r;)

log r;

Fig. 3. Various vanations of Zipf-type curves within the three regions.

Equation (18) is equivalent to

_m-j
m—j+1
s, = - , m—iL=j=m-~1 (13)
F(m—j)
Fim—j+1)

log

>

b. Foriy+ 1 =i=i,~ 1, eqn (5) implies

F(n)= Y flnp)=m~i+1
k=1t
and
lo !
&1
Sy E T (19)

m—i+1

log
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Equation (19) is equivalent to

m-—j
m—j+1
§E—————, m-i,+1Sj=m—y—1 (12)
J+1
log ~——
J

log

a.Fori, =i

IIA

m — 1, eqn (4) implies

n
log —
Nt
Sy = (20)
m-—-1i+1
log —
m—
Equation (20) is equivalent to
log 2=t
nm—j+l . .
= ————, 1=j=m-i, (n
J+1
log ———
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