
Informatron Processng & Managemenl Vol. 25, No. 5. pp. 527-544, 1989 03064573/89 $3.00 + .OO 
Printed in Great Britain. Copyright 0 1989 Pergamon Press plc 

ANALYSIS OF LOTKA’S LAW: 
THE SIMON-YULE APPROACH 

YE-SHO CHEN 
Department of Quantitative Business Analysis, Louisiana State University, 

Baton Rouge, LA 70803, USA 

(Received 12 September 1988, accepted in final form 19 January 1989) 

Abstract-A major difficulty in using the well-known Lotka’s law in information sci- 
ence is in the estimation of parameters. In this paper, we argue that the difficulty arises 
from the misuse of goodness-of-fit tests. As an alternative, we adopt Simon’s five-step 
modeling process for the study of Lotka’s law. Three significant contributions can be 
identified. First, an index approach is used to identify a general formulation of Lotka’s 
law. Second, a time series approach is used to identify two influential variables associ- 
ated with the empirical data. Third, the constructive mechanism proposed by Simon is 
used to derive a distribution resembling the general formulation of Lotka’s law. Further 
research on refining the constructive mechanism is suggested. 

1. INTRODUCTION 

Building and testing a model of Lotka’s law is a typical example of extreme hypotheses. 
According to Herbert A. Simon (Nobel Laureate), extreme hypotheses [l] are “assertions 
that a particular specific functional relation holds between the independent and the depen- 
dent variable.” A standard practice for testing extreme hypotheses is the use of goodness- 
of-fit tests. Simon argues that those testing procedures are fundamentally unsatisfactory, 
since “an extreme hypothesis cannot be sensibly identified with the null hypothesis with- 
out shifting completely the burden of proof that is supposed to be assured by a new the- 
ory, and, what is worse, without making the tacit assumption that the correctness of a 
theory is an all-or-none matter and not simply a matter of goodness of approximation.” 
(A different perspective of judging the plausibility of goodness-of-fit tests is discussed in 
Section 3 .) 

Instead, Simon [l] proposed a more constructive alternative to standard probabilis- 
tic and statistical test of fit. The modeling process is outlined below: 

1. 
2. 
3. 

Begin with empirical data, not hypotheses. 
Draw simple generalizations from striking features of the data. 
Find limiting conditions by manipulating the influential variables associated with 
the data. 

4. 
5. 

Construct simple mechanisms to explain the simple generalizations. 
Propose the explanatory theories that go,beyond the simple generalizations and 
make experiments for new empirical observations. 

In this paper, we adopt and apply the five-step process to the modeling of Lotka’s law. 
A brief review of Lotka’s law is conducted in Section 2. In Section 4 we examine empiri- 
cal data of Lotka’s law by using the index approach proposed by Chen and Leimkuhler 
[3,8,9]. Some striking features of the data are observed and discussed in Section 5. In Sec- 
tion 6, we identify Lotka’s law as a marginal property of a time series. Some influential 
variables affecting the property are also discussed. In Section 7, we focus on the generat- 
ing mechanism proposed by Simon [lo]. A significant contribution of the model is that it 
yields an equilibrium distribution resembling the observed phenomenon of Lotka’s law. 
The need for successive refinements of the Simon-Yule model is discussed in Section 8. 
Finally, Section 9 presents the conclusion. 
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2. LOTKA’S LAW 

In his well-known paper published in 1926, Lotka [2] examined patterns of scientific 
productivity among chemists. He discovered that if he classified his population of chemists 
according to how frequently they published, then the number of chemists publishing n 
papers, f(n), was approximately equal to a/n ‘, for some positive constant a, i.e. 

f(n) = anp2, n = 1,2,3,. . . (1) 

Letting F(n) = 5 F(i) be the number of authors contributing no less than n papers, then 
i=n 

a frequently used alternative form of Lotka’s law is 

F(n) = 2 aip2 - a 
s 

m 1 
xz dx = an-‘, n = 1,2,3,. . . 

i=n n 

This approximation is relatively accurate when n is not small. 
Lotka’s law of scientific productivity has been used to describe a wide variety of 

observation-class relationships [3], e.g. number of articles vs journals, and number of 
occurrences vs words. The law has also been suggested as being equivalent to the other two 
well-known empirical laws of information science [3]: Bradford’s law of bibliographic scat- 
tering [4] and Zipf’s law of word frequency [5]. 

Recently, a more general inverse-power form of Lotka’s law, 

f(n) = aCb, b > 0, n = 1,2,. . . (2) 

was investigated by Pao [6], in which a testing procedure for Lotka’s law is proposed, 
including the estimation of a and b, and the goodness-of-fit test of the observed and com- 
puted frequency distributions. A minor modification of eqn (2) was later proposed by 
Nicholls [7] : 

f(n) = aKb, b > 0, n = 1,2,. . . nmax. 

A testing procedure, modified after Pao, is also discussed. The recent research efforts pro- 
vide us further insight into Lotka’s law. However, several fundamental problems associ- 
ated with the law are still unanswered and need to be examined carefully. 

3. PROBLEMS OF USING GOODNESS-OF-FIT TESTS 

Traditionally, four main steps are used in modeling Lotka’s law [7]: (1) measurement 
and tabulation, (2) equation formulation; (3) parameter estimation; and (4) goodness-of- 
fit test. A goodness-of-fit procedure is a statistical test of a hypothesis that the sampled 
population is distributed in a specific way [l 11. There are several statistics available for 
goodness-of-fit tests. Among those test statistics used, the chi-square test is probably the 
most common one. The crucial assumption underlying the chi-square test procedure is that 
the sample is a random sample [l 11, i.e. the observations are independently and identically 
distributed. However, the empirical data on Lotka’s law fail to satisfy this assumption, 
since the data represent either a complete, or an incomplete set of a finite population. 

The chi-square test also suffers from the problem of combining of classes. Coile [12] 
argued that this combining of classes is undesirable and suggested that the Kolmogrov- 
Smirnov one-sample test be used, believing it to be more powerful than the chi-square test. 
Several authors followed Coile’s suggestion and used the Kolmogrov-Smirnov test as a 
goodness-of-fit tool [6,7]. Like the chi-square test, it seems to be a misuse to apply the 
Kolmogrov-Smirnov test to the data related to Lotka’s law. First, the crucial assumption 
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of the test is that the sample is a random sample. Second, the test is conservative (i.e. not 
exact), since the data are discrete, not continuous [ll]. 

A formal study of the effect of dependency on conventional tests of fit is conducted 
by Gleser and Moore [13]. The significant contribution of their paper is that “confound- 
ing of positive dependence with lack of fit is a general phenomenon in the use of omni- 
bus tests of fit.” The finding suggests the use of traditional tests of fit for modeling Lotka’s 
law as an inappropriate approach. 

4. EXAMINING EMPIRICAL DATA: AN INDEX APPROACH 

Two drawbacks are commonly associated with the equation formulation reported in 
the literature. First, they assume the independent variable n runs from one to infinity and, 
second, they assume that successive n’s are consecutive without any “jump” or gaps. Typi- 
cally the observed values of n, beyond the first smaller values, will “jump” to larger val- 
ues in progressively larger steps; that is, they contain “gaps” and do not run consequently 
from one to infinity. 

Realizing the first drawback some authors [7] limited the running of n from one to 
n max 9 the maximum value of n. However, the problem of jumps is still not addressed. 
Recently, a more realistic approach for modeling Lotka’s law was proposed by Chen and 
Leimkuhler [3]. The main idea of the approach is to associate an index with each observed 
value of n. Several significant results have been obtained. First, a common functional rela- 
tionship among Lotka’s law, Bradford’s law, and Zipf’s law was derived [3]. Second, the 
droop phenomenon of Bradford’s law was explained [8]; and third, the concave abnormal- 
ity of Zipf’s law was clarified 191. We apply the index approach to Lotka’s law in the fol- 
lowing discussion. 

We introduce the notion of an index i = 1,2,. . . m, and let nj denote the ith different 
observed value of n so that nj+l > ni. Let f(ni) denote the number of authors having pub- 
lished ni papers. The data in Table 1 are taken from Lotka’s [2] chemistry data coming 
from an index of Chemical Abstracts. 

The indices i = 1,2, . . . , m, can be divided into three regions: where i is small, where 
i is close to m, and otherwise. For small i, usually nj = i. For instance, in Table 1, ni = i, 
for i = 1,2,. . . ,34. For i close to n, usuallyf(n;) = 1. For example, in Table 1, f(n;) = 
1, for i = 58,59,. . . ,66. Let iy be the maximum i such n; = i and let i, be the minimum i 
such that f( n;) # 1 and f( nj) = 1, i I j I m. Then we have the following three important 
properties: 

nj = i, 1 SiSip (3) 

ni s i andf(n;) z 1, it’ + 1 5 i 5 i, - 1 (4) 

f(q) = 1, i, 5 i 5 m. (5) 

Thus, the relationship between ni and f(n;), i = 1,2,. . . n, is governed by some known 
properties [eqns (3) through (S)] and unknown distributionsf( n,), 1 5 i S it, and n;, i, 5 
i I m. We summarize the relationships in Table 2. 

Up to this point, we have not made any assumption on the distribution off(n;), i = 
1,2,. . . m. However, by using the index approach, we can identify several inherent prop- 
erties of f(n;), i = 1,2, . . . , m. The next step is to investigate the unknown distributions 
f(i), 1 5 i S iy, and n;, i, 5 i S m by posing some conditions. 

5. SOME STRIKING FEATURES OF THE DATA 

Let r, denote the rank of authors contributing papers, so that ri+r > ri, i = 1,2,. . . , 
m - 1, and let g( ri) be the frequency of occurrence of papers published by the author(s) 

IPM 25:5-E 
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Table I. Lotka’s data taken from Chemical Abstrucfs [2] 

i n, f (ni) i n, f(4) 

1 1 3991 34 34 4 
2 2 1059 35 36 1 
3 3 493 36 37 1 
4 4 287 37 38 4 
5 5 184 38 39 3 
6 6 131 39 40 2 
I 7 113 40 41 1 
8 8 85 41 42 2 
9 9 64 42 44 3 

10 10 65 43 4s 4 
11 11 41 44 46 2 
12 12 47 45 47 3 
13 13 32 46 49 1 
14 14 28 47 50 2 
15 15 21 48 51 1 
16 16 24 49 52 2 
17 17 18 50 53 2 
18 18 19 51 54 2 
19 19 17 52 55 3 
20 20 14 53 57 1 
21 21 9 54 58 1 
22 22 11 55 61 2 
23 23 8 56 66 1 
24 24 8 57 68 2 
25 25 9 58 73 1 
26 26 9 59 78 1 
27 27 8 60 80 1 
28 28 10 61 84 1 
29 29 8 62 95 1 
30 30 7 63 107 1 
31 31 3 64 109 1 
32 32 3 65 114 1 
33 33 6 66 346 1 

Table 2. Relationship between n, and f (n,), i = 1,2,. , m 

Region Range of indices Known properties 
Unknown 

distribution 

1 1 s i 5 i,, n, = i f(i) 
11 it+1 sisi,-1 n, Ei 

f(4) =l 

111 i,ziam f(4) = 1 n, 

with rank ri. Also, let F( n;) = 2 f( nk) be the number of authors having published no 
k=i 

less than ni papers. In terms of the index notations, one can derive the following relation- 
ships between r, n, F, and g [3,8,9]. For i = 1,2, . . . , m, 

r; = F( n,-i+ I ) 

and 

g(r,) = n,-i+l. 

From the last two equations, we can prove the following theorem (91: 

(6) 

(7) 
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For i = 1,2,. . . ,m, 

g(ri) = a(ri + 6)“’ (8) 

iff F(ni) = dnf - b (9 

where a, b, c, and d are constants, and a, d > 0, c < 0, da’ = 1, and b > -1. 
Equations (8) and (9), without the index notation, are general formulations of Zipf’s 

law and Lotka’s law, respectively [9]. So, Theorem 1 shows formally that the two laws are 
equivalent under some conditions. By taking one further step, we can describe the 
unknown distributions as shown in Table 2. 

COROLLARY 1. 
From Theorem I, we have: 

(a) f(i) = d(i’ - (i + l)‘), ISiSi P 

(b) ni=a(m-i+ 1 +b)lk, i,Siim 

(10) 

(11) 

Proof. (a) For 1 S i 5 iy , 

f(i) =f(n,) = F(ni) - F(ni+l) 

= F(i) - F(i + 1) 

= d(i’ - (i + 1)‘). 

(b) For i, 5 i 5 m, 

ni = g(r,,,_i+l) = a(r,_i+I + 6)“’ 

= a(m - i + 1 + b)l’c. 0 

An immediate implication of Corollary 1 relates to the phenomena identified by Booth 
[14] concerning the occurrences of words of low frequency. Let D denote the number of 
different words used in a text, and f(i) denote the number of words occurring i times, 
i = 1,2,. . . ,5. The first phenomenon reveals a remarkable consistency of the ratiof( 1)/D 
of single occurrences to the vocabulary in the text. The second phenomenon shows that 
for a given i, i = 1,2, . . . ,5, the ratiof( i)/f( 1) is approximately a constant for each of the 
texts Booth tested. The following corollary derives Booth’s two findings. For more details, 
see Chen and Leimkuhler [ 151. 

COROLLARY 2. 

Zf c= 1, then 

(a) f(l)/D = 0.5 

(b) f(i)/f(l) = &, i = 1,2,3,4,5. 

Proof. (a) D=F(l)=d-b 

f(l)/D = Gd s 0.5, ifc= 1. 
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(b) For i = 1,2,3,4,5, 

f(i)/f(l) = ic - (i + ‘I’ _ 2 ifc= 1. 
1 -2c i(i + 1) ’ 

0 

Another important implication of Corollary 1 is shown in Table 3. There we see that 
regions I and III are governed by two simple hyperbolic functions. The function f in the 
first region models the distribution of the less productive authors. On the other hand, the 
function n in the third region models the papers’ distribution of the highly productive 
authors. The finding implies that Lotka’s law, or the related phenomena in information 
science, is the mixture of two different types of distributions, i.e. trivial-many and vital- 
few. To see how the distributions are generated, more exploration of empirical data is nec- 
essary. Without loss of generality, we use journal productivity data for our next discussion. 

6. IDENTIFYING THE INFLUENTIAL VARIABLES: A TIME SERIES APPROACH 

Figure 1 shows the historical growth of a bibliography [16] on bibliometrical distri- 
butions. The history shows that this topic did not receive much annual attention until the 
year 1969. From 1926, when Lotka’s paper appeared, until 1969 there were never more 
than six papers in any one year. Seventeen papers appeared in 1969, which appears to have 
been a turning point in the history of the topic. From 1969 to 1982, 407 references have 
appeared at an annual average production rate of over 30 papers per year. 

If we analyze the time series pattern for the year-by-year publication of the journals 
listed in the bibliography, more information will show up. A partial list of the time series 
is shown in Table 4, where journals publishing more than four papers are considered. This 
table shows that the two most productive journals in this field have a long and continu- 
ing history of publication. They are the Journal of the American Society of Information 
Science and the Journal of Documentation. The years 1969 and 1975 were highly produc- 
tive for the Journal of Documentation. The papers in 1969 were concerned largely with the 
theoretical foundations of the field, while those in 1975 concentrated on applications. The 
papers by Leimkuhler [ 171 and Brookes [18] appear to have had a significant influence on 
the burst of publications in 1969, which marks a turning point in the growth of the 

literature. 
One interesting observation is available immediately from the time-series presentation 

of publication pattern. It shows that the data set f(n,) vs n,, i = 1,2, . . . , m, is obtained 
from the total column on the right-hand side of the representation. Thus, the empirical 
phenomena shown in Theorem 1 and Table 3 are marginal properties of the time series. 
Two variables might be influential for the generation of the time series, the entrance of new 
journals and the productivity of old journals. As we can see from Table 4, in every given 
year there is a chance for a new journal to publish a paper in the field. On the other hand, 
the productivity of an old journal at a certain point of time is roughly proportional to its 
previous publication. This is consistent with the concept of “richer gets richer.” 

Table 3. Relationship between n, and f( n,), i = 1,2, , m 
deriving from Theorem I 

Region Range of indices Known properties 
Properties derived 
from Theorem 1 

1 

II 

111 

1 sic=& n, = i f(i) = d(F - (i + 1)‘) 

i, + I 5 i z i,, - 1 n, zi 

f(n,) g1 

I,, s I s m f(4) = 1 n,=a(m-i+ 1 +b)‘/’ 
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Fig. 1. The yearly pattern of the bibliography on bibliometrical distributions [16]. 

7. THE CONSTRUCTIVE MECHANISM PROPOSED BY SIMON 

The generating mechanism proposed by Simon [lo] for skew distributions incorporates 
the concept of new and old entities. In terms of scientific publications, Simon’s generat- 
ing process can be stated in the following assumptions, where f( n, t) is the number of dif- 
ferent authors who have published exactly n papers in the first t papers of the time series. 
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Table 4. The time series pattern of the journals publishing more than four papers [16] 

Year 

Journal 41 48 52 53 55 56 57 58 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 Total 

I 11111 2 3 3 5 3 5 7 4 4 32 46 
2 1 1 1 1 1 1 9 23 118322233 45 
3 1 2 2 1 1 1 1 1 10 
4 1 6 2 9 
5 2 I 2 2 8 
6 1 1 6 8 
7 1 1 1 1 1 1 I 7 
8 23 1 6 
9 I1 1 3 6 

10 1 2 2 5 
11 1 2 1 1 5 
12 3 1 I 5 
13 1 I 2 2 6 
14 221 5 
15 3 1 1 5 
16 1 1 1 I 4 
17 I I I 1 4 
18 111 1 4 
19 1 1 1 1 4 
Total 1 1 1 1 1 1 I 2 3 1 1 1 1 2 2 12 5 4 6 10 10 21 17 16 15 17 18 19 2 192 

Assumption I: There is a constant probability, (Y, that the (t + I)-st paper be pub- 
lished by.a new author-an author who has not published in the first t papers. 

Assumption II: The probability that the (t + I)-st paper is written by an author who 
has published n papers is proportional to nf( n, t) -that is to the total number of 
papers written by all the authors who have published exactly n papers. 

Letting u be the total number of different authors contributing papers under our con- 
sideration, the expected number of authors having published n papers derived from the two 
assumptions is 

h(n) = WB(CP + 11, n = 1,2,3,. . ., (12) 

where p = l/(1 - 01) and B(n,p + 1) is the beta function with parameters n and p + 1. 
Simon calls the last equation a Yule distribution because Yule’s paper [19], which predated 
the modern theory of stochastic processes, derived the same equation in a study of a bio- 
logical problem. A formal proof of eqn (12) is shown in Appendix A. 

Let f( n) be the actual number of authors having published a count of n papers. If n 
is not in the index set (nl,nz,. . . , n,), f(n) = 0. Let e(n) be the deviation between the 
actual number and expected number of authors publishing n papers, then 

f(n) =.h(n) + e(n), n = 1,2,3,. . ,, (13) 

and 

F(n) = Fe(n) + c(n), n = 1,2,3,. ., 

where 

(14) 

F(n) = 5f(n), F,(n) = gJO(n), and E(H) = 2 e(k). 
k=n k=n k=n 
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We show in the following theorem that eqn (9) in Theorem 1 can be derived from eqn (12) 
with some minor difference. Thus, Simon’s generating mechanism provides a theoretical 
foundation for the phenomena identified in Section 5. Note thatf(n) denotes the same 
things in eqns (1) and (13). 

THEOREM 2. 

Fori= 1,2,...,m, 

F(q) = UQr(p)R,‘+ (O(?Z~‘-‘) + E(nj))e (15) 

Proof. From Ijiri and Simon [l], we have 

F,(n) = u ~P(n,p), n = 1,2,3,. . . (16) 

The beta function can be rewritten 1201 as follows: 

B(n,p) = rfpfn-p + O(n-P-‘), 1171 

where the 0 notation means that there are positive constants c and no such that for n 
equal to or greater than no, the third term of eqn (17) is less than or equal to ~n-@‘~‘. By 
substituting eqns (16) and (17) into eqn (14), we have 

F(n) = upr(p)n-P + O(P-‘) + c(n), n = 1,2,3,. . . (18) 

Since with real data, we are only interested in the index set { n1,n2,. . . ,n,], we rewrite 
eqn (18) as eqn (15). 0 

If we set d = ~pl?(p), c=: -p, and bj= -(O(n,‘-‘) -I- e(nj)), when bj, i= 1,2,. . . ,m, 
are approximately equal, then we can replace bi by b (or define b as the average of all 
bj’s) and rewrite eqn (15) as eqn (9). 

8. NEED FOR FURTHER REFINEMENTS 

Up to this point, we have attempted to provide a sound generating mechanism to 
explain the general form of Lotka’s law shown in eqn (9). The resulting distribution, eqn 
(1.5), shows us some explanatory capability of the model. However, there is room for fur- 
ther improvement since we have no knowledge of the residuals e(nj) and e(nj) for i = 
1,2,. . . ,m. 

One way to analyze the residuals is to plot them. Plots of residuals are useful in at 
least three aspects [21]: (1) assessing the adequacy of the fitted model; (2) uncovering a 
dependence of the data on factors missing in the models; and (3) pointing to other im- 
provements in the model. Two such plots and their uses are described below. In general, 
these plots should appear as a scatter of points with no pattern or structure. Patterns are 
characteristic of residuals from incomplete,models, that is, models that can be improved. 

The first plot is the plot of residuals against the variable included in the model. This 
plot gives useful information about the dependence of the response on the dependent vari- 
able. When this dependence has been approximately formulated, this plot will appear as 
a random scatter. Trends or patterns suggest a more complex dependence. The second plot 
is the plot of residuals against fitted values. If a good model has been approximately fitted 
to the data, the residuals tend to resemble random noise and exhibit no marked dependence 
on other variables. Thus, a plot of residuals against the fitted values should appear as pat- 
ternless random scatter. 

To illustrate the usefulness of these two plots, let us consider the data listed in Simon 
[lo]. The data contained the scientific publications in Chemical Abstracts over 10 years, 
in a history of physics, and in Econometrica over a 20-year period. Table 5 gives the 
actuaf data, the estimate values, and the residuals. (Note that eqn (13) is used to make the 



536 Y.-S. CHEN 

Table 5. Number of persons contributing (data available from Simon [IO]) 

Chemical Abstracts Physicists Econometrica 
No. of 

Contributions Actual Estimate Residual Actual Estimate Residual Actual Estimate Residual 

I 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11 or more 

Estimated p 

3,991 

1,059 

493 

287 

184 

131 

113 

85 

64 

65 

419 

4,050 -59 784 824 -40 436 453 

1,160 -101 204 217 -13 107 119 

552 -29 127 94 33 61 51 

288 -1 50 50 0 40 27 

179 5 33 30 3 14 16 

120 11 28 20 8 23 II 

86 27 19 14 5 6 7 

64 21 19 10 9 11 5 

49 15 6 8 -2 1 4 

38 27 7 6 1 0 3 

335 84 48 52 -4 22 25 

1.43 1.64 1.69 

-17 

-12 

10 

13 

-2 

12 

-1 

6 

-3 

-3 

-3 

estimates in Table 5.) Figures 2 and 3 give the plots of residuals in Chemical Abstracts. 
Figures 4 and 5 give the plots in Physicists. Figures 6 and 7 give plots in Econometrica. 
Visually, we see that each of Figs. 3, 5, and 7 consists of four clusters. On the other hand, 
Fig. 2 represents an up-going trend, Figs. 4 and 6 reveal a similar pattern where the first 
three points increase steadily and then go up and down alternately. All the figures suggest 
the incompleteness of the model used. The source of the trends and clusters is an open 
question that needs more study. 

Our next step is to examine the two basic assumptions described in Section 7 and to 
look for an additional explanatory variable that could be incorporated into the generat- 
ing mechanism so as to lead to a better second approximation of the empirical data. The 
process of successive refinements was conducted by Simon and his colleagues from 1955 
to 1977. Instead of doing research on scientific publications, they focused on the sizes of 

t _________t________-t_________+_______- _+____-____, 
1.0 3.5 6.0 8.5 11.0 13.5 

Fig. 2. The plot of residuals against the number of contributions in Chemical Abstracrs. 
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loo.t 

i0 L 

so.+ *t 88 88 
0. 0 8 8 

0 L 

-100. t 0 8 

b. _________+_________t_____--_-t-_----_~~~_~~~~~~~~~ 1000. 2000. 3000. 4000. 5000. 

Fig. 3. The plot of residuals against fitted values in Chemical Abstracts. 

40.t 

-40. t 

Fig. 4. The plot of residuals against the number of contributions in Physicists. 

business firms. Eleven papers were collected in the monograph: Skew Distribution and the 
Sizes of Business Firms [l]. 

According to Simon, the refined assumptions were based on empirical data and sup- 
ported by economical theory. The two main refinements are: (1) autocorrelation in form 
growth rates, which gives a significant modification of the law of proportionate effect, is 
incorporated in the generating mechanism; and (2) the effects of mergers, acquisitions, and 
dissolutions upon concentration and the sizes of business firms are examined. The signifi- 
cant results of the two refinements are that they provide two different economic explana- 
tions for the concavity of the bilogarithmic firm-size distributions as observed in empirical 
data. 
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Fig. 5. The plot of residuals against fitted values in Physicists. 
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Fig. 6. The plot of residuals against the number of contributions in Econometrica. 

What all of this implies is that it is logical to follow the accumulated knowledge de- 
veloped for the sizes of business firms and apply it to scientific publications to provide a 
better and richer understanding of Lotka’s law. As an example, consider Simon’s refine- 
ment assumptions on business mergers and acquisitions. A possible relevance of the 
assumptions to Lotka’s law is the hypotheses about how the forming and dissolution of 
joint authors could affect author output. Empirical data are necessary to support the 
hypotheses. 
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Fig. 7. The plot of residuals against fitted values in Econometrica. 

9. CONCLUSION 

Three significant approaches for studying Lotka’s law are discussed in this article. 
First, an index approach is applied to identify a general formulation of Lotka’s law. Sev- 
eral implications of the new formulation are discussed. Second, a time series approach is 
used to identify two influential variables associated with the empirical data. Third, a gen- 
erating mechanism incorporating the two influential variables is used to derive an equilib- 
rium distribution resembling the general formulation of Lotka’s law. The constructive 
mechanism was proposed and successively modified by Simon for studying the sizes of 
business firms. The process of successive refinements is suggested for the study of Lotka’s 
law. 
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APPENDIX A: PROOF OF EQN (12) 

Simon’s generating process was recently applied to examine a type-token identity asso- 
ciated with the plays of Shakespeare [22] and an exponential recurrence phenomenon in 
written texts [23]. No doubt, Simon’s model is outstanding and has been cited frequently. 
However, the mathematical derivations in his paper are not rigorous. Simon himself 
described them as “heuristic.” Haight and Jones [24] argued that “the proof given by 
Simon is a little cloudy” and they reproved eqn (12) by using the probability-generating 
function technique. In the following we clarify Simon’s proof by providing more formal 
derivations. Note that Simon’s model was originally proposed for the modeling of text gen- 
eration. For the purpose of comparison, we adopt his terminologies in the following 
discussion. 

Consider a book that is being written, and has reached a length of t words. Let f( n, t) 
be the number of different words that have occurred exactly n times in the first t words. 
For example, if there are 300 different words that have occurred exactly once each, then 
f( 1, t) = 300. 

LEMMA A.l. 
Givenf(n,t), thenfort= 1,2 ,..., andn=2,3 ,... t, wehave 

nf(n, t) f(n,t) - 1, withprob. = 1 - CY -.._.--* 
t ’ 

f(n,t + 1) =f(n,t), prob. = CY + (1 -a) (n - l)f(n - 1,t) 
t 

f(n, t) + 1, with prob. = (1 - (Y) (n - 1)‘:’ - lYt), 

Also, given f (1, t), then for t = 1,2,. . . , we have 

f(l,t) - 1, withprob. = (1 - a)fF; 

f(l,t+ 1) =f(l,t), withprob. = (1 -Q) 1 - 
( f+); 

f(l,t) + 1, withprob. = (Y 
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Proof. Givenf(n,t), the introduction of the (t + 1)st word will result in one of the 
following conditions: 

1. f( n, t + 1) = f( n, t) - 1, i.e. one of the words that has occurred exactly n times 
in the first t words is used. The probability for this event is 

nf(n, t) 
(1 - a) 7 

2. f(n, t + 1) = f(n, t) + 1, i.e. one of the words which has occurred exactly n - 1 
times in the first t words is used. The probability for this event is 

(1 _ a) (n - l)f(n - l,t) 
t 

3. f(n, t + 1) = f(n, t), i.e. the introduction of the (t + 1)st word does not change 
the frequency of f( n, t). The probability for this event is 

( nf(n, t) 
a+(l-(;Y) l-p- 

(n - l)f(n - l,t) 
t t )* 

Similar tokens are for f( 1, t), t = 1,2, . . . q 

The last lemma plays an important role in the following derivations. 

LEMMA A.2. 
For t = 1,2, . . . , and n = 2,3, . . . t, we have 

I-CY 
E(f(n,t)) = __ t [(n - l)E(f(n - Lt)) - nE(f(n,t))l 

and 

l-a! 
E(f(l,t + 1) - E(f(l,t)) = OI - - t E(f(l,t)). 

Proof. From Lemma A. 1, we have, for t = 1,2,. . . , and n = 2,3, . . . , t, 

E(f(n,t + l)lf(n,t)) = [f(n,t) - 11 
[ 

(1 -Q) y 1 
+f(n,t) _ (n _ l)f(n - Lt) 

t )I 
+ [f(n,t) + 11 (1 -a) 

[ 

(n - l)f(n - Lt) 
t 1 

=f(n,t).a! +f(n,t).(l -Q) 

- (1 - &) q + (1 _ a) (n - l)f(n - 1,t) 
t 

= f(n,t) - (1 - CY) * + (1 _ a) (n - l)f(n - 1,t) 
t 
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iff 

I-CY 
E(f(n,t + l)lf(n,t)) -f(n,t) = 7 

i 1 [(n - l)f(n - l,t) - Kf(n,t)l* 

This implies 

E(EU-(n,t + l)lf(n,0)) - E(f(n,t)) 

ZZ [(n - lIEUIn - l,t)) - nEu-(n,f))l. 

Thus 

E(f(n, t + 1)) - EM% t)) 

1-o 
= 7 [(n - l)E(f(n - l,f) - n~u-(n,t))l. 

On the other hand, for t = 1,2,. . 

Eu-(l,t + lNf(l>t)) 

=,.,,l,i,-11[(1-~~(l-~~)] 

+fw[u -,,(I -f+)] 

+ ml,t) + lla 

f(l,t) 
=f(l,t)*a+cY+f(l,t).(l -N)-(l-cY)~ 

iff 

E(f(Lt)lf(Lt)) -f(l,t) = CY 

This implies 

- 
i 1 + f(l,t). 

Thus 

E(E(f(l,t + l)lf(Lt))) - E(f(l,f)) = 01 - EU-(l,t)). 

E(f(l,t + 1)) - E(f(lyt)) = Q - E(f(l,t)). 0 

Simon assumed that there is a steady-state solution in which the expected frequencies 
of all classes of words change in the same proportion. To be more specific, the steady-state 
assumption can be stated as follows: 
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Definition A. 1. The random process f( n, t) reaches a steady state if and only if 

E(f(n,t + 1)) t+1 

E(f(n, 0) 
=t> 

where t = 1,2 ,..., and n = 1,2,. . .,t. 
An alternative form of Simon’s steady-state assumption is 

E(f(n, 0) 
ta 

= E(f(n,t + 1)) = h(n) 

(t+l)a ’ 

where t = 1,2,. . . and n = 1,2,. . . , t. That is all expected frequencies will grow propor- 
tionally with t, so that they will maintain the same relative size. We denote the expected 
relative frequency as h(n), n = 1,2,. . . , t. Note that na is the expected number of differ- 
ent words used in the text. Simon’s steady-state assumption looks reasonable if we con- 
sider a text being “warmed up” for a fairly long time before the actual frequency count 
of the used words starts. 

THEOREM A.1. 
Under the steady-state assumption, we can derive from the Simon- Yule model 

h(n) = (1 + pW(n,p + lM(l), P = $-- 
(Y’ 

h(1) = z’ , n =2,3 ,..., t 
CY 

Proof. From Lemma A.2, we have 

1-a 
E(f(n,t + 1)) - Nf(n,t)) = - c [(n - IW(f(n - LO) - nE(f(n,Nl 

and 

E(f(Lt - 1)) - E(f(l,O) = a - 
( ) 

9 E(f(LO), 

where t = 1,2,. . . , and n = 1,2,. . . , t. When in the steady state, the equations become 

1-a 
h(n)(t + 1) - h(n)t = - t [(n - I)th(n - 1) - nth(n)] 

and 

where t = 1,2,. 

and 

h(l)(t + 1) - h(l)t = 1 - 
1-CY 
- th(l), t 

and n = 2, . . . , t. These imply 

h(1) = & 
CY 

h(n) = (1 - a)(n - l)h(n - 1) - (1 - cY)nh(n) 
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(1 + (1 - cY)n)h(n) = (1 - cY)(n - l)h(n - 1). 

The last equation indicates that h(n) is not equal to zero, for n = 2,3,. . . t. Therefore 

h(n) = 
(1 - CY)(n - 1) 

1 + (1 - a)n 
h(n - 1) 

n-l 
= - h(n - l), 

1 

n+p 
where p = - 

I-ff 

iff 

h(n) = 
n-l 
- h(n - 1) 
n+p 

n-2 
h(n - l) = (n - 1) + p h(n - 2) 

h(n - 2) = 
n-3 

(n - 2) + P 
h(n - 3). 

Thus, 

n-l 
h(n) = -. 

n-2 
2-1 h(1) 

n+p (n-l)+p”‘2+p 

(n - I)! I(2 + P - I)(2 +P - W(P)I 
= [(n + p). . . (2 + PII it2 + P - 1)(2 + P - 2)r(P)l 

h(l) 

= rtn)rtp + 2) 
l?(n + p + 1) 

h(1) 

= b + ~~r(n)rt~ + 1) htl) 

r(n + p + 1) 

= (1 + p)Ptn,p + l)htl) 

= (1 + p)Ptn,p + lM(l), 

where 

h(l) = A, n = 2,3,. . . ,t 0 

The expected frequency, fo(n), n = 1,2, . . . , is then f@(n) = vh(n) = vpB(n,p + 1). 


