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About 25 years ago it was demonstrated that certain peptides possess the ability to cross the plasma
membrane. This led to the development of cell-penetrating peptides (CPPs) as vectors to mediate the cel-
lular entry of (macro-)molecules that do not show cell entry by themselves. Nonetheless, in spite of an
early bloom of promising pre-clinical studies, not a single CPP-based drug has been approved, yet. It is
a paradigm in CPP research that the peptides are taken up by virtually all cells. In exploratory research
and early preclinical development, this assumption guides the choice of the therapeutic target.
However, while this indiscriminatory uptake may be the case for tissue culture experiments, in an organ-
ism this is clearly not the case. Biodistribution analyses demonstrate that CPPs only target a very limited
number of cells and many tissues are hardly reached at all. Here, we review biodistribution analyses of
CPPs and CPP-based drug delivery systems. Based on this analysis we propose a paradigm change
towards a more opportunistic approach in CPP research. The application of CPPs should focus on those
pathophysiologies for which the relevant target cells have been shown to be reached in vivo.

� 2017 Published by Elsevier Ltd.
1. Introduction

Cell-penetrating peptides (CPPs), also named Protein Transduc-
tion Domains (PTDs),1,2 are 5–30 amino acids long polypeptides
that mediate the cellular uptake of (macro-)molecules that other-
wise do not enter cells. Conjugation to cargo can either be through
covalent bond formation or through non-covalent complexation.

The development of CPPs started in the mid-90s, with the
demonstration of the cell-penetrating properties of penetratin, a
fragment of the Drosophila antennapedia homeobox protein.3

One of the first paradigms in CPP research was the receptor inde-
pendence of import.4 Instead, induction of uptake was related to
general characteristics of the cell surface, namely, the charge distri-
bution and amphiphilicity of the lipid bilayer and the glycocalyx, a
dense layer of negatively charged oligosaccharides.5 Consistent
with the receptor independence CPPs show uptake in basically all
dividing tissue culture cells, even though CPP-dependent differ-
ences in uptake efficiency certainly exist.6 However, also in vitro,
it has been shown that upon differentiation cells may completely
loose their capacity for CPP uptake.7

The development of CPPs coincided with an explosion in
knowledge on the pathophysiological role of intracellular
molecular pathways, many of which involving networks of pro-
tein-protein interactions (PPI). PPIs, however, are notoriously diffi-
cult to target with small molecule inhibitors. CPPs created the
perspective to address this target space by import of peptides
and protein domains. In addition, siRNA emerged as a new thera-
peutic modality by mediating the down-regulation of target genes.
Again, transfer to preclinical research and then to the clinic criti-
cally depended on the availability of an efficient import strategy.

In the delivery of PPI inhibitors and siRNA, CPPs contributed to
preclinical success, and CPP-peptide conjugates also went into clin-
ical trials. However, in spite of a rapid growth of the field,8 so far no
CPP-derived delivery vector has been successful in the clinical set-
ting. In other words, the CPP field is very capable of producing
innovative delivery approaches for proof-of-concept in vitro, but
seems largely unsuccessful in translating this activity into efficacy
in man. Therefore, we ask where the potential bottlenecks are and
in which way research strategies should be changed.

Following a brief evaluation of the maturity of the CPP field in
comparison to other delivery technologies we challenge the con-
cept of cell-type independence as a critical misconception. Since
CPPs are considered a generic solution to the delivery problem,
in vitro preclinical work is exclusively target oriented. However,
as we show through a review of literature on biodistribution,
in vivo, strong preferences for specific organs and cell types exist.

A comparison of the biodistribution with the pathologies that
are currently being targeted reveals a mismatch between the
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current objectives and the in vivo potential of CPPs. As a conse-
quence, we propose that the research strategy needs to be
reversed: First, for a given delivery vector, target cells/organs
should be determined through in vivo biodistribution studies. Only
then should molecular targets related to pathophysiologies in
these organs be selected.
2. CPP-based delivery – maturity of the field

We reasoned that for a given delivery technology, as it traverses
from an early fundamental into a preclinical phase, the relative
number of publications reporting on in vivo studies and investigat-
ing biodistribution would increase. Applying this line of reasoning,
we therefore compared the number of pubmed-listed publications
on penetrating peptides with those for polyethylenimine (PEI) and
lipid-based nanoparticles (LNP) (Supplemental information 1). PEI
has served as a reference in in vitro assays for years. However, for
in vivo applications there are strong toxicity concerns.9,10 Lipid-
based nanoparticles have gained significance in oligonucleotide
delivery with several ongoing clinical trials including phase III.11,12

Per year from 2000 to 2016 we extracted the total number of
articles per field, the number of articles having ‘‘in vivo”, and the
number of articles having ‘‘biodistribution” in title or abstract or
key words from pubmed (Fig. 1). We realized that a full text search
on PMC National Library of Medicine produced significantly more
hits than the pubmed search (for CPP-related research 996 instead
of 53 for the search string specified in the Supplements). However,
after a first inspection many turned out to be irrelevant. Therefore,
we focused on the restricted search approach and extracted quan-
titative information as far as possible (see below).

Overall, for all three delivery systems, CPPs score the least pub-
lications. From 2000 to 2005 for LNPs similar numbers of publica-
tions were published as for CPPs, however, since then this field has
taken off rapidly and in 2015 three times more publications
appeared for LNPs than for CPPs. The fraction of publications
reporting on in vivo data or on biodistribution over the years was
constant for PEI reflecting the fact that this delivery polymer was
established first but indicating as well, that this field has gained lit-
tle momentum towards translation into the clinic. CPPs have been
catching up but again LNPs took the lead. Overall, this analysis
Fig. 1. Bibliometric analysis for different delivery vectors. Total number of publication
publications per year, normalised to the total number of publications for each delivery sy
(C) and biodistribution (D). The number of publications per year was extracted from pu
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indicates that CPPs had a promising start but now are at a critical
phase, in which initial momentum has been fading out while LNPs
which had a later start are receiving more attention.
3. Biodistribution analysis – methodological approach

In 2010 Sarko et al. analysed the biodistribution and pharma-
cokinetics for a set of ten cationic CPPs conjugated to a 111In-
loaded DOTA chelator that were injected into tumour-bearing
mice. Sequestration into the liver and kidneys was prominent.
The brain received less than 0.1% of the total dose and also the
tumours received less than 1% with only two exceptions. This
biodistribution is in striking contrast to the perception of CPPs as
a generic delivery strategy. Nevertheless, cationic CPPs have been
repeatedly advertised as a means to cross the blood-brain-
barrier.13–15 CPPs are mostly used for the delivery of drugs for
which the costs-of-goods are critical. Therefore, even if a relevant
concentration could be reached, considering the minute fraction
of total dose reaching the brain, a brain target may not be the
appropriate application.

To further investigate whether the observations by Sarko et al.
translated into a general pattern, we scanned the 53 publications
retrieved from pubmed. Of these 53 entries, two were book entries,
8 were reviews, 3 did not perform a biodistribution study, 3
showed only semi-quantitative images,16,17 two report on target-
ing peptides with no cell-penetrating capacity, and in one article
the signal in the kidneys was so prominent that the scales of the
graphs made it impossible to accurately extract quantities.18 One
article reported an oligoarginine CPP which, through addition of
the three N-terminal amino acids NGH, acquired a strong propen-
sity for prostate cancer and is therefore a borderline case of a
tumour homing peptide.19 Another interesting example of peptides
that combine tumour-associated receptor targeting with cell pen-
etration are the C-end rule (CendR) peptides that bind neu-
ropilin-1 via an arginine-rich C-terminal motif (see Table 1 for an
overview of the peptides).20

In total, 34 articles from the 53 included quantitative biodistri-
bution data which we used for further analysis (Supplemental
Table 1). Two more key CPP papers were manually included.21,22

We extracted information about the delivery vector and cargo,
s for CPPs, lipid nanoparticles (LNP) and polyethyleneimine-based strategies (A),
stem to better visualize trends (B), fraction of publications addressing in vivo studies
bmed by searching in title, abstract and keywords (see Supplements).

m. (2017), https://doi.org/10.1016/j.bmc.2017.11.004
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Table 1
Peptides used in the delivery vehicles from the studies included in Supplementary Table 1.

Peptide Sequence References

Maurocalcine YGDCLPHLKLCKENKDCCSKKCKRRGTNIEKRCR 90
sC18 GLRKRLRKFRNKIKEK 91
hCT KKRKAPKKKRKFA-NH(C4)coupled to a K-FHTFPNTAIGLGAP 91
(RXR)4 RXRRXRRXRRXR (where X is aminohexanoic acid) 51
R9 and other polyarginines RRRRRRRRRR (or another number of R) 29, 32, 35, 37, 76, 78
VG-21 VTPHHVLVDEYTGEWVDSQFK 95
LMWP (and activatable versions) CVSRRRRRRGGRRRR 44
BAC RRIRPRPPRLPRPRPRPLPFPRP 43
TAT GRKKRRQRRRPQ 30, 32, 33, 36, 50, 53, 56, 77, 92, 93
Penetratin RQIKIWFQNRRMKWKK 40, 49
SPACE ACTGSTQHQCG 83
tLyp-1 YGGNKRTR 47, 48
CIGB-552 Ac-HARIKpTFRRlKWKYKGKFW 38
PI CASPSGALRSC 94
iNGR GGGCRNGRGPDC 45
Pip6a RXRRBRRXRYQFLIRXRBRXRB (where X is aminohexanoic acid) 52
NHGR11 G-RRRRRRRRRRR 19
SynB1 RGGRLSYSRRRFSTSTGR 77
SV40-derived sequence PKKKRKV 39
MPG-8 bAFLGWLGAWGTMGWSPKKKRK-Cya 41
Pepfect6 (stearyl)-AGYLLGK(K(K(QN2)2)INLKALAALAKKIL 21
Pepfect14 (stearyl)-AGYLLGKLLOOLAAAALOOL (where O is ornithine) 22
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the controls used in the study, the motivation of the study and
translational application (if stated), the administration route,
detection method, time-point, and any extra information relevant
for the comparison to other vectors or to understand the study
on its whole. Quantitative information was recovered from tables
and graphs and further processed as described below.

All publications presented data on a CPP-containing carrier with
the idea to enhance cellular uptake. From these, nine used a CPP
directly coupled to an active molecule, nine used CPP-conjugated
nanoparticles (including polymer-based nanoparticles), three used
CPP-conjugated liposomes, three used CPP-conjugated proteins,
five used CPP-conjugated nucleic acids, one a CPP conjugated to a
small molecule (protoporphyrin), one used lipid nanoemulsions,
and one used ethosomal carriers, a specific type of phospholipid,
ethanol and water formulation. Two of the studies also incorpo-
rated a ligand for active targeting in their delivery vector.

According to the general paradigm that CPPs enter cells in a
receptor independent manner, CPPs may be considered a passive
targeting strategy, even though the triggering of uptake would
qualify them as a special case of active targeting. In spite of the fact
that in every case a CPP was present, this diverse set of molecular
entities is expected to be subject to different mechanisms that con-
trol their biodistribution. For all macromolecular compounds and
nanoparticles, passive targeting usually relies on the enhanced per-
meation and retention (EPR) effect, which is attributed to the dis-
organized and leaky tumour vasculature.23,24 In active targeting,
the delivery vector contains a ligand for a receptor that is specific
for the targeted cells, for example the tumour cells. Another exam-
ple of active targeting are functionalities that specifically react to
the tumour microenvironment such as protease-activatable
probes.25

In our attempt to compile the results into a comprehensive and
quantitative picture, we encountered several obstacles. First, dif-
ferent methods to assess targeting efficiency were used such as flu-
orescent dyes or radiolabels, coumarin for detection of delivery by
HPLC, mass spectrometry or fluorescence, and finally functional
assays such as RNA knockdown. Clearly, the reporter can by itself
influence the detected biodistribution.

For chelated radionuclides as for fluorescent dye conjugates
partial degradation of the carrier and release of the reporter may
disguise the actual biodistribution of the carrier. Furthermore, it
is known that polymethine dyes are ligands for organic anion
Please cite this article in press as: Collado Camps E., Brock R. Bioorg. Med. Che
transporting polypeptides (OATP) transporters in hepatocytes.
Such molecules have indeed been used to target siRNA specifically
to hepatocytes.26 Alexa Fluor 633 has been found to specifically
bind elastin fibers in blood vessels.27 Coumarin is a good fluores-
cent model compound for drug delivery using nanoparticulate
drug carriers, however, must not leak out of the carrier. Finally,
even though functional RNA knockdown typically is the applica-
tion-relevant read-out, it may not correlate with the total quantity
of oligonucleotide delivered.

To minimise the differences derived from the diverse
approaches, we first normalised the extracted quantities to the
sum of the values of all organs in each study. In this way, the num-
bers obtained indicate which fraction of the total measured activity
was present in each organ. Then, to account for the fact that not the
same organs were analysed in each article, the sum of the values
for each organ was averaged for the number of individual values
for that organ, i.e. the number of articles that had provided a mea-
sure for that organ.

Also, standalone CPP-cargo conjugates are less common than
combinations of a nanoparticle with a CPP for which the dimen-
sions of the carrier should also strongly affect the biodistribution.
For tumours (models), where the (EPR) effect is present,28 many
biodistribution studies did not test control nanoparticles without
CPP, thereby compromising an assessment of the effect of the
CPP on the nanoparticle distribution.

The timepoint chosen for the biodistribution measurements is
another potential source of variation. In general, accumulation in
thoracic organs is very high in the first hours, but lower 24 h after
administration. CPP-driven retention is more clearly observed after
circulating compound is cleared, and therefore relative signal for
tumours in respect to other organs may be maximised when a
24 h- or later-timepoint is used.29,30

The notable discrepancies between two articles providing
biodistribution data on several commonly used CPPs, could thus
be due to the different timepoints chosen (10 min, 1 h and 3 h ver-
sus 24 h).31,32 The lack of overlap in the protocol is unfortunate, as
explorative studies are highly valuable and cross-referencing
would be desirable.

Liver, spleen and lung showed prominent retention (Fig. 2).
Nevertheless, in some instances different studies report different
biodistribution patterns for similar delivery vehicles. For example,
for PEGylated and Tat-coupled cholesterol liposomes one study33
m. (2017), https://doi.org/10.1016/j.bmc.2017.11.004
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Fig. 2. Biodistribution and primary areas of application. (A) and (B) show the mean
of the fraction of the total signal in every organ for data pooled from all articles.
Inclusion criteria were: timepoint >3 h, only data for the best vector from an article
in which several vectors had been tested, or data from the most common CPPs in
case several had been used. To account for differences in the measurements, signal
from all organs measured in each study was summed up and the signal for each
organ in that study was normalised to the total value of the corresponding study.
Error bars show SEM. A: data for non-targeted delivery vehicles; B: data for targeted
delivery vehicles. (C) shows the objectives of all articles that are mentioned, also
from those not fulfilling the criteria to be included in graphs A and B.
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showed almost no lung retention over a 24 h time period while in
another study from the same group retention in lung was higher
than in liver,34 even though administration was via the tail vein
in both cases. Sharma et al. used liposomes decorated with poly-

L-arginine and transferrin to target the brain.35 In their study, liver
and spleen showed more accumulation than the lung and the poly-

L-arginine promoted brain delivery. Zheng et al. used transferrin
and Tat-coated coumarin-loaded liposomes for glioblastoma deliv-
ery. However, coumarin concentration in this case was also higher
in the lung than in liver and spleen.36 A commonality between all
these studies is that the desired target was the brain. However, in
none of these studies, this organ showed prominent retention.
4. Biodistribution analysis

Overall, as mentioned, CPP-based delivery vehicles mostly accu-
mulate in the liver, lung and spleen. Some studies also showed
Please cite this article in press as: Collado Camps E., Brock R. Bioorg. Med. Che
intestinal accumulation, which could be a consequence of biliary
excretion. Accumulation in the lungs was less common but has
been shown for some compounds. In contrast, accumulation in
muscles and Central Nervous System (CNS) was modest to very
modest. Strikingly, even when CPP-based vectors showed a relative
superiority compared to the control in CNS or muscle targeting,
absolute accumulation was a factor ten higher in the aforemen-
tioned organs.35

Fifteen of the considered articles aimed at tumour targeting for
diagnosis and treatment. Cargoes includedproteins, small-molecule
drugs, dyes, radiolabelled compounds and small nucleic acids. Of
these, three investigated the distribution of the CPP itself,37,38,19

and a fourth one also attached a protoporphyrin for photodynamic
therapy.39 Two articles evaluated constructs that also included a
ligand for specific targeting. In one of them, the ligand was a
single-chain antibody,40 in the other one transferrin attached to
Tat-coated liposomes.36 Two articles addressed CPP-based
polyplexes,41,42 one a CPP-conjugated dendrimer for polyplex
formation,30 and three CPP-conjugated nanoparticles (elastin-like
peptide nanoparticles, PEG-PLGA, liposomes).33,43,44

In most cases orthotopic models were used to test whether the
delivery vehicle improved retention in the tumour. Tumour accu-
mulation was often only modest compared to accumulation in
liver, kidney and spleen.

In some cases, vehicles showing increased tumour accumula-
tion in comparison to the untargeted controls also showed higher
background32 or higher retention in the kidneys.45 Interestingly,
there are a few exceptions in which tumour accumulation showed
a strong improvement in comparison to other organs.38,40,30

The study on the cell-penetrating anti-tumour peptide CIGB-
552 illustrates the impact of time on biodistribution.38 Following
a rapid excretion via the kidney, over a time frame of 24 h about
5% of the injected dose, delivered by subcutaneous administration
was retained in the tumour. In comparison to lung and heart, dif-
ferences increased which may be due to retention by capture to
the target as recently described for stapled peptides in vitro.46

Liang et al., used a CendR peptide to direct nanoparticles to
tumours,47 two other articles for targeting of a radiolabel for diag-
nostic purposes.48,45

Seven publications aimed at reaching the brain. However, in
two of the studies the liver showed a much higher accumula-
tion,49,44 one study showed the highest accumulation in the spleen,
followed by the liver and the lungs,35 and a fourth one more in the
lung than in any other organ.36 As mentioned above, in their stud-
ies on brain-targeted CPP-conjugated liposomes, Qin and col-
leagues published one article in which the accumulation in the
lung was negligible, and another one where Tat- and R8-liposomes
accumulated much more in the lung than in any other organ, with
the only exception of control disordered Tat-liposomes.33,34 Intra-
nasally administered MPEG-PCL-Tat micelles yielded enhanced
retention in brain and lung50 in comparison to liver, heart, kidney
and spleen. However, due to this different route of application,
their biodistribution results are not comparable with those of
intravenously injected vehicles.

CPP-based delivery of small nucleic acids for gene therapy of
muscular dystrophies has also received considerable attention.
For the delivery of charge-neutral phosphorodiamidate mor-
pholino oligomers (PMO) CPPs are covalently attached in a co-lin-
ear manner. For negatively charged nucleic acids, a common
approach is to harness their negative charge to form non-covalent
nano-sized complexes with the positively charged CPPs. Of the
reviewed articles, six studied the biodistribution of nucleic acid
complexes: two51,52 used PMOs and four used CPP/oligonucleotide
complexes.41,21,53,42

Interestingly, the calcium condensed dTat/siRNA complexes of
Baoum et al. showed more knockdown of the target enzyme
m. (2017), https://doi.org/10.1016/j.bmc.2017.11.004
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GAPDH in brain than in liver and lung, although the concentration
of the siRNA itself was higher in the latter, particularly in the lung.
However, knock-down varied between the two doses tested, and it
cannot be ruled out that this effect was gene specific.

The CPPs PepFect 6 and PepFect 14 (PF6 and PF14) are represen-
tatives of the class of amphipathic CPPs.21,22 In the first in vivo
study on siRNA delivery with PF6 the strongest silencing was
observed in liver, lung and kidney.21 PF14 DNA complexes yielded
by far the highest gene expression in the lungs with only little
expression in tumours which could be redirected to tumours
through introduction of an MMP-cleavable PEGylation.42

The covalent conjugation of Pip6a to a PMO enhanced retention
in all organs and tissues tested with the biggest increase in the
liver.52 Even though the application was in muscle targeting, the
concentrations in kidney and liver were two orders of magnitude
higher than those in muscle. Surprisingly, brain accumulation
strongly increased, even though the reasons for this observation
are not clear. The same peptide also showed remarkable central ner-
vous system activity in the delivery of a therapeutic oligonucleotide
in a mouse model of spinal muscular atrophy. In this latter study
only activity but not biodistribution was measured.54 Also in the
study by Amantana et al., conjugation of a PMO to the (RXR)4 pep-
tide increased retention in all organs, especially in liver and spleen
but also in the heart.51 Skeletal muscle was not tested in this study.

To summarize, the addition of a CPP did not benefit the specific
accumulation in only one organ, however, given the pronounced
preference for liver, kidney and spleen, there is no basis to state
that CPPs provide a generalized, systemic delivery approach. Very
clearly, with a focus on the brain, tumours and muscle, the current
research on CPP-based delivery strategies aims at organs or loca-
tions that are only poorly reached.
5. Opportunistic targets to improve effectivity/relevant
pathologies

As follows from the analysis above, so far there has been a mis-
match between the biodistribution of CPP-based vectors and the
targeted pathologies. CPP-based delivery vehicles show a high
accumulation in the liver, spleen and lungs compared to other
organs. Thus, targeting pathologies in these organs seems a natural
approach. In fact, outside the area of CPPs, delivery of oligonu-
cleotides to the liver either through targeting of the asialoglycopro-
tein receptor or by making use of the propensity of lipid
nanoparticles to reach this organ has shown activity, also in clinical
development.55

CPP-based delivery vehicles for the treatment of hepatocarci-
noma have already been explored.56 The challenges to further
develop this approach preclinically will be to use more realistic
tumour models instead of xenografts. Animal models of hepatitis
B virus infection provide a physiological setting to assess the liver
tropism and effectiveness of a delivery vector. In this context, CPPs
have shown activity in the delivery of peptide nucleic acids
(PNAs).57,58 Several groups are working on the targeting of Ito cells
to prevent liver fibrosis.59,60 Since the liver comprises of many dif-
ferent cell-types, involved in a variety of pathologies,61 further
research is needed to dissect delivery at the histological level.

As far as the kidney is concerned, it needs to be investigated to
which degree kidney-associated signals reflect a transient accumu-
lation associated with excretion or true delivery. Nevertheless, if
the delivery vehicles are not degraded before reaching the urine,
they could be used to target kidney diseases and malignancies of
the urological tract as demonstrated for a tumour homing peptide
targeting bladder cancer cells.62

Concerning the lung, cystic fibrosis and chronic obstructive pul-
monary disease (COPD) are two major indications for which
Please cite this article in press as: Collado Camps E., Brock R. Bioorg. Med. Che
oligonucleotide delivery provides novel therapeutic means. In this
case, however, delivery by inhalation may be the preferred route of
application, thus circumventing the challenges of sequestration by
other organs.63

The preferential uptake observed for organs of the reticuloen-
dothelial system (liver and spleen) could be exploited in multiple
ways. Imaging of macrophages has been explored as a means for
monitoring macrophage accumulation in the sentinel lymph
node,64 and to image alveolar macrophages in a model of COPD.65

Considering their central role in the tumour microenvironment
and in (auto)inflammatory disease, imaging and functional modu-
lation of macrophages is extremely valuable in these fields too.66

Even targeting of intracellular pathogens in macrophages could
be pursued, for example by in vivo development of the targeting of
macrophage-resident Leishmania parasites67 and macrophage-res-
ident bacteria.68

As far as the spleen is concerned, immune cells other than
macrophages could also be targeted. The enhancement of presen-
tation of peptide vaccines has been one of the first applications
of CPPs.69,70 Finally, CPPs have been used for injection-free transep-
ithelial delivery of drugs that act systemically such as insulin.71

Here, crossing of the barrier rather than mediating cellular delivery
is the intended mode of action of the CPP.
6. Redirecting targeting

Very clearly, CPP-based delivery vectors are neither uniform
enhancers of cellular uptake nor do they possess a specific cell-
type selectivity. Not surprisingly, numerous attempts have been
made to incorporate selectivity towards specific cell types. Several
of the studies mentioned above included such targeting strategies,
however, in most cases they only had moderate impact on biodis-
tribution. Two general strategies for targeting can be discrimi-
nated: First, the combination with additional targeting ligands
and second, the controlled exposure of the CPP functionality in
response to environmental cues such as the presence of certain
proteolytic activities44,37 or a change in pH.72

An example for the first strategy is the aforementioned combi-
nation of liposome functionalization with transferrin and a CPP.35

The most prominent and widely explored approach for environ-
ment-dependent CPP exposure are the activatable CPPs (ACPPs)
that make use of the presence of proteases in the microenviron-
ment of the target site. Here, a polyanionic peptide stretch is cou-
pled to the CPP via a protease cleavage site. Folding back of the
anionic stretch onto the polycationic CPP neutralizes the CPP activ-
ity.25 Discrimination of the target site was enhanced, in both can-
cer and inflammation.73,74 However, significant off-target
distribution clearly pointed towards diagnostics rather than ther-
apy as the preferred mode of application. Analysis of the time
dependent biodistribution indicated an enhanced systemic circula-
tion and avoidance of rapid liver clearance as a major mode of
action of the internal masking75 and questioned a simple mecha-
nism according to the original rationale. This observation was sub-
stantiated by further studies which uncovered a role of vascular
proteases in activation.76,37

For nanoparticles this strategy was implemented by linking the
nanoparticle-coupled CPP via the protease cleavage site of a matrix
metalloprotease to a PEG chain. For PF14 nanoparticles this strat-
egy resulted in nearly exclusive redirection of targeting to the
tumour.42 Xia et al. used an activatable low molecular weight pro-
tamine (ALMWP) also activated by MMPs for nanoparticle deliv-
ery.44 In their biodistribution studies, mice treated with ALMWP
particles showed more accumulation in the tumour, but also in
the liver. In this case, both plain particles and particles with regular
LMWP were taken as controls.
m. (2017), https://doi.org/10.1016/j.bmc.2017.11.004
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Fig. 3. Proposed paradigm change for CPP research. Based on the perception of CPPs as a generic solution to the delivery problem, at present, a pathology is the starting point
for research. Instead, an inventory of biodistributions for a repertoire of CPPs and the respective carrier types should be generated. The biodistribution then determines the
pathologies that can be addressed.
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As a representative of receptor-targeted ligands with intrinsic
CPP activity Liang et al. used a CendR peptide to direct nanoparti-
cles to tumours.47 However, along with enhanced tumour reten-
tion, delivery to the liver was increased to a similar degree.
Studies on CendR-peptide conjugated radiolabels for diagnostics
showed discordant results.48,45 In both cases, distribution to the
kidneys was dominating but in one case only little tumour target-
ing was achieved over a rather short time window.48

Alternatively, the route of application can be adjusted. Intrana-
sal administration provides enhanced brain delivery in comparison
to intravenous administration. For Tat-conjugated elastin-like
polypeptide the lung was the only main off-target organ, possibly
due to drainage, in comparison to the stomach and kidney after
intravenous administration.77 Kanazawa et al. compared accumu-
lation levels for Tat-conjugated block-copolymer micelles after
both administration routes. Again, brain was the main target organ,
next to lung. Brain accumulation was 50% lower for intravenously
administered micelles but the timepoints at which the animals
were sacrificed were different (1 h for intranasal and 24 h for intra-
venous).50 Also, direct delivery of CPP-based formulations into the
lung has been explored, even though delivery was by intratracheal
gavage and not by inhalation.78

A further route of delivery that has received little attention so
far is intraperitoneal injection. Ovarian cancer is a highly meta-
static malignancy with the great majority of cases restricted to
the peritoneal cavity,79 and intraperitoneal delivery of chemother-
apeutics is often performed in combination with surgery.80 Colon
cancer can also metastasize into the peritoneum, and different
modes of intraperitoneal chemotherapy are used to prevent the
expansion of metastases.81 Intraperitoneal injection of a CendR
peptide afforded efficient delivery of dextran and doxorubicin to
intraperitoneal metastases.82

Finally, topical application is a safe approach, which – in com-
parison to systemic delivery – reduces the demands on biodistribu-
tion. Our literature search produced one article on topical delivery
of cyclosporine A for the treatment of psoriasis using a phage dis-
play derived peptide.83 However, CPP-based topical delivery has
been exploredmorewidely.84 Of particular note is the non-covalent
complexation of botulinum toxin with an arginine and lysine rich
CPP.85 However, this formulation failed in a phase III clinical trial
due to lack of efficacy in comparison to the current treatments.
Finally, ocular drug delivery with CPPs has also been pursued.86–89
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7. Conclusion and perspectives

Nearly 25 years after their discovery, still no CPP-based drug
has entered the clinic. Here, we argue that this may be due to
the fact that the CPP field started with too high expectations of
being generic delivery vectors, which in turn had been a conse-
quence of in vitro observations which were then extrapolated
towards in vivo expectations.

Considering the rapid success of LNP-based delivery approaches
which opportunistically exploit the liver tropism, we propose that
also CPP-based delivery should follow a more opportunistic
approach (Fig. 3). As a consequence, more efforts are needed to
not only map biodistribution on an organ level but also on a cell-
type specific level. In addition, it needs to be defined to which
degree efficient uptake also leads to functional delivery. While
for delivery of therapeutics this typically requires release into the
cytoplasm, for diagnostic purposes, cellular uptake as such is suffi-
cient. The further refinement of targeting approaches as well as a
critical evaluation of the route of application should be further ele-
ments of this strategy.
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