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Social network analytical tools and theories have long been an accepted part of the research landscape in many
social and physical sciences including: sociology, political science, psychology, communications, business, geog-
raphy, biology, physics, and chemistry as well as library and information science (LIS). Given the level of activity
in the social network analysis (SNA) area concerning LIS, it is important to review the latest trends in the SNA
stochastic modeling, namely exponential random graph (ERG) models. Unlike previous SNA methods, ERG
models offer insight into generative network properties through simultaneous inclusion of structural parameters
and attributes in the analysis while accounting for the interdependent nature of network data. Additionally,
whenMonte CarloMarkov Chain Maximum Likelihood Estimator is used, ERGmodeling results in parameter es-
timates superior to othermethods (e.g., MRQAP). The current studywill demonstrate the utility of ERGmodels in
LIS through a brief overview of major concepts and techniques in SNA, followed by a detailed description of ERG
modeling technique, a review of currently available software used in analysis and a brief examination of its cur-
rent use in LIS studies.
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1. Introduction

Social network analytical tools and theories have long been an
accepted part of the research landscape in many social and physical
sciences including: sociology, political science, psychology, communica-
tions, business, geography, biology, physics, chemistry as well as library
and information sciences (LIS). At least two studies in major informa-
tion sciences journals synthesize the social network analysis impact
on the field of library and information sciences. The first examines,
in some detail, techniques and theories of social network analysis
(SNA) in the context of information exchange studies, including its
unique qualities distinguishing it from other research approaches
(Haythornthwaite, 1996). Schultz-Jones (2009) provides an update of
this study in terms of recent research questions and a detailed literature
review of seven disciplines, including LIS, using the SNA approaches to
examine information behavior. This study also distinguishes between
SNA theory and analytical tools and provides an overview of history
and important developments in both. Additionally, recent LIS studies
in the areas of bibliometrics, webometrics, knowledge management
and user information behavior indicate interest the SNA stochastic
modeling. Given the level of activity in the SNA area concerning LIS as
demonstrated in the two studies as well as various content areas, it is
important to review the latest trends in the SNA stochastic modeling,
namely the exponential random graph (ERG) models.

Since ERG modeling requires substantial background in statistics
and SNA, the aim of this study is to demystify the technique and pro-
mote its usage in LIS studies by demonstrating its unique value and ad-
vantages over other SNA descriptive and stochastic analytical tools. In
keeping with this goal, the current study will demonstrate the utility
of ERG models in LIS through a brief overview of major concepts and
techniques in SNA, followed by a detailed description of ERG modeling
technique, a review of currently available software used in analysis
and a brief examination of its current use in LIS studies.

2. Literature review

2.1. SNA analytical procedures

SNA relies on relational data consisting of nodes, sometimes also
referred to as actors, and connecting ties, also known as edges, which
can be directed or non-directed (Wasserman & Faust, 1994).
Resulting networks can be viewed from a single actor's perspective,
termed egocentric, or a whole network perspective focusing on ties
as reported by the entire set of actors. In information exchange stud-
ies, egocentric networks can provide information about who the
actor goes to for information and where they receive it, while the
whole network provides insight into information behavior of groups
of actors (Haythornthwaite, 1996). Networks can also be of a one-
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mode variety consisting of a single set of similar nodes (e.g., a set of
authors) or two-mode variety consisting of two sets of nodes with
ties connecting the two sets (e.g., a set of authors and a set of articles
where the author is tied to an article if they are listed as an author).
Data are commonly presented in graphs or adjacency matrices suit-
able for further analysis. An adjacency matrix is a square matrix
with as many rows or columns as nodes in the network where the in-
tersections between rows and columns indicate the presence or ab-
sence of ties (i.e., number one indicates a tie is present and a zero
tie is absent). In undirected graphs (i.e., where all ties are reciprocat-
ed), the adjacency matrix is symmetrical, with zeros on the diagonal
to avoid loops (i.e., ties to self). Consequently, directed graphs or di-
graphs are asymmetrical since ties are not necessarily reciprocated.

Before recent developments in ERG models were introduced, the
majority of SNA techniques mostly focused on descriptions of network
properties such as density, in-degree, out-degree, size, centralization/
centrality and distance (Wasserman & Faust, 1994). Each of these pro-
vides valuable insight into how networks operate. Density provides an
account of the level of connectivity of actors in a network, in-degree
and out-degree detail numbers of connections attracted and radiating
from an actor respectively, while distance provides a measure of actors'
reachability. Centrality measures an individual actor's influence in the
network while centralization measures the extent to which actors in a
network are organized around a central node. Degree centrality posits
higher centrality for the actors with the most ties. Closeness centrality
assigns it to the actors who are most easily reached, while betweenness
centrality considers those with the highest probability of occurring on
the shortest path between two randomly chosen nodes to be the most
central (Borgatti & Everett, 2006).

Additional advanced SNA analytical approaches concerning whole
networks are grouped around notions of cohesion (i.e., the process of
grouping actors according to common characteristics), brokerage (i.e.,
the information diffusion in connection with centralization and brid-
ges), ranking as assessed through measures of prestige, dyadic and tri-
adic analysis and positions as revealed through the blockmodeling
procedure (i.e., grouping of structurally equivalent actors into clusters).
With few exceptions (e.g., stochastic blockmodels and the quadratic as-
signment procedure), the advanced SNA analytical tools are best suited
to describing properties of networks and fall short when it comes to de-
scribing their generative properties. Indeed, ample evidence suggests
that most network studies conducted prior to 2003 focus on conse-
quences rather than generative properties of networks (Schultz-Jones,
2009). Given the complexity of human information behaviors, it is rea-
sonable to expect that behaviors giving rise to complex processes such
as, for instance, information exchange networks are stochastic and
that statistical analyses are needed.

Prior to recent advances in ERGmodeling, the few statistical studies
conducted mostly focused on inclusion of some of the aforementioned
network concepts into the statistical models as independent variables
along with other continuous attribute variables relying on techniques
such as regression (e.g., Gest, Graham-Bermann, & Hartup, 2001;
Oliver & Montgomery, 1996; Reich, 2007). Even from this brief discus-
sion of social network data, it should be immediately apparent that,
due to their relational nature, network data violate independence as-
sumptions associated with such analytical tools thereby making the in-
ferences questionable. The problem lies in standard error computation
which relies on error variance. When actors are chosen in groups rather
than as individuals, the possibility of correlated disturbances increases,
making the coefficients unreliable (Allison, 1999). Permutation based
regression based on Krackhardt's quadratic assignment procedure
(QAP) (Krackhardt, 1987), where the rows and columns in the adjacen-
cy matrix are permuted simultaneously in such a way that the network
structure is left intact (Snijders, 2011), emerges as the most popular so-
lution. The sampling distribution is generated from the possible combi-
nations of the sample space and the observed statistic is compared to a
simulated distribution (Schaeffer, 2012).
Before QAP was introduced, very few options were available to re-
searchers who wished to include attributes in their analysis along
with network structural properties. Consequently, the temptation to in-
clude structural network properties as independent variables along
with other independent continuous variables is understandable. How-
ever, even QAP as the earliest form of true stochastic network analysis
suffers from notable faults. For instance, while multiple regression
QAP (MRQAP) extends the QAP to include examination of more than
two relations, both require data manipulation and make no attempt to
model network dependencies (Snijders, 2011). In contrast, ERGmodels
provide a statistical framework capable of directly manipulating net-
work data and attributes associated with actors resulting in less statisti-
cal noise.

2.2. Exponential random graph (p*) models

The basic assumption underlying the logic of ERGmodels is that the
observed network is a result of some unknown stochastic process. The
proposed model aims to explain this stochastic process by testing a set
of hypotheses derived from theory or prior research and represented
by the structural properties of the observed network (Robins, Pattison,
Kalish, & Lusher, 2007). Specifically, ERGmodels test whether a genera-
tive process in a network occurs more frequently than expected by
chance. Broadly speaking, these generative processes can be explained
through network self-organization processes characterized by activity/
popularity, reciprocity, closure and brokerage, actor attributes charac-
terized by effects of the sender, effects of the receiver and their interac-
tion, and exogenous contextual factors such as other networks or
special factors (Lusher, Koskinen, & Robins, 2013). For instance, re-
searchers could test if preferential attachment (i.e., new actors link to
actors with high indegrees) can be modeled by including appropriate
parameters into the model.

When exogenous factors and attributes are not included, structural
configurations shape the formof themodel. The simplest structural con-
figuration in a directed network is an arc. Higher order parameters in-
clude star and triangle configurations. Stars generally reflect the
degree distribution in a network and range from 2 stars to k stars. In di-
rected networks, they can appear in the form of in-stars (i.e., all nodes
are connected to the central node but not to each other), out-stars
(i.e., the central node is connected to other nodes but they are not con-
nected to each other) andmixed stars (i.e., some combination of in-stars
and out-stars). Degree distribution reflects popularity and activity ef-
fects. For example, in the context of information exchange, degree dis-
tribution could provide valuable information about the existence of
hubs (i.e., nodes receiving multiple ties) that play an important role in
the way information is transferred through the network. Triangles re-
flect the process of closure, appearing in directed networks as transitive
triangles where a node's connection to two other nodes increases the
likelihood those nodes will be connected (e.g., a friend of my friend is
a friend), and cyclic triangles where ties are unidirectional. In transitive
triads, one node receives 2 ties, one node sends 2 ties and one receives
and sends one tie. When modeling information exchange networks,
the prevalence of such structures could indicate that a node receiving
2 ties has themost valuable information. In undirected networks, triadic
relationships appear in 4 possible configurations (i.e., no ties, one tie,
two ties, or all three ties). Dominance of any of these configurations in-
dicates to what degree the nodes in that network are isolated, appear in
couples, structural holes (i.e., when a node is connected to 2 other nodes
but those nodes are not connected to each other) or clusters.

Attributes, in network parlance, represent individual characteristics
of actors and can be dichotomous, categorical, and/or continuous. In
ERGmodels, attributes are considered exogenous andnetwork structur-
al properties endogenous to the model. If the actors' attributes affect
their involvement in the network in such a way that they become
more active (e.g., similar actorsmight sharemore information) those ef-
fects are known as sender effects. If, in turn, they becomemore popular



1 http://www.swinburne.edu.au/fbl/research/transformative-innovation/our-research/
MelNet-social-network-group/PNet-software/index.html.

2 http://statnet.csde.washington.edu/.
3 For a full list see PNet User Manual available at http://sna.unimelb.edu.au/__data/

assets/pdf_file/0006/662865/PNetManual.pdf.
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(e.g., actors receive more ties because they have valuable information)
those are known as receiver effects (Lusher et al., 2013). Obviously,
these processes can also be the result of purely structural properties as
outlined above. The value of ERG models is precisely in their ability to
distinguish between the two effects.

Exogenous contextual factors usually come in the form of dyadic co-
variates although they can also include an entire network. For example,
a study could include a matrix of geographic distances in a model to as-
sess the effect such distances might have on information sharing in a
certain region. If a dyad is comprised of two actors and ties between
them, dyadic covariates can be seen as deterministic variables depen-
dent on a pair of actors (Snijders, 2009). An ERG model can then be
used to investigate if the covariate influences the appearance of a corre-
sponding tie in the network of interest (Lusher et al., 2013).

The ERG model estimation process is described as follows (Robins,
Pattison, Kalish, & Lusher, 2007).

1. Each tie is a random variable and for each i and j who are distinct
members of the set of n actors, random variable Yij is defined as
Yij = 1 if there is a network tie from actor i to actor j and Yij = 0 if
the tie is absent. Y, which may be directed, undirected or valued, is
the matrix of all variables and y is the matrix of the observed net-
work. It should be noted, however, that the ERGmodeling is, at pres-
ent, limited to binary ties.

2. A dependence hypothesis which leads to a dependence graph is
specified. This includes hypotheses about the local social processes
assumed to generate network ties. Tiesmay be independent or a rec-
iprocity process may be at work implying some form of dyadic de-
pendence although social circuit dependence (i.e., tie variables
within a social circuit or four-cycle are considered conditionally de-
pendent) is most frequently used in practice. Node level attributes
may also affect tie formation (e.g., actor's education levelmight affect
information sharing in a network).

3. A specific model is generated from the specified dependence graph.
Each configuration or parameter in the model is related to the pres-
ence of specific configurations. These are configurations of interest
and the model is built from localized patterns represented by those
configurations.

4. Homogeneity and/or other constraints on the parameter space are
introduced. In order to makemodels identifiable, certain parameters
are considered equal for all ties or constrained to other parameters.

5. Model parameters are estimated and interpreted. Parameter depen-
dence structure dictates the complexity of this step. Generally, most
structures based on realistic models will be complex. Markov chain
Monte Carlo (MCMC) estimation algorithm, based on computer sim-
ulation, represents a significant improvement in this regard.

The general form of ERGMs describing a probability distribution of
graphs on n nodes can be written as:

Pr Y ¼ yð Þ ¼ 1=κð Þ exp ∑ηAAgA yð Þ� � ð1Þ

where ηA is the parameter corresponding to the configuration A;
gA(y)=Π yij ∈ A yij is the network statistic corresponding to configura-
tion A; k is the normalizing constant ensuring proper probability distri-
bution and the summation is over all configurations A. The probability
of observing the graph is dependent on the presence of various structur-
al configurations included in the model.

Recently, higher order models including resulting parameters in-
volving more than three nodes have been proposed (Snijders, Robins,
& Handcock, 2006). These parameters offer more realistic representa-
tions of the degree distributions (e.g., alternating k star) and the transi-
tivity structures (e.g., alternating k triangle) in the network. The
alternating k star parameter takes into account all star configurations
in the graph and the positive alternating k star parameter suggests
higher order stars (i.e., hubs) are likely present in the network. Con-
versely, a positive alternating k triangle would suggest a denser area
of clustering triangles in the network. Both parameters can be included
in amodel simultaneously and partial conditional dependence between
any two disjoint pairs of nodes applies if ties are observed between the
two nodes in each pair (Pattison & Robins, 2002). The new, higher order
parameters introduced by Snijders are also treated in a follow up study
along with the Monte Carlo maximum likelihood estimation (Robins,
Pattison, Kalish, & Lusher, 2007). Additionally, Exponential Random
Graph Models for Social Networks: Theory, Methods, and Applications
(Lusher et al., 2013), a recent seminal text on ERGmodeling, is an excel-
lent reference and an invaluable tool for the LIS researchers and beyond.

2.3. Software

ERG modeling software ranges from relatively simple programs in-
corporating user graphic interface such as PNet1 to programs making
extensive use of command language such as the R package in Statnet.2

PNet uses MCMC maximum likelihood estimation (MCMCMLE) proce-
dure and, in its current form, includes packages capable of estimating
one and two-mode networks (BPnet), multilevel networks (MPNet),
snowball sampled networks (SnowPNet), social influence models
(IPNet), and longitudinal models (LPNet). As compared to Statnet,
PNet has more extensive specifications for directed and multivariate
networks and the information about convergence is indicated more
clearly.

Statnet, part of the R package, can make both MCMCMLE and ap-
proximate MCMCMLE estimates. The chief advantage of this program
over others is that the advanced users can write their own packages
that can be included into the R environment and take advantage of con-
nections to other statistical software within the R environment.

3. ERG modeling using PNet

3.1. Model specification

Model specification is a crucial step in ERGmodeling. Model param-
eters represent subsets of actors and ties that connect them. A list of se-
lected commonly used parameters in social sciences available in PNet
can be seen in Table 1.3 A correctly specifiedmodel will, ideally, only in-
clude network generating parameters that fit the hypotheses tested and
describe data in an adequateway. If a parameter is positive, it appears in
the model more frequently than can be expected by chance. Most
models, for both directed and undirected networks, will at least include
a density (edge or an arc), degree distribution (stars) and closure (trian-
gle) parameters (Lusher et al., 2013).

For example, researchers interested in modeling student informa-
tion exchange networkwould include the density parameter to account
for frequency of exchange. A positive reciprocity parameter would indi-
cate the students are more likely to share information when others
share information with them. A negative A-in-S parameter would indi-
cate there is no overly popular source of information in the network,
while a negative A-out-S parameter would suggest students tend to
choose uniform number of others to share the information with. Posi-
tive transitivity parameter would indicate students tend to form clus-
ters of information sharing. In other words, if student A, who student
B goes to for information, goes to seek information from student C,
then student B is likely to seek information from student C as well. A
negative cyclic closure parameter would indicate there is no tendency
for generalized information exchange. In conjunction with strong evi-
dence for transitive closure (i.e. a positive significant AT-T parameter),
a negative cyclic closure parameter would also suggest the information

http://www.swinburne.edu.au/fbl/research/transformative-innovation/our-research/MelNet-social-network-group/PNet-software/index.html
http://www.swinburne.edu.au/fbl/research/transformative-innovation/our-research/MelNet-social-network-group/PNet-software/index.html
http://statnet.csde.washington.edu/
http://sna.unimelb.edu.au/__data/assets/pdf_file/0006/662865/PNetManual.pdf
http://sna.unimelb.edu.au/__data/assets/pdf_file/0006/662865/PNetManual.pdf


Table 1
Commonly used structural parameters in PNet.

Parameter PNet designation Graphic representation

Arc (i.e., density or tendency to form ties) Arc

Reciprocity (i.e., tendency to form mutual ties) Reciprocity

Popularity (i.e., differential tendency to receive ties) A-in-S

Activity (i.e., differential tendency to send ties) A-out-S

Transitive closure (i.e., a friend of a friend is a friend) AT - T

Cyclic closure (i.e., tendency for generalized exchange) AT - C

Alternating two path (i.e., multiple connectivity) A2P - T
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sharing process in this network is hierarchical. However, it should be
noted that a recent meta-analysis study of 29 friendship networks
using stochastic actor oriented models found evidence for significantly
lower friendship reciprocation within transitive groups, concluding
that the negative tendency toward forming three cycles was the result
of neglecting to control for this tendency (Block, 2015). Block suggests
modeling reciprocation in transitive triplets and possibly even omission
of tree-cycles from analysis.

In addition to purely structural parameters, PNet also handles a vari-
ety of actor-relation effects or attributes, exogenous to the network. At-
tributes included can be categorical and/or continuous. If the attributes
are categorical, dummy variables should be used just as in linear regres-
sion analysis. It should be noted that while attributes are treated as in
regression analysismonadic and dyadic attributes are assigned different
roles. Sender effects, receiver effects and homophily are some of the
most frequently used actor attributes included in PNet. As previously
noted, sender effects explain to what extent sending ties is contingent
on a particular actor attribute. Similarly, receiver effectsmeasure the ex-
tent to which actor attributes account for receiving ties, while
homophilymeasures the effect of similarity in actor attributes on tie for-
mation (e.g., like attracts like). For example, academic status (e.g.,
freshmen, sophomore, junior, etc.) could be an attribute used to mea-
sure sender effect in the information exchange study we used to illus-
trate commonly used structural parameters' role in generating
networks. A positive sender effect parameter, in this case, would indi-
cate students' seniority affects their tendency to share information
(e.g., freshmen are more likely to share information than seniors). Sim-
ilarly, a negative receiver effect would indicate there was no evidence
students' academic status affects their tendency to receive information
(e.g., freshmen are just as likely to receive information as juniors). A
positive homophily parameter would indicate students of similar aca-
demic status are more likely to share information (e.g., seniors are
more likely to share information with other seniors than freshmen or
juniors). Although a single attribute (academic status) was used for
the purposes of this discussion, PNet is capable of handling multiple at-
tributes in a single model. For example, in addition to academic status
the study could also have included other student attributes such as gen-
der, GPA andmajor. Actor-relation effects work in conjunction with the
structural parameters to explain network tie formation. Failing to
include all relevant parameters in the study would result in an incom-
plete model at best and prevent the model from converging at worst.

3.2. Estimation and goodness of fit

Estimation in PNet is based on MCMCMLE. As previously noted,
MCMCMLE, relies on computer simulation and is the preferred method
of estimation due to its ability to produce reliable standard errors.
Through this procedure, randomnetworks are comparedwith the spec-
ified, observed network until the parameters converge (Snijders, 2002).
One of themain reasons for model degeneracy is the inclusion of effects
implying the assumption of Markov dependence. Models including the
alternating effects are almost universally non-degenerate (Robins,
Snijders, Wang, Handcock, & Pattison, 2007). PNet for Dummies con-
tains helpful hints on how to identify parameters contributing to
model degeneracy in PNet (Harrigan, 2007).

Goodness of fit in PNet is indicated by the convergence t statistic
ratio. If themodel is a good fit, the difference between observed and es-
timated parameters will be negligible. Acceptable values for the conver-
gence t-ratios for estimated parameters are b0.10, and b2.00 for
unestimated parameters (i.e. those not explicitly included in the
model). A good final model would only include parameters within
those values. For example, if all parameter t statistics, except for the
transitive triangle (AT-T), in the aforementioned information exchange
model fell below 0.10, themodel would still need to be respecified (e.g.,
by addingmore parameters) or more simulations would need to be run
until the AT-T parameter fell within the acceptable range.

4. ERG modeling in LIS studies

ERG modeling is a relatively recent method in the information be-
havior studies. A single recent study provides insight into how consul-
tants' information seeking from human and digital knowledge sources
is influenced by their relationships with both types of knowledge
sources and the characteristics of the knowledge domain inwhich infor-
mation seeking takes place (Su & Contractor, 2011). Researchers took
full advantage of ERGM ability to handle multiple networks and tested
models at three different levels: the knowledge domain level (i.e.,
how members of a specific consulting team seek information in a
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specific knowledge domain), the team level (i.e., aggregates all team
members' information seeking across all knowledge domains identified
by the team), and the whole network level (i.e., aggregates teammem-
bers' information seeking across all knowledge domains and teams ) but
the results were mostly reported at the overall network level.

Knowledge management (KM) studies lend themselves well to net-
work approach, and this is currently an area in LIS where ERG models
are used the most. Jiang, Gao, Chen, and Roco (2014) used ERG models
to study the effects of network structures and public funding on knowl-
edge diffusion networks of patent inventors, simultaneously modeling
knowledge-sharing and knowledge-mentoring processes. Skerlavaj,
Dimovski, and Desouza (2010) studied patterns and structures of
intra-organizational learning networks within a knowledge-intensive
organization, simultaneously modeling multiple cognitive and social
processes theories. Sosa, Gargiulo, and Rowles (2014) examined the ef-
fects of a common third party on an interdependent communication
team network. Their final model revealed that when the common
third party fell in themiddle of a communication chain between the po-
tential source and the potential recipient of technical communication,
their presence increased the likelihood of transitive structures and im-
proved communication between the two teams. However,when the cy-
clic exchange was already present, the presence of the third party
hindered the communication between the interdependent teams.

Lungeanu, Huang, and Contractor (2014) use ERG modeling in their
bibliometric study of 1103 grant proposals submitted to the National
Science Foundation. Their results indicated overall grant collaborations
are more likely among individuals with longer tenure, from lower insti-
tutional tier, lower H-index, and with higher levels of prior co-author-
ship and citation relationship. In addition, relationship for successful
proposals also indicated collaborations between females, and lower
levels of citation relationship. Fanelli and Glanzel (2013) looked for
the evidence supporting theHierarchy in Sciences 19th century hypoth-
esis, which states that “moving from simple and general phenomena to
complex and particular, researchers lose ability to reach theoretical and
methodological consensus.” They used ERG modeling on a network of
29,000 papers from 12 disciplines and their results confirmed the orig-
inal hypothesis provided thebest rational framework to understand dis-
ciplines' diversity.

ERG modeling has also made inroads into webometric studies. The
more traditional webometric study approach was to regress the count
of inbound hyperlinks on the characteristic websites and the actors as-
sociated with them in order to identify reasons for those hyperlinks.
Lusher and Ackland (2011) used ERGmodeling to control for structural
network parameters while studying the hyperlinking behaviors of Aus-
tralian asylum advocacy groups, finding that they exhibit many of the
characteristics of a social network. Yang and Yu (2014) use ERGs to
model the Chinese diabetes Sina Weibo micro-blog network growth
over time. Jung, Park, Wu, and Park (2014) examined the nature of on-
line citizen participation in the field of policy analysis andmanagement
and identified patterns of citizens' e-participation and relationships be-
tween citizens, governments, and various organizations involved in
policymaking processes through social media. Gonzalez-Bailon (2009)
uses the economic resources of the producers of the websites as a
proxy to their wider pool of resources and their presence in traditional
news media as a proxy to their status to add additional relevant socio-
logical dimensions to webometric studies regarding website visibility.

5. ERGM limitations

While ERG modeling represents a significant improvement in sto-
chastic analysis of relational data, it should not be regarded as a panacea.
As previously noted, due to the complexity inherent in network data,
models can be difficult to specify and inclusion of inappropriate param-
eters will result in a degenerate model. Ideally, researchers would be
guidedby theory and include only hypothesized attributes and structur-
al network parameters that fit the data well. ERGMs are also very
sensitive to missing data. Even a small number of missing ties can
have a very real and pronounced effect on how structural network pa-
rameters are represented in the observed network and consequently es-
timated. One solution is to treat missing responses as random and
simulate them during the course of estimation so that the vector of ob-
served statistics is substituted for the expected statistics conditional on
the part that was observed (Lusher et al., 2013). Complex ERG models
will also require lots of computing power and time to run. However,
with recent advances in technology, this is only true for extremely com-
plex models and is soon likely to be of no consequence. Network size
can also be a factor. ERGmodels for networks larger than a few hundred
nodes can result in problemswithmodel specification and fit. Addition-
ally, as currently implemented, ERGmodeling is only suitable for binary
network analysis. Valued networks need to be dichotomized or an alter-
native method of stochastic network analysis (e.g., MRQAP) needs to be
used.

6. Conclusion

The purpose of this study was to demonstrate the benefits of ERG
modeling in LIS. Researchers in information behavior, knowledge man-
agement, bibliometrics and webometrics are increasingly recognizing
its potential as an essential method for stochastic analysis of relational
data. Most other network analytical approaches are only appropriate
for descriptive studies or require substantial data manipulation. Using
traditional statistical techniques such as regression for network mea-
sures is inappropriate as it violates the independence assumptions re-
quired for such analyses. Additionally, as demonstrated in this
overview, ERG models can also include actor attributes along with
structural network parameters in a single model, opening up additional
possibilities for researchers in LIS area. Since ERGmodeling is a relative-
ly newanalytical tool in social sciences, a followup study of its use in ad-
ditional LIS areas is recommended to further illustrate its utility in such
studies and encourage more widespread use.
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