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Abstract-All the existing models for Bradford’s law were summarized and classified into 
different categories (e.g., rank-frequency cumulative, rank-frequency noncumulative, 
size-frequency, and other forms). The relationships between some models were estab- 
lished by mathematical deduction. Nineteen data sets were used to estimate the param- 
eters of the models and then goodness of fit tests were conducted to identify empirically 
the model in each category which can best describe the phenomenon of journal 
productivity. 

1. INTRODUCTION 

Bradford’s law of scatter describes a quantitative relaltionship between journals and the 
papers they publish. At present there are two widely recognized formulations of the so- 
called Bradford’s law: the verbal formulation, which is derived from the verbal statement 
of Bradford’s conclusions, and the graphical formulation, which is an empirical expression 
derived from the graph of a distribution of journals over periodicals. 

Bradford’s law as originally stated reads: 

If scientific periodicals were arranged in order of decreasing productivity of articles on 
a given subject, they may be divided into a nucleus of periodicals more particularly 
devoted to the subject and several groups or zones containing the same number of arti- 
cles as the nucleus, when the number of periodicals of the nucleus and the succeeding 
zones will be as 1: (Y:cx~. . . [l] 

The constant cx is a property of the collection of periodicals called the Bradford multiplier. 
This statement is called the verbal formulation of Bradford’s law. 

The graphical formulation is obtained by plotting a curve in a plane whose coordinates 
are the cumulative number of articles (in the y axis) and the logarithm of the cumulative 
number of journals of the collection (in the x axis), where journals are cumulated from 
most to least productive. This curve has invariably an ascending shape which, after a cer- 
tain point, approaches to a straight line. 

Bradford did not provide a mathematical equation to support either the verbal or the 
graphical description of his law. However, it is generally accepted that the graphical for- 
mulation is expressed by 

Y=A+B*logX 

where Y is the proportion of the cumulative number of papers contained in the proportion 
X of the first most productive journals. 

Many different models have been provided by later scholars. For example, Brookes 
developed the graphical formulation [2] 

a * rb (1 ST5 C) 
R(r) = 

K*logr/s (C<r5zv) 
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where R (r) is the cumulative number of papers in the first r journals when journals are 
ranked from most to least productive and N is the total number of journals. 

Leimkuhler developed a model based on Bradford’s verbal formulation [3] 

where F(x) is the relative 
most productive journals. 

F(x) = log(l +B*-w 
log(1 + B) 

total number of papers contained in the proportion X of the 

Vickery [4] was the first to point out that the verbal and graphical formulations of 
Bradford’s theory were not mathematically equivalent. Later, Wilkinson [5] discussed the 
ambiguity of Bradford’s law in terms of the two different approaches. She claimed that the 
verbal formulation expressed Bradford’s theory while the graphical formulation expressed 
his observation. 

In this study, a different approach, neither graphical nor verbal but one of empirical 
validation, was taken to examine the existing forms of Bradford’s law. The purpose of this 
study was to find out, by statistical testing, which mathematical model can best describe 
the phenomenon of journal productivity. 

2. LITERATURE REVIEW 

A literature search was carried out to collect all the existing forms of Bradford’s law. 
The search included: 

1. 
2. 

3. 

4. 

5. 

ERIC CD-ROM search. The time span was 1981-Mar. 1987. 
A manual search on Library Literature. The time span was 1972-1988 (from 1972, 
Library Literature has the entry “Bradford’s Law”). 
A manual search on Scientometrics from Vol. 1 until the most recent issue, since 
Library Literature does not cover Scientometrics. 
Because of the time delay of Library Literature, papers published after 1988 may 
not be reported. Therefore, a manual search of JASIS, Journal of Documentation 
from 1988 to the most recent issue was conducted. 
Papers published before 1972 were found through the references of later papers (the 
references of every searched paper were examined). 

Papers were summarized into the following four categories: 

1. Providing new forms of mathematical models (e.g., reference 3, 5, and 7). 
2. Discussion of the meaning or characteristics of parameters and curves (e.g., refer- 

ence 13, 20, 22, and 23). 
3. Fitting data set(s) to model(s) (e.g., reference 29, 30, and 35). 
4. Summarizing different models and determining their relationships (e.g., refer- 

ence 8 and 14). 

It is surprising to find that so many papers have been published on Bradford’s law but 
that no comprehensive summarizing of the models has been carried out. As Hubert [7] 
pointed out, “a set of data that conforms to a particular formula tells little about the un- 
derlying phenomena.” Although so many data sets have been collected and fitted to dif- 
ferent models, few goodness of fit tests have been conducted. The study reported here, 
therefore, summarizes all the existing models and examines their relationships and their va- 
lidity and applicability by means of statistical tests. 
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3. EXISTING MODELS 
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A summary of the 22 previously published models of Bradford’s law is presented in 
Appendix 1. The basic variables of these models are the number of journals and the number 
of papers. Using the independent variables, we can classify these models into two basic 
types: rank-frequency and size-frequency. If g(p) is the number of journals having p 
papers, we speak of a size-frequency relationship. If f( r) is the number of papers in a jour- 
nal of rank r, we speak of a rank-frequency relationship. In the former we can estimate the 
number of journals, given the number of papers; in the latter we can estimate the number 
of papers given the rank of the journals. Hubert [8] has presented a statistical relationship 
linking these two types of productivity distributions. Within the basic categories of rank- 
frequency and size-frequency, these models can be further classified into cumulative and 
noncumulative types. In Appendix 1, rank noncumulative models are represented by f(r), 
the number of papers contained in a journal of rank r. The rank cumulative category can 
be further divided into fractional and nonfractional types. If R(r) is the cumulative fre- 
quency of papers in the r most productive journals, r is the rank of journal, Nis the total 
number of journals, and R(N) is the total number of paprs, then F(x) = R (r)/R(N) is 
the rank-cumulative-fractional model, where X = r/n. That is, the relationship between 
models in part 2 of Appendix 1 and those in part 1 is X = r/iV, F(x) = R (r-)/R (IV). 

The original notation of parameters in some models is altered in order to avoid con- 
fusion and to make the comparison of different formulae easier. Models of stochastic pro- 
cess type (e.g., Burrell’s model 191) are not included in Appendix 1 because these models 
have a time parameter which is impossible to test using the present data sets (all the pres- 
ent data sets have no time variable). 

Models which have a Bradford multiplier (models 2-7, 5-1, and 5-2) were not tested 
in this study because the value of the Bradford multiplier depends on the number of Brad- 
ford zones. Different divisions of zones will result in different values of the Bradford mul- 
tiplier. Although some authors have discussed the appropriate choice of Bradford multiplier 
1311, there is not yet a standard and generally accepted way of deciding this parameter. 

The 22 models may seem overwhelming, but after we unify the original notation, it is 
clear that some forms of models are only disguised forms of others. For example, model 
2-2, 2-3, 2-4 and 2-5 are similar because all are in the form of A * log (1 + B * r) + C, 
where A, B and C are constants. Model 2-2 is a specific case of model 2-3, when the con- 
stant R(0) = 0. Model 2-2 is also a specific case of model 2-5, when j, = j, and al = a2. 
Model 2-4 and model l-2 are equivalent when constant j in model 2-4 equals the total 
number of papers R(N) (remembering that F(x) = R(r) /R (IV)). Because j may not be 
equal to R(N), both models were tested to see which one fits better. 

Model l-2 can be derived from model 2-2 [S]: 

R(r) =j * log(r/ff + 1) ------+ model 2-2 

F(x) =R(r)/R(N) 

=j * log(r/a -t- 1)/j * log(N/a + 1) 

Let B = N/a and X = r/N 

thenF(x)=log(l+B*x)/log(l+~) ------+ model l-2 

Because these two models are substantively the same, only one of them (model l-2) was 
tested. 

Similarly, model l-2 can be derived from model 2-4: 

R(r)=j*log(l+a*r)/log(l+a) ------+ model 2-4 
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F(x) = R(r)/R(N) 

j*log(l + a*r)/log(l + a) 

= j * log(1 + a * N)/log(l + a) 

log( 1 + a * r) 

= log(1 +a*N) 

Let B = a* N and x= r/N 

then F(x) = 
log(1 +a*x*N) 

log(1 +a*N) 

log(1 + B*x) 

= log(1 + B) 
- model l-2 

Therefore, model 2-4 does not need to be tested since model l-2 is tested. 
Model 3-1 can be derived from model 2-2 if n is assumed to be continuous. In this 

case, we may derive the noncumulative distribution from the cumulative one by taking the 
derivative: 

R(r) =j * log(1 + r/A) - model 2-2 

dR(r) j/A -=- 
dr 1 + r/A 

Let j/A = a and d = l/A 

dR(r) a - = 
dr l+d*r (1) 

In eqn (I), dR (r)/dr is virtually f(r) in model 3-1. Therefore, eqn (1) is equivalent to 

f(r) = a 
l+d*r 

- model 3-1 

So, model 3-l was not tested. 
Model 2-6 is equivalent to model 2-2: 

-----+ model 2-6 

Substituting b = (a + N)/a 

R(r) = 
log(1 + r/a) 

log(l + N/a) 

let j = 
1 

log(1 + N/a) 

R(r) = j * log(1 + r/a) - model 2-2 

Therefore, model 2-6 was not tested. 
Model 5-l and model l-2 are equivalent [7, p 4551: Suppose, in model 5-1, we do not 

group the journals. In other words, each group contains only one journal. Then we could 
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take S = 1 in model 5-l and S, is equivalent to X, the cumulated proportion of journals, 
in model l-2. The Bradford multiplier k in model 5-l is equivalent to F(X), the cumulated 
proportion of papers contained in the proportion of journals X, in model l-2. Then we can 
write model 5-l as 

x= 
#W) - 1 

n-1 
OsF(X)s 1 

which yields 

F(X) = 
log[X(n - 1) + 11 

log n 
OSXSI 

Let n - 1 = B 

F(X) = 
log(B*X+ 1) 

log(B+ 1) - 
model l-2 

Model 5-2 is a changed form of model 2-2. Because X = r/N, model 5-2 can be 
changed into 

R(r) =j* log(1 + C*X) 

=j*log(l+C*r/N)=j*log(l+r/a) 

Therefore only model 2-2 need be tested. Because it has been shown that model 2-2 is 
equivalent to model l-2 (see above), only model 1-2 will be tested. 

To summarize, models l-l, 1-2, l-3, l-4, l-5, 2-1, 2-3, 2-5, 3-2, 3-3, 4-1, 4-2, 
4-3 and 5-4 will be tested. 

4. DATA SETS 

More than 30 sets of previously published data were found in the literature search. The 
sources of these data sets are quite varied. Apart from journal-paper types of data, the 
standard sources of Bradford distributions, there are monograph-publisher types of data 
and even library records of journal usage data. Because library usage data represent a dif- 
ferent application, they were discarded in the first round of data filtration. As a result, 27 
sets of data remained. 

For strict conformity with Bradford’s law, certain conditions have to be imposed 
on the data set. Bradford himself did not give a standard for data collection. However, 
Brookes’ [2] three conditions are generally accepted as the standard. They are: 

1. the subject of the bibliography must be well defined; 
2. the bibliography must be complete, that is, all relevant papers and periodicals must 

be listed; 
3. the bibliography must be of limited time span so that all contributing periodicals 

have the same opportunity to contribute papers. 

If these strict conditions are followed, very few present data sets can be used. Never- 
theless, it is unnecessary to be so strict because “it is found that the form of the graph is 
surprisingly stable even when these conditions are not fully satisfied” [2]. Therefore, for 
the sake of practicality, eight sets of incomplete data (data that do not have a complete list 
from the most productive to the least productive journals) were deleted in the second round 
of data filtration. Those data sets which do not have an ideal time span but have a reason- 
able number of data points (larger than 10 data points) were kept. Finally, 19 sets of data 
remained with a wide range of subject topic and type of materials (see Appendix 2). 
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5. ESTIMATION AND TESTING 

In order to estimate the parameters in the models, the method of nonlinear least square 
estimation was used (maximum likelihood estimation is not appropriate for a cumulative 
distribution). A microcomputer software program was used to do the estimating. 

After estimating the parameters, a goodness of fit test was conducted to determine 
which model fitted the data sets best, that is, which model can best describe Bradford 
phenomena. The two most commonly used goodness of fit tests are the chi-square and 
Kolmogorov-Smirnov (K-S) tests. In this study, the K-S test was used in dealing with 
cumulated data while the chi-square test was applied to uncumulated data. 

Theoretically speaking, statistical tests such as the chi-square test and K-S test are not 
suitable for testing the hypothesis of this kind [39]. The assumptions of independence and 
randomness which underlie the validity of the chi-square and K-S tests may not be satis- 
fied in the data being used here. However, there is no other statistical test which is more 
suitable for the purpose of this study. In fact, bibliometricians have used the chi-square 
and K-S tests to test this kind of model in practice. 

Models 2-l and 2-5 require the decision of the transition point that separates the nu- 
clear zone and periphery zone. There is no standard way of deciding this critical point. 
Although Rousseau suggested a p-nucleus formula for calculating the data points that 
should be included in the nuclear zone [38], it is not used in this study to decide the nuclear 
zone since it necessitates the estimation of a parameter which requires an extra fitting. 
Rather, the data points were plotted on the screen and transition points were picked out 
by looking at the shape of the curve. 

The results of parameter estimation and the goodness of fit test for each model tested 
is listed from Table 1 to Table 14. All the logarithms in this study are natural logarithms 
and all the statistical tests in this study are at the significance level of 5%. 

6. ANALYSIS OF TEST RESULTS 

A. Rank-frequency cumulative models 
(1) Model l-l F(X) = 1 + B * log X and model l-5 F(X) = A + B * log X. They are 

simplest in form and therefore permit the easiest estimation of the parameters. It is surpris- 
ing to see that their goodness of fit is so poor-both models passed only 1 K-S test out of 
19 (see Table 1 and Table 2. Each table contains the values of estimated parameters and 
the goodness of fit test results). Model l-l was developed by Cole, but the model did not 
fit even his data (data set l)! 

Model l-l is a specific case of model l-5 when A = 1. The fitting results of model l-5 
in Table 2 show that the value of A is very close to 1. In order to find out if it is necessary 
to have parameter A in model l-5, a paired T test of 19 K-S test values for the two mod- 
els was conducted and showed no significant difference between these two models in terms 
of goodness of fit. It can be concluded that parameter A in model l-5 is unnecessary. So 
model 1-l is preferred over model l-5 as it has fewer parameters. 

(2) Model l-2 F(X) = log(’ + B * x, , 
log(1 + B) 

model l-4 F(X) = A * log(X + C) + B, 

model 2-3 R(r) = j * log(1 + r/a) + R(O), 

and model 2-5 R(r) = I j, * log(1 + rI/al) 

j2 * log(1 + r2/az). 

These four models all passed the K-S test for eight out of 19 data sets (see Table 3-6). 
The justification that Asai gave his model (l-4) over other models, including model 

l-2 and model 2-2, was that model l-4 has a smaller minimal value of root-weighted 
square error, but no statistical test was conducted to see if the difference was significant. 
To compare the four models in terms of goodness of fit, a within subject F test was con- 
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Table 1. Test results for model l-l 

F(X) = 1 +B*logX 
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Data set B K-S’ c. V.” Pass 

1 0.18 0.086 0.045 N 
2 0.19 0.101 0.054 N 
3 0.14 0.045 0.023 N 
4 0.15 0.073 0.016 N 
5 0.15 0.035 0.032 N 
6 0.13 0.151 0.035 N 
7 0.16 0.059 0.020 N 
8 0.17 0.135 0.015 N 
9 0.18 0.111 0.037 N 

10 0.22 0.178 0.068 N 
11 0.21 0.164 0.051 N 
12 0.15 0.160 0.014 N 
13 0.17 0.07 0.040 N 
14 0.184 0.041 0.053 Y 
15 0.207 0.357 0.020 N 
16 0.195 0.302 0.034 N 
17 0.172 0.129 0.021 N 
18 0.187 0.222 0.028 N 
19 0.189 0.089 0.047 N 

*K-S stands for the K-S test result. 
“C. V. is the critical value for the K-S test. 

ducted on the K-S values for the four models. The result of an F test (F = 1.496, p > 0.05) 
showed no significant difference among the four models. That is, Asai’s model is not sig- 
nificantly better than the other models. Since model l-2 has the least number of parame- 
ters, it is preferred over the other three models. 

Leimkuhler [3], when presenting model 1-2, claimed “parameter B is related to the 
subject field and completeness of the collection.” Examining the B values and their corre- 
sponding subject fields, the claimed relationship was not found. For example, data set 4 
and data set 11 refer to the same subject: information science. But their B values are very 
different (B = 736.68 for data set 4, B = 56.93 for data set 11). Drott and Griffith [23] used 

Table 2. Test results for model l-5 

F(X) =A +B*logX 

Data set A B K-S* c. V.” PASS 

1 0.980 0.180 0.093 0.045 N 
2 0.950 0.180 0.089 0.054 N 
3 0.990 0.140 0.057 0.023 N 
4 1.080 0.170 0.126 0.016 N 
5 0.980 0.150 0.041 0.032 N 
6 1.130 0.180 0.134 0.035 N 
7 1.050 0.180 0.124 0.020 N 
8 1.040 0.180 0.181 0.015 N 
9 0.950 0.170 0.092 0.037 N 

10 0.900 0.190 0.121 0.068 N 
11 0.970 0.210 0.145 0.051 N 
12 0.990 0.150 0.152 0.014 N 
13 0.980 0.170 0.058 0.040 N 
14 1 .oOO 0.180 0.043 0.053 P 
15 0.890 0.180 0.266 0.020 N 
16 0.750 0.140 0.25 1 0.034 N 
17 1.030 0.180 0.158 0.021 N 
18 0.950 0.170 0.186 0.028 N 
19 1.080 0.220 0.081 0.047 N 

*K-S stands for the K-S test result. 
“C. V. is the critical value for the K-S test. 
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Table 3. Test results for model l-2 

F(X) = 
Log (1 +B*X) 

Log (l+B) 

Data set B K-S* c. v.** Pass 

1 160.320 0.032 0.045 Y 
2 112.790 0.026 0.054 Y 
3 913.000 0.032 0.023 N 
4 736.680 0.078 0.016 N 
5 513.000 0.017 0.032 Y 
6 2097.000 0.157 0.035 N 
7 387.000 0.062 0.020 N 
8 164.200 0.103 0.015 N 
9 140.400 0.020 0.037 Y 

10 36.790 0.006 0.068 Y 
11 56.930 0.055 0.051 N 
12 556.060 0.035 0.014 N 
13 254.450 0.016 0.040 Y 
14 170.430 0.041 0.053 Y 
15 40.120 0.049 0.020 N 
16 14.090 0.012 0.034 Y 
17 251.700 0.060 0.021 N 
18 113.710 0.048 0.028 N 
19 162.170 0.110 0.047 N 

*K-S stands for the K-S test result. 
“C. V. is the critical value for the K-S test. 

23 data sets to fit the Bradford curve and they did not find a relationship between the pa- 
rameters of Bradford curve and subject fields. 

a * i-B (15 r5 C) 
(3) Model 2-l R(r) = 

K * log(r/s) (C < r I N). 

Model 2-l passed K-S tests for nine out of 19 data sets (see Table 7). 
Brookes claimed that parameter s could be an objective measure of subject breadth. 

Table 4. Test results for model l-4 

F(X)=A*Log(X+C)+B 

Data set A B C K-S* C. V.” PASS 

1 0.210 1.030 0.010 0.034 0.045 P 
2 0.220 1 .OlO 0.010 0.140 0.054 P 
3 0.147 1.007 0.001 0.028 0.023 N 
4 0.181 1.107 0.001 0.107 0.016 N 
5 0.160 1.004 0.002 0.018 0.032 P 
6 0.162 1.108 -0.003 0.107 0.035 N 
7 0.208 1.080 0.007 0.082 0.020 N 
8 0.239 1.110 0.008 0.112 0.015 N 
9 0.210 1.010 0.009 0.019 0.037 P 

10 0.280 0.990 0.030 0.005 0.068 P 
11 0.270 1.050 0.020 0.058 0.05 1 N 
12 0.171 1.050 0.002 0.048 0.014 N 
13 0.182 1.008 0.003 0.009 0.040 P 
14 0.200 1.020 0.003 0.020 0.053 P 
15 0.304 1.040 0.034 0.052 0.020 N 
16 0.380 0.970 0.080 0.009 0.034 P 
17 0.210 1.086 0.004 0.087 0.021 N 
18 0.230 1.050 0.009 0.055 0.028 N 
19 0.230 1.100 0.003 0.097 0.047 N 

*K-S stands for the K-S test result. 
“C. V. is the critical value for the K-S test. 
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Table 5. Test results for model 2-3 

R(r) =j * Log (r/a + 1) + R(0) 

i a R(0) K-S’ c. V.” nass 
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2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

193.330 1.850 29.270 0.034 0.045 Y 
141.980 2.400 37.760 0.014 0.054 Y 
508.580 0.453 -290.330 0.028 0.023 N 

1335.260 1.100 -953.630 0.107 0.016 N 
285.910 0.810 19.290 0.018 0.032 Y 
260.650 0.006 -974.600 0.134 0.035 N 
917.220 1.830 275.140 0.082 0.020 N 

2065.130 5.650 -344.710 0.112 0.015 N 
279.810 3.070 39.630 0.019 0.037 Y 
108.670 4.370 -1.390 0.005 0.068 Y 
191.460 3.190 -19.890 0.058 0.051 N 

1695.600 3.140 -320.210 0.048 0.014 N 
203.980 0.940 -28.580 0.009 0.040 Y 
127.670 0.440 -98.540 0.020 0.053 Y 

1475.790 21.940 63.230 0.052 0.020 N 
612.890 59.110 19.740 0.009 0.034 Y 
842.740 2.230 -250.210 0.087 0.021 N 
545.200 5.150 -77.400 0.055 0.028 N 
491.090 26.730 207.090 0.346 0.047 N 

*K-S stands for the K-S test result. 
“C. V. is the critical value for the K-S test. 

He reported “s = 1 for only narrow scientific subjects: as the subject widens, so does s” 
[2, p 9531. Examining the s values of the 19 data sets and their subject fields (see Table 7 
and Appendix 2), it does not seem to be true that the s value stands for the subject breadth. 
For example, data set 14 (international research in social science), a very broad area, has 
an s value of 0.84 while data set 12 (schistosomiasis), a very narrow subject, has an s value 
of 3.08. Data set 2 and 7 have the same subject area (library science), but the s values are 
somewhat different, the former is 1.36 while the latter is 1. The s values for data set 6 and 19 

Table 6. Test results for model 2-5 

j, * Log(1 + r,/a,) (r, = 1,2,. .n) 
R(r) = 

j, * Log(1 + r,/a,) (r2 = 1,2,. . .p) 

Data set jr j2 a2 n K-S* c. V.” pass 

1 146.87 0.87 188.38 1.43 7 0.029 0.045 Y 
2 114.66 1.05 136.44 1.56 11 0.013 0.054 Y 
3 705.00 1.83 477.25 0.59 10 0.027 0.023 N 
4 2785.09 9.80 1320.49 2.19 10 0.100 0.016 N 

5 355.17 1.10 289.82 0.80 6 0.020 0.032 Y 
6 363.79 0.85 173.52 0.03 8 0.039 0.035 N 
7 704.65 0.68 874.94 1.10 14 0.073 0.020 N 
8 2064.93 9.10 1865.90 4.47 6 0.091 0.015 N 
9 231.88 1.67 279.49 2.60 16 0.015 0.037 Y 

10 104.94 4.32 108.15 4.37 6 0.005 0.068 Y 
11 170.41 3.43 191.97 3.60 6 0.057 0.051 N 
12 1940.18 5.45 1697.43 3.84 13 0.047 0.014 N 
13 211.40 1.20 204.42 1.09 15 0.011 0.040 Y 
14 193.82 2.45 128.57 1.00 5 0.021 0.053 Y 
15 1141.49 13.71 1391.49 17.57 25 0.041 0.020 N 
16 307.28 20.28 611.06 56.47 10 0.008 0.034 Y 
17 1009.97 5.06 829.32 2.88 12 0.079 0.021 N 
18 732.07 10.51 539.19 5.79 16 0.049 0.028 N 
19 196.73 2.67 191.67 1.28 3 0.093 0.047 N 

*K-S stands for the K-S test result. 
l *C. V. is the critical value for the K-S test. 
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Table 7. Test results for model 2-l 

[ 

oi * r” (IsrsC) 
R(r) = 

K * Log (r/s) (C 5 r 5 A’) 

Data set a P K s C” K-S” c. V.“’ Pass 

1 123.92 0.49 181.30 1.19 7 0.025 0.045 Y 
2 95.24 0.45 132.63 1.36 11 0.016 0.054 Y 
3 361.14 0.57 473.47 0.56 10 0.014 0.023 Y 
4 305.46 0.81 1282.99 1.89 10 0.094 0.016 N 
5 246.20 0.56 282.12 0.70 6 0.025 0.032 Y 
6 315.57 0.48 173.49 0.03 8 0.039 0.035 N 
7 757.46 0.40 859.79 1.00 14 0.072 0.020 N 
8 271.78 0.74 1830.84 4.03 6 0.091 0.015 N 
9 152.39 0.45 272.82 2.30 16 0.045 0.037 N 

10 24.18 0.73 96.17 2.83 6 0.01 0.068 Y 
11 47.37 0.73 173.86 2.47 6 0.045 0.051 Y 
12 401.23 0.70 1619.90 3.08 13 0.035 0.014 N 
13 163.35 0.45 201.24 1.00 15 0.035 0.040 Y 
14 69.63 0.71 124.00 0.84 5 0.017 0.053 Y 
15 153.85 0.62 1280.49 12.76 2 0.036 0.020 N 
16 22.68 0.73 485.24 27.90 10 0.021 0.034 Y 
17 222.16 0.70 794.71 2.36 12 0.072 0.021 N 
18 83.68 0.76 500.72 4.26 16 0.037 0.028 N 
19 63.58 0.77 184.80 1.07 3 0.092 0.047 N 

*C is the transition point. That is, C = 7 means that the firsts 7 data points fit the 
first part of the model. 

**K-S is the K-S test result. 
***C. V. is the critical value for the K-S test. 

(both are statistical methodology) are even more different, with 0.03 for data set 6 and 1.07 
for data set 19. 

In model 2-1, parameter K is the slope of the log-linear curve. Brookes conjectured 
that K = N (N is the total number of journals in the data set) [2, p. 9531. When the fitted 
K values are compared with their corresponding N values, the relationship K = N does not 
seem to hold. But a correlation test of K values and N values showed a significant corre- 
lation between the two values (r = 0.756; the critical value of Pearson r with df = 17 is 
0.456). 

(4) Model l-3 F(X) = A * log[B + C * X + D * log(1 + C * X)]. Model l-3 passed 
the K-S tests for 11 out of 19 data sets (see Table 8), the best record among all rank fre- 
quency cumulative models. It is not surprising that this model turned out to be the best one, 
because (a) it contains more parameters; (b) it it the result of a direct mathematical deduc- 
tion from the verbal formulation of Bradford’s law. 

An interesting feature to notice is that in parameter estimation, different original val- 
ues can result in different values of the parameters. For example, for data set 2, when the 
original values were A = 0.3, B = 1.4, C = 2.4, D = 19, then, after 80 iterations, the con- 
verged results were A = 0.25, B = 1.35, C = 0.73, D = 93.99; when the original values were 
A = 0.3, B = 1.4, C = 10, D = 1, then after 14 iterations, the converged results were A = 
0.34, B = 1.29, C = 6.5, D = 5.39. Putting these two sets of parameters into model 1-3, 
we get similar results for the expected value of F(x) and the K-S test values (the K-S value 
is 0.011 for the first set of parameters and 0.012 for the second set of parameters. The crit- 
ical value is 0.054). When the two sets of parameters were compared, it was found that 
there was little difference in the values of A and B, but the values of C and D changed in- 
versely. The first set of parameters is smaller in C and greater in D while the second set of 
parameters is greater in C and smaller in D. Examining model l-3, it is obvious that C and 
D have an inverse relationship. This explains why model l-3 can have different converged 
estimation results for the same data sets. Because the estimation results of parameters C 
and D can be so different for model 1-3, it is legitimate to claim that the parameters in this 
model have no realistic meaning. That is, they are not related to subject field, complete- 
ness of data, etc., as may be the case with other models. 
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Table 8. Test results for model l-3 

F(X) =A*Log [B+c*X+D*Log(l +c*X)l 

Data set A B c D K-S* C. V.“’ Pass 
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1 0.29 1.27 3.18 19.14 0.009 0.045 Y 
2 0.25 1.35 0.73 93.99 0.011 0.054 Y 
3 0.23 1.05 41.94 7.77 0.018 0.023 Y 
4 0.25 0.83 9.87 22.49 0.03 1 0.016 N 
5 0.17 0.58 338.32 1.02 0.014 0.032 Y 
6 0.24 0.22 8.42 36.10 0.060 0.035 N 
7 0.29 1.48 3.46 23.30 0.052 0.020 N 
8 0.32 0.94 3.67 15.86 0.079 0.015 N 
9 0.23 1.03 89.07 0.53 0.019 0.037 Y 

10 0.39 1 .Ol 6.56 2.56 0.003 0.068 Y 
11 0.23 1.47 95.67 -1.36 0.039 0.051 Y 
12 0.26 1.06 21.76 8.37 0.013 0.014 Y 
13 0.18 0.93 265.67 -0.13 0.008 0.040 Y 
14 0.18 1.65 302.44 -1.67 0.012 0.053 Y 
15 0.28 1.11 42.79 -0.42 0.044 0.020 N 
16 0.39 1.03 12.01 0.06 0.009 0.034 Y 
17 0.18 1.75 344.69 -1.80 0.060 0.021 N 
18 0.20 1.17 170.64 -0.97 0.033 0.028 N 
19 0.18 5.17 372.00 -4.70 0.065 0.047 N 

‘K-S is the K-S test result. 
“C. V. is the critical value for the K-S test 

B. Rank frequency noncumulative models 
(1) Model 3-2 f(r) = a * r-‘. The model passed the chi-square tests for 10 out of 19 

data sets (see Table 9). Hubert stated that a and c are parameters of the subject area [7, 
p 4651. But comparing the a and c value of similar subjects in Table 9 does not seem to 
prove this statement. 

(2) Model 3-3 f(r) = a * (r + b)‘. This model passed chi-square tests for 14 out of 19 
data sets (see Table 10). This model can be seen as a generalized form of model 3-2 since 
it has a shift parameter b and because of this it fits the data better. It is the best model 
among rank-frequency noncumulative models. 

Table 9. Test results for model 3-2 

.f(r) = a * r-’ 

Data set a C df* Chi.V.** c. V.“’ Pass 

1 116.47 0.86 17 6.52 27.59 Y 
2 84.41 0.87 14 1.73 23.68 Y 
3 372.33 0.83 25 105.92 37.65 N 
4 350.51 0.52 64 466.20 83.68 N 
5 242.02 0.91 22 22.13 33.92 Y 
6 292.71 0.88 23 83.02 35.17 N 
7 713.09 1.06 48 358.36 65.17 N 
8 253.43 0.40 15 130.83 25.00 N 
9 105.62 0.66 21 22.09 32.67 Y 

10 23.66 0.47 11 2.60 19.68 Y 
11 48.40 0.53 20 8.52 31.41 Y 
12 391.80 0.55 70 291.93 90.53 N 
13 127.36 0.78 21 11.52 32.67 Y 
14 69.19 0.65 19 20.71 30.14 Y 
15 109.29 0.41 42 49.23 58.12 Y 
16 19.39 0.32 11 1.42 19.68 Y 
17 222.61 0.56 53 107.85 10.99 N 
18 81.85 0.42 38 53.94 53.38 N 
19 69.53 0.49 21 63.19 32.67 N 

‘df is the degree of freedom in the chi-square test. 
“Chi.V. stands for the chi-square test result. 

“‘C. V. is the critical value for the chi-square test. 
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Table 10. Test results for model 3-3 

f(r) =a* (f+b)= 

a b C df’ Chi.V” c. V.“’ Pass 

1 68.64 -0.60 -0.62 18 6.07 28.87 Y 
2 70.89 -0.60 -1.72 4 1054.00 9.49 N 
3 219.77 -0.63 -0.60 26 160.94 38.88 N 
4 39522.98 16.94 -1.70 60 44.54 79.08 Y 
5 304.50 0.27 -1.00 22 19.81 33.92 Y 
6 1475.65 2.02 -1.50 22 35.12 33.92 N 
7 273.31 -0.82 -0.60 52 131.11 69.83 N 
8 1330.03 7.76 -0.83 15 32.58 25.00 N 
9 511.09 2.82 -1.23 18 21.29 28.87 Y 

10 70.58 3.05 -0.84 10 0.16 18.31 Y 
11 58.66 0.45 -0.60 19 6.71 30.14 Y 
12 2596.76 5.97 -1.08 67 10.10 87.11 Y 
13 261.44 1.03 -1.07 19 5.75 30.14 Y 
14 1055.34 4.93 -1.58 16 7.49 26.30 Y 
15 254.27 3.58 -0.65 41 16.46 56.94 Y 
16 22.80 0.76 -0.37 11 0.78 19.68 Y 
17 617.88 2.85 -0.86 52 26.70 69.83 Y 
18 1528.27 12.92 -1.19 35 2.10 49.80 Y 
19 59447.12 20.28 -2.26 19 13.64 30.14 Y 

‘df is the degree of freedom in the chi-square test. 
**Chi.V. stands for the chi-square test result. 

“‘C. V. is the critical value for the chi-square test. 

C. Size frequency model 
(1) Model 4-l P(U) = (C/U) - D where P( U) is the proportion of journals having 

a yield not less than U. The model passed K-S tests for 14 out of 19 data sets (see Table 11). 

(2) Model 4-2 Jp = p * (t + 1) where Jp is the relative number of journals having p 

references each. The model passed the chi-square tests for 2 out of 19 data sets (see Ta- 
ble 12). This model is unique in terms of simplicity since it has no parameter at all. It is 
the easiest to use but the goodness of fit is too poor. 

Table 11. Test results for model 4-l 

P(U) = (C/U) - D 

Data set C D K-S * c. V.” Pass 

1 1.01 -3.670 0.027 0.096 Y 
2 1.02 0.020 0.016 0.104 Y 
3 0.97 0.020 0.055 0.049 N 
4 0.99 -0.010 0.036 0.043 Y 
5 0.99 0.010 0.031 0.070 Y 
6 0.93 -0.030 0.048 0.105 Y 
7 1.17 -0.110 0.281 0.086 N 
8 1.00 -0.080 0.175 0.052 N 
9 1.02 0.010 0.020 0.075 Y 

10 1.02 0.070 0.063 0.105 Y 
11 1.02 -0.010 0.041 0.105 Y 
12 0.99 0.001 0.019 0.032 Y 
13 0.99 0.020 0.045 0.082 Y 
14 0.97 0.020 0.056 0.102 Y 
15 1.23 -0.001 0.274 0.053 N 
16 1.09 0.090 0.038 0.050 Y 
17 1.07 -0.030 0.095 0.059 N 
18 0.98 0.010 0.042 0.056 Y 
19 0.97 -0.030 0.040 0.112 Y 

*K-S is the K-S test result. 
“C. V. is the critical value for the K-S test. 
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Table 12. Test results for model 4-2 

Jp = 
1 

P* (P+ 1) 
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Data set df’ Chi.V. ** c. V.“’ Pass 

1 6 26.80 12.59 N 
2 6 8.23 12.59 Y 
3 12 33.83 21.03 N 
4 19 211.45 30.14 N 
5 10 34.08 18.31 N 
6 6 85.78 12.59 N 
7 9 466.47 16.92 N 
8 5 4767.88 11.07 N 
9 9 18.83 16.92 N 

10 6 11.05 12.59 Y 
11 7 25.91 14.07 N 
12 26 142.65 38.88 N 
13 8 24.93 15.51 N 
14 6 68.56 12.59 N 
15 15 520.07 25.00 N 
16 11 41.94 19.68 N 
17 14 163.66 23.68 N 
18 14 40.54 23.68 N 
19 5 41.21 11.07 N 

‘df is the degree of freedom in the chi-square test. 
**Chi.V. stands for the chi-square test result. 

“‘C. V. is the critical value for the chi-square test. 

(3) Model 4-3 f(X) = K * X-” wheref(X) is the number of journals contributing X 
articles. The model passed chi-square tests for 5 out of 19 data sets (see Table 13). 

D. Other forms 
(1) Model 5-4 P(n) = (B/~z)~ - C where F(n) is the relative rank of a journal with 

productivity n. Leimkuhler derived this model by showing that Bradford’s law is a special 
case of the Zipf-Mandelbrot law. In the Zipf-Mandelbrot law (n = B * (F, + C)-“D), 

Data set 

Table 13. Test results for model 4-3 

f(X) = K * X-” 

K a df’ Chi.V. ** c. V.“’ Pass 

1 99.26 1.66 7 22.50 14.07 N 
2 84.98 1.62 7 4.13 14.07 Y 
3 424.27 1.73 13 27.75 22.36 N 
4 532.63 1.85 19 218.46 30.14 N 
5 202.50 1.82 10 33.26 18.31 N 
6 90.02 1.92 5 88.99 11.07 N 
7 61.27 1.09 18 33.45 28.87 N 
8 273.67 1.52 6 3117.41 12.59 N 
9 168.40 1.71 10 13.43 18.31 Y 

10 101.95 2.00 5 9.52 11.07 Y 
11 81.08 1.73 6 21.18 12.59 N 
12 907.56 1.75 28 89.20 41.34 N 
13 154.08 1.92 7 30.23 14.07 N 
14 24.42 1.15 6 4.65 12.59 Y 
1.5 139.19 0.86 38 136.90 53.38 N 
16 387.00 1.52 13 67.45 22.36 N 
17 212.13 1.42 22 32.67 33.92 Y 
18 327.96 1.90 13 46.42 22.36 N 
19 72.80 1.79 5 44.30 11.07 N 

‘df is the degree of freedom in the chi-square test. 
“Chi.V. stands for the chi-square test result. 
l **C. V. is the critical value for the chi-square test. 
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Table 14. Test results for model 5-4 

F(n) = (B/n)D - c 

Data set B D C K-S’ c. V.” Pass 

1 1.01 0.93 
2 1.02 1.01 
3 1.00 1.24 
4 0.97 0.92 
5 1.00 1.07 
6 0.94 1.06 
7 1 .I5 0.38 
8 1.06 0.46 
9 1.02 0.98 

10 1.00 1.35 
11 1.05 0.19 
12 0.99 1.00 
13 0.99 1.12 
14 0.98 1.22 
15 1.85 0.45 
16 1.07 1.10 
17 1.04 0.73 
18 1.00 1.04 
19 0.96 0.92 

0.010 0.023 0.096 Y 
0.020 0.016 0.104 Y 

-0.004 0.019 0.049 Y 
-0.004 0.045 0.043 N 

0.001 0.021 0.070 Y 
-0.040 0.039 0.105 Y 

0.190 0.091 0.086 N 
0.080 0.075 0.052 N 
0.020 0.018 0.075 Y 
0.001 0.021 0.105 Y 
0.050 0.046 0.105 Y 
0.001 0.019 0.032 Y 

-0.001 0.028 0.082 Y 
-0.020 0.024 0.102 Y 

0.230 0.091 0.053 N 
0.070 0.047 0.050 Y 
0.030 0.017 0.059 Y 
0.003 0.037 0.056 Y 

-0.170 0.037 0.112 Y 

*K-S stands for the K-S test result. 
“C. V. is the critical value for the K-S test. 

parameter B > 0, C 2 0, and D 2 1. However, the fitting results of model 4-4 showed that 
C can be smaller than 0 and D can be less than 1 (see Table 14). It is a little surprising that 
this model passed K-S tests for 15 out of 19 data sets, the best record in all the models 
tested. 

7. CONCLUSIONS 

When using rank-frequency cumulative models, Egghe’s model F(X) = A * log [B + 
C * X + D * log (1 + C * X)] should be considered first since it fits better than others. In 
choosing rank-frequency noncumulative models, Chen and Leimkuhler’s model f(r) = 
a * (r + 6)’ should have the first consideration. Fairthorne’s model p(U) = (C/U) - D 
is the best among size-frequency models. Leimkuhler’s model F(n) = (B/n)D - C is the 
only model tested among models with other forms and it passed goodness of fit tests more 
times than any other models. Therefore, it is a good choice in general. 

Overall, rank-frequency cumulative models (including those which can be deducted 
from other models and therefore have not been tested directly) passed 78 of the goodness 
of fit tests, i.e., 37.3% of the tests (each model was tested against 19 data sets). Rank- 
frequency noncumulative models passed 32 (56.1Vo) of the goodness of fit tests. Size-fre- 
quency models passed 21 (36.8%) of the goodness of fit tests. Models with other forms 
passed 23 (60.5%) of the goodness of fit tests. Because two types of goodness of fit tests, 
e.g., K-S test and chi-square test, were used, no direct comparison can be made as to which 
approach (rank-frequency or size-frequency) is better. 

It is interesting to note that all the rank-frequency cumulative models, including the 
best model F(x) = A * log [B + C * X + D * log( 1 + C * X)] , failed K-S tests with data 
sets 4,6,7,8, 15, 17, 18, and 19. Further examination of the curve shapes of these data sets 
showed that they all have the so-called “Groos droop, ” and that the rest of the data sets 
have no Groos droops. Exploring the fitting residuals (the difference between expected val- 
ues and observed values) for these data sets, it is found that the greatest residuals occurred 
at the tail end of the curves, i.e., the Groos droop part of the curves. It can be concluded, 
therefore, that none of these models can describe the Groos droop. When Egghe put forward 
his model, he claimed that this model can describe the Groos droop, while Leimkuhler’s 
model F(x) = log( 1 + B * X)/log (1 + B) cannot [l 11. However, the results of this study 
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showed that Egghe’s model failed to do so -it is exactly in the data sets which have Groos 
droop that the model failed the K-S tests. Based on the above analysis, it is obvious that 
a direction for further research in Bradford’s law is to find a model which can describe the 
Groos droop part. 

Brookes states the necessity of expressing the Bradford curve in two parts: “No single 
general form of the Bradford law can thus be expected to fit the whole bibliographical data” 
[37, p. 811. In fact, Brookes’ models, which express the curves in two mathematical formu- 
lae, do not fit better than Egghe’s single formula model and take double effort to fit. How- 
ever, since the existing models cannot describe the Groos droop, it might be necessary to 
have two parts, one formula to describe the Groos droop in the tail, and the other formula 
to describe the rest of the distribution. 
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cerning this study. 

1. 

2. 
3. 
4. 
5. 
6. 
7. 
8. 

9. 
10. 
11. 

12. 

13. 
14. 

15. 

16. 

17. 

18. 

19. 

20. 
21. 
22. 
23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

REFERENCES 

Bradford, SC. Documentation. London: Crosby Lockwood and Son Ltd.; 1948. 
Brookes, B.C. Bradford’s Law and the Bibliography of Science. Nature, 224(6): 953-956; 1969. 
Leimkuhler, F.F. The Bradford Distribution. Journal of Documentation, 23(3): 197-207; 1967. 
Vickery, B.C. Bradford’s Law of Scattering. Journal of Documentation, 4(3): 198-203; 1948. 
Wilkinson, E.A. The Ambiguity of Bradford’s Law. Journal of Documentation, 28(2): 122-130; 1972. 
Maia, M.J.F.; Maia, M.D. On the Unity of Bradford’s Law. Journal of Documentation, 40(3): 206-216; 1984. 
Hubert, J.J. Bibliometric Models for Journal Productivity. Social Indicators Research, 4(2): 441-473; 1977. 
Hubert, J.J. A Relationship Between Two Forms of Bradford’s Law. Journal of the American Society for 
Information Science, 29(3): 159-161; 1978. 
Burrell, Q.L. Modelling the Bradford Phenomenon. Journal of Documentation, 44(l): 1-18; 1988. 
Cole, P.F. A New Look at Reference Scattering. Journal of Documentation, 18(2): 58-64; 1962. 
Egghe, L. Consequences of Lotka’s Law for the Law of Bradford. Journal of Documentation, 41(3): 173-189; 
1985. 
Egghe, L. The Dual of Bradford’s Law. Journal of the American Society for Information Science, 37(4): 
246-255; 1986. 
Naranan, S. Bradford’s Law of Bibliography of Science: an Interpretation. Nature, 227: 631-632; 1970. 
Asai, I. A General Formulation of Bradford’s Distribution: The Graph-Oriented Approach. Journal of the 
American Society for Information Science, 32(2): 113-l 19; 1981. 
Haspers, J.H. The Yield Formula and Bradford’s Law. Journal of the American Society for Information 
Science, 27(4): 281-287; 1976. 
Leimkuhler, F.F. Operational Analysis of Library Systems. Information Processing and Management, 13(l): 
79-93; 1977. 
Brookes, B.C. The Haitun Dichotomy and the Relevance of Bradford’s Law. Journal of Information Science, 
8(l): 19-24; 1984. 
Fairthorne, R.A. Empirical Hyperbolic Distributions (Bradford-Zipf-Mandelbrot) for Bibliometric Description 
and Prediction. Journal of Documentation, 25(4): 319-343; 1969. 
Brookes, B.C.; Griffiths, J.M. Frequency-Rank Distributions. Journal of the American Society for Infor- 
mation Science, 29(l): 5-13; 1978. 
Chen, Y.; Leimkuhler, F.F. Bradford’s Law: An Index Approach. Scientometrics, 11(3-4): 183-198; 1987. 
Leimkuhler, F.F. An Exact Formulation of Bradford’s Law. Journal of Documentation, 36(4): 285-292; 1980. 
Egghe, L.; Rousseau, R. Causes of the Groos Droop. Scientometrics, 14(5-6): 493-511; 1988. 
Drott, M.C.; Griffith, B.C. An Empirical Examination of Bradford’s Law and the Scattering of Scientific 
Literature. Journal of the American Society for Information Science, 29(4): 238-246; 1978. 
DePew, J.N.; Basu, S. The Application of Bradford’s Law in Selecting Periodicals on Conservation and 
Preservation of Library Materials. Collection Management, 8(l): 55-64; 1986. 
Sivers, R. Partitioned Bradford Ranking and the Serials Problem in Academic Research Libraries. Collec- 
tion Building, 8(2): 12-19; 1987. 
Pope, A. Bradford’s Law and the Periodical Literature. Journal of the American Society for Information 
Science, 26(3): 207-213; 1975. 
Kendall, M.G. The Bibliography of Operational Research. Operational Research Quarterly, 1 l(l-2): 31-36; 
1960. 
Saracevic, T.; Perk, L.J. Ascertaining Activities in a Subject Area Through Bibliometric Analysis. Journal 
of the American Society for Information Science, 24(2): 120-134; 1973. 
Lawani, S.M. Periodical Literature of Tropical and Subtropical Agriculture. UNESCO Bulletin of Librar- 
ies, 26(2): 88-93; 1972. 
Saracevic, T. Five Years, Five Volumes and 2345 Pages of the Annual Review of Information Science and 
Technology. Information Storage and Retrieval, 7(3): 127-139; 1971. 
Rousseau, R. Documentation Note: The Nuclear Zone of a Leimkuhler Curve. Journal of Documentation, 
43(4): 322-333; 1987. 
Seetharama, S. Documents on Survey Analysis. Library Science with a Slant to Documentation, 9(3): 384-395; 
1972. 



670 L. QIU 

33. Lancaster, F.W. Evaluation of the MEDLARS Demand Search Service. Report presented to the U.S. Depart- 
ment of Health, Education, and Welfare Public Health Service; 1968. 

34. Freeman C. Bradford Bibliography and the Literature of Marine Science. Australian Academic and Research 
Libraries, 5(2): 65-71; 1974: 

35. Goffman. W.: Warren, KS. Disoersion of Paners among Journals based on a Mathematical Analysis of Two 
Diverse Medical Literatures. Nature, 221: 1205-1207; 1969. 

36, Goffman, W.; Morris, T.G. Bradford’s Law and Library Acquisitions. Nature, 226: 922-923; 1974. 
37. Brookes, B.C. A Critical Commentary on Leimkuhler’s “Exact” Formulation of the Bradford Law. Journal 

of Documentation, 37(2): 77-88; 1981. 
38. Brooks, T.A. Perfect Bradford Multipliers: A Definition and Empirical Investigation. Paper presented at the 

2nd International Conference on Bibliometrics, Scientometrics and Informatics, London, Canada; 1989. 
39. Ijiri, Y.; Simon, H.A. Skew Distributions and the Sizes of Business Firms (p. 109). Amsterdam: North Holland 

Publishing Company. 1977. 

APPENDIX 1. A List of the Existing Models 

Part 1. Rank-cumulative (fractional) 

l-l Cole- 1962 

F(X)=l+B*logX 

l-2 Leimkuhler - 1967 

F(X) = 
log(1 +B*X) 

log(1 + B) 

1-3 Egghe - 1985 

F(X)=A*log[B+C*X+D*log(l +C*X)] 

1-4 Asai - 1980 

F(X) = A * log(X+ C) + B 

1-5 Bradford- 1948 

F(X) = A + B * log(X) 

Part 2. Rank-cumulative (non-fractional) 

2- 1 Brookes- 1969 

ff * rB (1 srsC) 
R(r) = 

K * log(r/s) (CsrrN) 

2-2 Wilkinson - 1972 

R(r) =j * log(r/a + 1) 

2-3 Hasper- I976 

R(r) = j * log(r/a + 1) + R(0) 

2-4 Leimkuhler- 1977 

R(r) = j * log(1 + a * r)/log(l + a) 



2-5 Brookes- 1984 
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j, * log(1 + rr/@) rl = 1,2, . . . n nucleus 
R(r) = 

j, * log( 1 + r&) r2= 1,2,... p periphery 

2-6 Brookes- 1978 

R(r) = logb(l + r/u) where r= 1,2,... N and b = (a + N)/a 

2-7 Maia - 1984 

R(nk) =j * log(nk - bk) where bk =j * log(a&zk) 

nk-cumulative sum of all periodicals in the collection up to the class of order k 
(Y - Bradford multiplier 
R (nk) -cumulative sum of all papers in the collection up to the class of order k 

Part 3. Rank-non cumulative 

3- 1 Fairthorne - 1969 

f(r) = a/(1 + d * r) 

3-2 Hubert - 1977 

f(r) = a * r-’ 

3-3 Chen - 1987 

f(r) = a * (r + b)’ 

Part 4. Size-frequency 

4-l Fairthorne- 1969 

P(U) = (C/U) -D 

P(U) is the proportion of journals having a yield not less than U. 
4-2 Kendall- 1960 

Jp = 
1 

P* (P+ 1) 

Jp is the relative number of journals having P references each. P = 1,2,. . . N 
4-3 Naranan - 1970 

f(X) = K * X-* 

f(X) is the number of journals contributing X articles. 

Part 5. Other Forms 

5- 1 Vickery - I948 

671 

Sk = S(nk - 1) = s, 5 
IPH 26:5-G 
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Sk is the cumulative number of journals in the most productive k groups (k = 1,2. . . ). 
5-2 Fairthorne- 1969 

R(X)=j*log(l+C*X) 

R (X) is the total yield from the more productive fraction of X of all journals. 
5-3 Egghe- 1986 

m P = K /eE = 0.56KP P 

where K is the Bradford multiplier 
E is the number of Euler 
mp is the maximal number of papers in a journal in group p. 

5-4 Leimkuhler- 1980 

F(n) = (B/~z)~ - C 

F(n) is the relative rank of a journal with frequency (productivity) n. 

APPENDIX 2. List of Data Sets 

Data set Subject Topic Reference Source Time Span 

1 petroleum industry 
2 library science 
3 remote sense of earth resources 
4 information science 
5 operational research 
6 statistical methodology 
7 library science 
8 tropical & subtropical agriculture 
9 applied geophysics 

10 lubrication 
11 information science 
12 schistosomiasis 
13 transplantation-immunology 
14 international research in social science 
15 medicine 
16 medicine 
17 fishery 
18 mast cell 
19 statistical methods 

Cole - 1962 
DePew - 1986 
Sivers - 1987 
Pope - 1975 
Kendall - 1960 
Kendall - 1960 
Saracevic - 1973 
Lawani - 1972 
Bradford - 1948 
Bradford - 1948 
Saracevic - 197 1 
Goffman - 1969 
Goffman - 1970 
Seetharama - 1972 
Lancaster - 1968 
Lancaster - 1968 
Freeman - 1974 
Coffman - 1969 
Egghe - 1988 

unknown 
3 years 
3 years 
6 years 
unknown 
unknown 
1 year 
4 years 
3 years 
3 years 
1 year 
> 10 years 
3 years 
unknown 
unknown 
unknown 
1 year 
> 10 years 
unknown 


