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a b s t r a c t

Scientific research concerning R&D staff structures has already been based on networks as they are

mapped by co-patent data. The present paper combines the method of patent analysis with network

analysis techniques and shows by means of a patent sample from cardiac pacemaker technology, that

the different communication functions a star inventor accomplishes in their network are mirrored not

only by quantity, but also by quality of patents. The mere patent quantity has a significant positive

impact on the size of an inventors’ personal network and the number of inventors they can directly pass

information to. But more importantly, there is significant empirical evidence that high technical

specialisation has a positive impact on an inventor’s potential to mediate between others as well as on

the efficacy to reach them on short notice. For the latter, likewise the number of citations received is a

positive predictor. Thus, we characterise stars as industrious, well-known technical specialists and

contradict the general assumption that generalists would be the ideal gatekeeper in an R&D network.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Co-patent networks are reflections of existing knowledge flows
between companies, R&D departments or inventors. These net-
works display stars, who are important actors in their field of
technology. Their early detection and development can be
considered as main issues for HR management in R&D. However,
the characteristics of stars within the surroundings of their co-
patent networks have not yet been fully explored. Against this
background, the present work engages in matching instruments
of network analysis with patent analysis techniques. It seeks to
determine patent predictors of star inventors in co-patent
networks. The focal point is to answer the question if and to
what extent patent quality characteristics mirror the different
roles stars take in their network: their basic functions being the
maintenance of large personal networks, the mediatorship
between individuals and the ability to reach everybody on short
notice. Patent research here insinuates that patent quality will
furnish appropriate predictors that distinguish common inventors
from stars. Especially the frequently employed predictor citations
received, as well as the technical range inventors cover, and their
ability to bridge geographical distances should explain the
stardom of an inventor.
ll rights reserved.
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In the following paragraphs, Section 2 at first creates the
theoretical framework of the present work. Section 3 introduces
the methodical approach, whereas Section 4 presents an empirical
example from the cardiac pacemaker technology. Section 5 gives a
summarising conclusion. The results of this work help under-
standing the evolution of prominence in some inventors that we
call stars within a technology field. By identifying the driving
forces, HR management in R&D can support their selection
processes by looking for specific characteristics of the candidates.
Knowing which factors explain the emergence of the much sought
for ‘network capital’, facilitates personnel selection, early devel-
opment of inventors and appropriate team composition. The
study thereby attempts to make a contribution to the empirical
foundation of essential communication characteristics of R&D
networks and their inventors.
2. Theoretical framework

2.1. Relevance and success factors of collaboration

Collaboration in R&D appears in many different forms. It can
be formally arranged in teams or projects and it may likewise
happen informally through unscheduled, random contacts or get-
togethers. Collaboration takes place in order to work on scientific
discoveries as well as to conduct clinical trials, beta testing or to
realise the transfer of knowledge and resources between
researchers. A minimum of two individuals working together
can thereby be understood as collaboration (Mindruta, 2008). In
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this context, it is widely agreed that the increase of technical
complexity and the challenges of globalised markets necessitate
the extensive use of collaboration especially in R&D (Wuchty
et al., 2007; Zhenzhong and Yender, 2008). This growing
importance is underlined in patent statistics by the increasing
number of inventors on patent documents. Considering for
example patent applications at the German Patent Office in the
last decade, the number of inventors has risen from 1.96 inventors
per patent application (1995) to 2.32 within the next ten years
(DPMA, 2005). Similar results could be obtained for American
patents at the United States Patent Office, USPTO (Zhengzhong
and Yender, 2008; Wuchty et al., 2007) as well as concerning
patents of European and Asian countries (Hussler and Rondé,
2007; Zhenzhong and Yender, 2008). The main advantages of
collaborative work are possible synergies and cross-fertilisation,
as well as the natural increase of creativity and cross-thinking
between collaborators (He et al., 2009).

There are different factors that facilitate or promote the
collaboration of companies or inventors.

First and foremost, scientific popularity, visibility and recogni-
tion are promoting factors for the emergence of collaboration and
professional excellence. Outstanding reputation will lead to
increased willingness of others to collaborate. Companies as well
as inventors attract valuable collaboration partners more easily,
the better their reputation presents itself and the better known in
their technological community they actually are (Merton, 1968).
Companies that for example support collaboration between
industry and academia may especially attain image effects based
on academic involvement and thus make themselves more
attractive for future company alliances or as future employers.
More than that, company collaborations with academic research-
ers usually entail higher quality than company to company
collaborations (Balconi et al., 2004; Mindruta, 2008).

In addition, the degree of specialisation as well as the need for
complimentary knowledge influence the inclination to collaborate
(Balconi et al., 2004; Mairesse and Turner, 2005). The higher a
company�s specialisation and the subsequent need for partners
with different technological backgrounds, the more will they seek
contact to their counterparts. In this context even geographical
distances matter less, the more specialised and demanding the
sought for knowledge is (Hussler and Rondé, 2007). The technical
fit is most important, since the search for collaborators is not
random, but a strategic process. In this process partners sort
themselves by attributes which are relevant for the respective
innovation (Mindruta, 2008).

Third, geographic proximity plays an important role. Research-
ers naturally have a higher propensity to collaborate when
working in the same laboratory or in the same region than if
they were further apart. Knowledge exchange becomes easier
once the inventors face no or only marginal spatial barriers. It can
therefore be important for companies, to locate in regions where
there are similar or complementary technological specialisations
to their own, from which they can benefit. Likewise should
inventors and research departments who are to collaborate on a
regular basis, not be separated by large geographical distances.
This holds for company to company collaborations as well as for
collaborations within a company (Hussler and Rondé, 2007;
Mairesse and Turner, 2005; Zucker et al., 2006).
2.2. Characteristics of co-patent networks

Co-patenting can be understood as a visible result of inventive
collaboration in R&D and signifies that an inventor is listed on a
patent not on his or her own, but with at least one other inventor.
Collaboration in this sense is the tracking of work relations, or
even more precise, information channels, along which informa-
tion has flown in the process of patenting an invention. Literature
distinguishes co-patent networks and co-publication networks.
While the former focus on inventors and their patents, the latter
are dedicated to researchers and scientists who publish their
work in scientific literature. Co-patenting is held more relevant
for industry researchers, i.e. applied research, whereas publica-
tions are more prominent among academia. The examination of
these collaboration activities helps the mapping of ties within
technology fields and depicts knowledge maps that could hardly
be traced outside a company or institution but with publicly
available patent or publication data (Balconi et al., 2004; Hussler
and Rondé, 2007; Mina et al., 2007).

Despite the objection that patents are by definition static and
possibly incomplete criteria to measure knowledge flows (since
there may be many non-patentable work results), they offer the
next best solution when company internal information about
communication, work or social structures between individuals is
absent. This will be regularly the case when external researchers
examine collaboration structures in R&D, when companies
monitor competitors or if within a company relevant commu-
nication information remains undisclosed or incomplete. Patents
mirror the results of collaboration that appears always within a
social context. In the process of inventing, the social links an
inventor has influence their decisions substantially. Social inter-
action like leadership effects and peer effects in their research
group play an important role concerning collaboration structures
and disclosure of knowledge (Bercovitz and Feldman, 2004). The
method of extracting information from patent statistics thus
cannot be doubted generally; the variety of patent studies is
reference for that. On the contrary, there is even empirical
evidence that structures around inventors examined by patent
statistics are largely identical with structures revealed by expert
surveys in R&D. In a study by VITT for instance, members of R&D
departments name in interviews the same inventors as key
inventors in their technology field, who could before be identified
externally by patent statistics (Vitt, 1998).

As regards the characteristics of co-patent networks, they
generally show high fragmentation at the beginning of their
emergence, but become increasingly connected and less frag-
mented over time. They consist of different components in which
every inventor can be reached by another (i.e. there the graph in
one component is connected), but the components are not
connected among each other. The more components there are,
the more fragmented is the co-patent network. A component
minimum depicts collaboration links resulting from 1 patent. In
this case a co-patent network would consist of as many
components as there are patents. A component at most covers
all patents and inventors of a technology field, which will
however practically rather not be the case. Still there is empirical
proof that the main component covers the majority of actors, only
a minority is usually disconnected or part of the smaller
components (Barabási et al., 2002; Cotta and Merelo, 2007;
Heinze, 2006; Liu et al., 2005; Newman, 2001, 2004). Components
are thereby defined as subsets of actors who are connected to
each other, but not with the rest of the network. The main
component is the largest of these subsets (Wasserman and Faust,
2007).

While there are only few pioneers in the introductory stage of
an industry, many inventors enter the network in the growth
stage and thenceforth (Haupt et al., 2007). Network theory shows
in this context, that during the evolution of a network new links
are added according to two basic principles: time and preferential
attachment. Thus, the ‘oldest’ inventors have a good chance to be
the centres of their respective co-patent network. Likewise the
inventors with many links benefit from a great chance to generate
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new connections (principle of preferential attachment). This
process finally also results in the typically scale-free nature of
collaboration networks, i.e. the distribution of the inventors’ links
follows a power law. There will be many inventors with
comparatively few collaboration partners, while only few are
extensively connected to other inventors. They are the hubs
whose absence would reduce the density of the network
substantially, whereas density is understood as the number of
all realised links divided by the number of all possible ones
(Wasserman and Faust, 2007). Based on the existence of hubs is
also the small-world-phenomenon that usually characterises
collaboration networks. Co-patent networks show properties in
this regard, if despite large network sizes many actors can be
reached in a few ‘hops’ via comparatively few intermediaries (Goh
et al., 2002; Newman, 2004). If two inventors generate a patent
together, their distance is 1. Should any two inventors never have
collaborated, their distance is measured by the number of
intermediaries (other inventors) between them. In case they
belong to two different, unconnected components of the network,
their distance would be infinite.

Differences in collaboration networks are however notable
with respect to industry specificities. In the chemical and
electronics sector the network density is higher (more links of
inventors due to larger team sizes) than in process and
mechanical engineering or consumer goods. Likewise the number
of patents (e.g. measured as average number of patents per
inventor) is higher in the chemical or electronics branch in
comparison to other industries (Balconi et al., 2004). The medical
branch takes a special position, since innovations may not only
come from biomedical research, but also from other fields like
electronics, chemistry, etc. (Mina et al., 2007). It is therefore the
more important, to confine the empirical example to a definable
invention that is largely free of industry overlaps. According to
expert knowledge the author had access to, this is the case for the
groundbreaking invention of the cardiac pacemaker.
2.3. Characteristics of stars

From a company perspective, stars are company members who
embody great value to the employer due to their outstanding
performance and the resulting monetary and social returns they
generate. They are able to secure a company’s lead in developing
new technologies or establishing recent ones; they can be seen as
brains of a company. Stars are thus consequently characterised by
professional excellence and outstanding quality of work (Cotta
and Merelo, 2007; Goeree et al., 2007).

In innovation management literature, stars are often char-
acterised as individuals with specific communicative abilities in
the innovation process. They are often described as technological
gatekeepers (see similarly the definitions of promotors or
champions in pertinent literature). They act as outstanding R&D
protagonists who have the ability to develop and enforce the
innovation process substantially. Gatekeepers in particular work
independently from specific innovation projects, i.e. indepen-
dently from one single invention or one individual patent. They
act as information brokers for both internal and external sources
and thus abolish communication barriers within a company or
technology field. Gatekeepers are thus considered sociometric
stars in their research community (Hauschildt and Schewe, 1997;
Vitt, 1998). In order to meet these requirements, stars hold central
positions in their network, or more precise, comply with different
centrality roles in their surrounding networks: First, they must
maintain an extensive list of contacts, in order to gather and
spread information quickly to many other inventors. Second, they
must be in a position to mediate between research partners, who
were otherwise unknown to each other. An inventor with a large
ego-network, but without further, indirect (or second class)
connections would not be in the position to be an information
broker or mediator for other inventors. Third, stars must reach
other participants of the network efficiently, i.e. the paths to any
other inventor within a network must not be too long. Thus, stars
cover different aspects of network centrality, in classic network
theory they are also known as degree, betweenness and closeness
centrality in collaboration networks. These three aspects or
communicative roles are by definition not free of overlaps.
However, they do cover different characteristics that make an
inventor prominent in the network and underline the fact that
stars are altogether important bonding actors in their R&D
department and technology field (Wasserman and Faust, 2007).

Statistics suggest that the share of stars in a company only
amounts to a small percentage of all inventors (approximately
6–12%), depending on company size. In large firms, their share is
estimated to be found on the lower end of this range at about 6%,
whereas small firms usually possess a bigger share. Star inventors
generate the majority of patents in terms of quantity and quality
(about 2/3 of all patents; Ernst et al., 1999). This matches basic
findings in bibliometrics, whereupon in a defined group of
individuals there are always only few people who achieve
outstanding results (Lotka, 1926). The gain or loss of a star of
that kind, e.g. after restructuring a company, merger or acquisi-
tion, must thus be of substantial importance to a company, not
only because of the loss of potential future valuable patents, but
also for disruptions in the information channels. There is
empirical proof that the loss after merger activities had in fact
devastating effects on company performance in both respects
(Vitt, 1998), which makes the early attachment and development
of stars and talents the more important.
3. Methodical approach

3.1. Derivation of propositions

Summing up, there is a clear notion that stars should be
characterised by a high centrality in their networks. We assume
that they possess many contacts, and/or take mediator positions
and/or position themselves close to many other inventors. We
thus prompt the question whether the particular positions they
fill can be interpreted as a function of characteristics detectable in
their work. Since the observable work results in the present study
are patents, we aim at finding support for the notion that patent
indicators can be predictors for network centrality. There,
especially quality indicators are of interest. The position of an
inventor in their network will be influenced by the principles of
time and preferential attachment, but should also be positively
dependent on the quality of their work, i.e. their patents
(Freeman, 1979). It is after all quality that distinguishes star
inventors from the mere industrious ones (Vitt, 1998). Our
fundamental proposition 1 can be thus be derived:

(1). The quality of an inventor’s patents is a positive, significant
predictor of the inventor’s centrality in the co-patent network.

However, patent quality can be understood as collective term
that is represented by many possible indicators. While specificity
of tasks, academic background of inventors, renewal times of
patents etc. as such can only with difficulty be observed, we
concentrate on other, clearly detectable aspects the quality of
patents implicates. Comparatively easy to obtain and thoroughly
tested indicators are for example passive (or in other words
received) citations, but also the technical breadth or IPC-range of
an inventor, or the geographical range they cover by their
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collaborations (Carpenter et al., 1981; Harhoff et al., 1999; Haupt,
2005, 2007; Hussler and Rondé, 2007; Trajtenberg, 1990). We
expect all of these variables to make a positive contribution to the
explanation of the selected centrality variables. Nevertheless,
there is no definition for one single kind of centrality. On the
contrary, there are different aspects of central network position-
ing detectable, which render an inventor star in comparison to
their fellow inventors. For these different roles an inventor plays
(maintaining a large personal network, act as mediator, reach
others quickly), each quality indicator may be important to a
different extent.

For example, if an inventor is particularly well-known by
others and has a large number of contacts at their command, this
may be traceable especially by the number of citations he or she
receives. The citations with which one inventor (or the patent
itself) values the other, gives proof of the relatedness of the
current patent to the prior one, but it also shows that one inventor
is acquainted with the other to some extent. Thus, the following is
assumed:

(1a). The number of citations an inventor receives is a particu-
larly positive, significant predictor of the size of an inventor�s
personal ego-network within the co-patent network.

In addition to that, the stars’ holding of mediator positions in
the network was declared before. In order to fill this role, stars
might possess a particularly broad technical knowledge, since
they pass on information from varying sources and must be able
to refine and process them. They can accordingly be assumed to
be rather generalists than specialists, since the tasks they
accomplish may not be specific or task-idiosyncratic, but rather
general. As we mentioned before, gatekeepers are described in
literature as not belonging to a single project, but to work
independently and subordinately. Their technical universality,
visible e.g. by the IPC-classification of their patents, should
accordingly be a positive indicator of their mediator potential.
Hypothesis 1b can thus be developed as:

(1b). The IPC-range an inventor covers is a particularly positive,
significant predictor of the inventor�s mediator potential in the co-
patent network.

A constitutional characteristic of a star must also be the
efficiency with which an inventor can reach any other participant
in the network. Only if the connecting path to a target person is
comparatively short, i.e. includes not too many intermediaries,
information can be passed on quickly while reducing the danger
of loss of information. Thus, featuring a foreign or geographically
distant inventor in the personal network (meaning an inventor
outside one�s own federal state, if we consider US patents), will
very likely increase the efficiency with which even far away,
company-external inventors may be reached. As we suggested
before, the bridging of distances may be needed for certain types
of idiosyncratic tasks. Against this background, Hypothesis 1c
claims the following:

(1c). Patenting with geographically distant inventors is a parti-
cularly positive, significant predictor of the inventor�s the efficacy
with which they can reach others in the co-patent network.

In order to further clarify the measures used, the variables will
be presented formally in the next part.

3.2. Definition of measures

In order to test the before mentioned propositions, measures
for the suggested communication functions, which are degree,
betweenness and closeness centrality in a network, need to be
illustrated. They serve as dependent variables in linear regression
analysis (OLS) that will be conducted in the following. Further-
more, the discussed patent quality indicators will be defined. For
the purpose of testing these predictor variables appropriately,
however, we also present control variables that need to be
considered. It is time as well as scale effects regarding the number
of patents per inventor that have to be controlled for in the
regressions. Both were previously described to belong to the
constitutional principles of network evolution: An early entry in
the network as well as the possession of many patents (principle
of preferential attachment) may influence the centrality of an
inventor to a substantial extent. This study is, however,
particularly interested in contributions predictor variables make
beyond time and quantity effects, considering the fact that stars
distinguish themselves primarily by their quality of work.

Looking at centrality in social network analysis, three estab-
lished measures can be distinguished: degree centrality, between-
ness centrality and closeness centrality (Freeman, 1979;
Wasserman and Faust, 2007). They embody different commu-
nication functions stars realise in their network. First, we can
introduce an inventor�s centrality or prominence in the network
by the number of contacts to whom there are direct links through
joint patents. This variable is known as degree. It equals the size of
an inventor�s personal or ego-network:

DEGREE¼ dðniÞ

where d is the number of collaborators adjacent to inventor ni,
i.e. there is a link between them due to one or more patents in
which both collaborated (Wasserman and Faust, 2007). Moreover,
centrality is measured by betweenness, i.e. the likelihood that an
actor in the network will be a potential mediator between any
two individuals, because he or she lies on (one of) the shortest
paths between them (the two, it must be assumed, do not ‘‘know’’
each other by a direct link). This variable is computed as
betweenness:

BETWEENNESS¼
X
jok

gjkðniÞ=gjk

where the denominator gik is the overall number of shortest
paths that exist between actors j and k, while gik(ni) is the number
of shortest paths that include the initial inventor i (Wasserman
and Faust, 2007). For example, inventors j and k are connected via
3 possible paths in the network. 1path runs through 2 further
inventors (i.e. has length 2) and 2 paths go through only 1other
inventor(i.e. path length 1). The number of shortest paths gik is
thus 2; the first and longer path does not need to be considered. If
we further imagine that only 1 of these two shortest paths
involves inventor i, he or she has a chance of 1/2 to be selected as
mediator between j and k. The resulting betweenness of inventor i

is thus 0.5.
Furthermore, network centrality is expressed by the swiftness,

efficacy, or in other words: path length, with which an inventor
can reach others in the network. The variable closeness centrality
or closeness thus computes path lengths to other inventors in the
network:

CLOSENESS¼
Xg

j ¼ 1

dðni,njÞ

2
4

3
5
�1

where d(ni, nj) is the number of shortest paths that link actor i

and j. The total distance that i is from all other actors j in the
network is conclusively measured as the sum of all shortest paths
between possible inventor pairs. Since this sum is rather small for
inventors who can reach others quickly via short ways and large
for inventors, who are rather distant from the others, the inverse
is calculated to turn the result into a closeness centrality measure
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Table 1
Variables of the empirical model.

Variable Description Formal expression Explanation

DEGREE Centrality measure dðniÞ Number of collaborators

BETWEENNESS Centrality measure
P

jokgjkðniÞ=gjk Mediator potential

CLOSENESS Centrality measure Pg
j ¼ 1

dðni ,njÞ

" #�1 Efficacy to reach others in the network

ENTRY Time measure (control

variable)
Tfirst

i
Year T in which the first patent of inventor i was filed (entry into the network)

DUMMY Time measure (control/

dummy variable)
Tgroup

i Time span in which inventor i first entered the network Tgroup
i ¼ 0 for all

inventors before 1990 Tgroup
i ¼ 1 for all inventors from 1990 to 2005

OUTPUT Quantity measure (control

variable)

P
Pi Number of patents p granted to inventor i

NETCIT Quality measure
P

Zi�
P

Zii Cumulative number of citations Z QUOTE that inventor i received from the

patents of other inventors j; minus self-citations that came from patents of

inventor i

IPCRANGE Quality measure
P

IPCi Number of IPC-subclasses, in which an inventor�s patents were filed (e.g. A61N

for pacemakers in the German classification system)

COLOC Quality measure dðniÞ
foreign=dðniÞ

Share of foreign inventors among an inventors collaborators (as measured by

dissimilar country codes in the inventor addresses)

C. Goetze / Technovation 30 (2010) 436–446440
that assigns large values to central inventors and vice versa
(Wasserman and Faust, 2007).

Apart from these network centrality variables, the mentioned
control variables regarding time and patent quantity need to be
defined. Time can be represented by the entry year of an inventor
in the co-patent network, i.e. the first publicly noticeable
appearance on a patent document in the specific field of
technology is noted. In doing so, the seniority of an inventor is
accounted for. Even if there is no information about the
productivity of the inventor throughout the years, an early filing
of one or more patents allows in inventor to collect more links and
higher credit than a late entry into the network. Thus, the time
variable entry can be computed as

ENTRY ¼ Tfirst
i

where T is the year in which the first patent of inventor i was
filed. Patent quantity in turn can be measured by counting the
absolute number of patents an inventor generated in the period
under consideration:

OUTPUT ¼
X

Pi

which defines the sum of patents P granted to inventor i.
Regarding patent quality measures we can refer to established

statistical measures from pertinent literature. Generally the use of
multiple indicators is suggested in order to reduce the variance
of results (Lanjouw and Schankerman, 2004). The collection of
commonly drawn upon measures is yet difficult. Renewal times or
lawsuits can neither be observed from an external perspective,
nor can they be calculated by database. Beyond that, increasing
numbers of patents are filed at the European or World Patent
Office in the last years and exhibit thus per se an international
character. Consequently, these are not appropriate quality
criteria. Instead, patent quality is often measured by citations
received from other patents (also called ‘‘passive’’ or ‘‘forward
citations’’) or their IPC-range. Both are approved measures that
can be considered stand-alone indicators of patent quality. While
citations received point out how visible and technically important
the inventive knowledge and its inventors are, a large IPC-range is
taken as a sign of great technological diversity and thus broad
applicability of the invention or, respectively, the inventor. The
latter is also associated with great quality or value of an inventor
to a company (Carpenter et al., 1981; Harhoff et al., 1999; Haupt,
2007; Trajtenberg, 1990, Zucker and Darby, 1998). Sometimes, a
positive bias in favour of well-known, prominent (chiefor senior)
researchers is argued (Ernst et al., 1999; Merton, 1968). If an
inventor is named on a patent, however, it has to be assumed that
he or she contributed to the invention, whether technically or
regarding organisational questions. The quality measures net
citations and IPC-range will therefore be computed as follows:

NETCIT ¼
X

Zi�
X

Zii

where SZi depicts the cumulative number of citations Z that
inventor QUOTE received from all other patents. SZii defines so-
called self-citations coming from patents of inventor i themselves,
referring to his or her own patents. These self-citations need to be
deduced from the overall number of citations in order to limit
artificial inflation of citations due to heavy self-citing (Haupt,
2005). The IPC-range of an inventor is furthermore given as

IPC_RANGE¼
X

IPCi

where the number of different IPC-subclasses, in which an
inventor�s patents were filed is counted (e.g. regarding the German
classification system A61N would be most relevant for cardiac
pacemakers and counts as one entry). Nonetheless, implications
of collaborating with geographically distant inventors were noted
before. The overcoming of large distances indicates a technolo-
gically specific, demanding and in its results valuable collabora-
tion (Zhenzhong and Yender, 2008). Based on this supposition, the
share of foreign collaborators can also be taken into consideration
when looking at patent quality of an inventor. We thus build a co-
location variable that similarly has been the focus of other studies
(Hussler and Rondé, 2007):

COLOC ¼ dðniÞ
foreign=dðniÞ

where the share of foreign inventors d(ni)
foreign among all

inventors collaborators is computed. The distinction between
‘foreign’ and ‘domestic’ research laboratories can thereby be made
by dissimilar country codes in the inventor addresses given in
patent documents. Table 1 summarises the variables defined so
far.

If and to which extent the factors time, patent quantity and
patent quality are decisive in taking inventors to their later
network position, will be calculated by conducting a multiple
linear regression analyses. Three empirical cases will be con-
structed, in which the place of the dependent variable is
respectively taken by degree, betweenness or closeness. The
control variables are time and patent quantity, whereas the
indicators of patent quality (in the different forms of citations,
IPC-range and the share of foreign collaborators) serve as
independent variables (enter-method).
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4. Empirical study

4.1. Outline of the patent sample

The empirical examination of the previously presented
propositions is based on a patent sample from cardiac pacemaker
technology. This choice was made due to the advantage that
appertaining patents are clearly technically definable and in-
dustry specific. They can be outlined clearly by the search string
pacemak$ in patent databases, according to expert knowledge the
author had access to.

The present patent sample originates from data of the US
Patent Office (USPTO) and covers the beginning industrial life
cycle of cardiac pacemakers in the 1970s until the still continuing
maturity stage of today (Boettcher et al., 2003; Haupt et al., 2007).
The sample was generated on 15.11.2007 by searching for
"pacemak$" in abstract, title or claims of patent documents
registered with the US Patent Office database (issued patents
only; accessible via www.uspto.gov). Citations are based on
DOCDB data of the European Patent Office(as of calendar week
39 in 2006). All interpretations of patent documents and citation
data were realised with the help of MyPATAS (2007), software
developed by the Jena Patent Information Office. Due to reasons of
necessary simplification, only the most sizeable applicant in the
field of cardiac pacemaker technology is considered. This is
undertaken purposely to limit the fragmentation of the sample
and to largely avoid bias that arises due to different organisational
structures, firm cultures or research strategies that different
companies might follow. The choice of only one applicant
increases the coherence of the studied population. As patent
database research shows, the enterprise Medtronic Inc covers
nearly one fourth of all patents in the cardiac pacemaker field
between 1974 and 2005 (415 patents). It is thus by far the largest
applicant and may be considered to possess high technological
impact, which justifies the selection of the company for the
present study. The successor companies in the ranking are
Pacesetter Inc (219 patents, 11% of pacemaker patents) and
Cardiac Pacemakers (139 patens, about 7%). Fig. 1 illustrates
Medtronic�s patent life cycle, which stands exemplary for the
pattern of the whole branch (Haupt et al., 2007). As the patent life
cycle shows, the American-based company Medtronic is one of
the historical co-founders of the product cardiac pacemaker.

The company today entertains by their own statement 45 R&D
facilities, manufacturing facilities and distribution centres all over
the world, which cover different medical fields besides the
production of cardiologic devices. As Medtronićs headquarters
are located in Minneapolis/Minnesota, likewise more than half of
the mentioned research, manufacturing and distribution facilities
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Fig. 1. Patent life cycle of cardiac pacemaker technology. (Assignee: Medtronic)
are (see also the publicly available http://www.medtronic.com/
about-medtronic/locations. By examining the country codes on
the inventors�addresses on the patent applications in the sample,
it becomes apparent that as much as 80% of the inventors in the
cardiac pacemaker field are Minnesota based, while most others
are located in Arizona, California or the Netherlands in Europe.
We thus conclude that research regarding cardiac pacemakers
may be centred in Minnesota, but is clearly influenced also by
other, geographically distant research laboratories. The common
practice to file patents under headquarter addresses instead of the
actual research laboratory location can be neglected; only
geographical data of inventors addresses are here considered.
An error-free allocation of inventors to (footnote continued)
individual research facilities is at the same time not possible and
therefore omitted. The patent sample embraces large geographi-
cal distances within the US and overseas. Nevertheless, it can be
implied that the collective company affiliation is accompanied by
a concerted patent strategy and communication practices in all
locations, and that in some cases efforts were taken to level these
distances.
4.2. Mapping the co-patent network

Mapping the co-patent network of the 445 inventors and their
relations through 415 patents from 1974 to 2005, we can
distinguish 23 different components in the co-patent network.
The main component, i.e. the largest connected fraction of the
network with 288 inventors covers the majority of the population
(69.9%). 66 of all inventors are entirely unconnected (16%), they
are called isolates. With a density of .0049, the pacemaker co-
patent network matches results of other patent studies (Balconi
et al., 2004; Cotta and Merelo, 2007; Liu et al., 2005; Newman,
2001). Although dominated geographically by Minnesota based
inventors, links exist likewise between them and inventors from
other locations.

However, the fragmentation of the network indicates that the
sample has to be further modified in order to avoid additional
bias. First, to make network embedding measures in fragmented
networks comparable, only connected graphs are looked at
(Wasserman and Faust, 2007). Disconnected graphs, e.g. by the
consideration of more than one component or isolates (whose
distance to each other is by definition infinite because no tie
connects them) increases the bias in centrality measures. The
network can be trimmed in this respect by removing inventors
who are located outside the main component. In doing so, we
neglect inventors who exhibit an infinite distance to the main
component in the network. To limit further time bias in the
patenting and citation process, the population will be restricted
according to its period under examination. In literature there are
different suggestions, ranging from the comparison of time slices
or the consideration of a fix time window after each patent
application (Lanjouw and Schankerman, 2004). Since the former
method downsizes the testable inventor sample substantially and
the latter one complicates data collection to a large extent, we
decide in favour of another solution. In the present paper time
bias shall be accounted for by removing patents that were filed
later than the end of the growth stage in 1998 from the sample.
Thus, recent patents with little time to generate citations are
entirely excluded and the possibility of ongoing granting
processes is neglected. Concurrently the variable entry year acts
as control variable in the regressions and thus should eliminate
remaining differences between older and newer patents. Account-
ing for time in the regression after all simulates an equal entry
year for all inventors and thus an equally long time window for all
inventors.
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Fig. 2. Co-patent network in cardiac pacemaker technology, main component. (based on patents issued for Medtronic Inc. (application dates between 1976 and 1998);

Graphic computed via Netdraw 2.054, spring embedding layout; Borgatti et al., 2002).
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To fulfill further implications of regression instruments and to
limit the largely skewed nature of some measures, outliers of the
dependent and independent variables were identified and subse-
quently removed. This reduces the variance in the variables and
improves the quality of later results (Backhaus et al., 2008).
Outliers are thereby defined as inventors who show statistically
higher (or lower) values than the population mean plus three
times standard deviation. The inventor population is thus
eventually reduced to 211 relevant inventors, all connected
within the main component. They still cover 47% of all regarded
inventors. Network density now amounts to .0123 and is thus
more than twice higher than the original network, i.e. the
modified main component is better connected. The average
distance of all inventors did not change substantially (distance
being measured between mutually reachable nodes only). The
network exhibits small world properties, i.e. any two inventors
are on average two steps or two patents away from each other.
Fig. 2 illustrates the co-patent network (consisting now only of
one main component) graphically.
4.3. Results and discussion

In order to test the propositions, both dependent and indepen-
dent variables are analysed beforehand by descriptive statistics and
correlation statistics. Tables 2 and 3 present the overviews.

The average inventor has entered the network in 1991, few
years after the beginning of the growth stage. On average, each
inventor holds 3 patents, receives 87 citations and files patents in
2 different patent subclasses. The average inventor does rather
not patent with foreign inventors from geographically distant
areas. They collaborate on average with 5 other inventors, i.e.
have 5 direct contacts in the network (see degree) and have about
12 times the chance to be an information broker or mediator for
others (see betweenness). The inventor with the lowest closeness
centrality needs more than 2400 steps to reach all others in the
component, while the inventor with the greatest closeness
manages this by 950 steps.

Looking at the correlation statistics among predictors, the
variable ENTRY shows negative significant correlations to OUT-
PUT, NETCIT and COLOC, indicating that an early entry year can be
associated with a higher number of patents, citations and share of
foreign collaborators. There is one positive and significant
coefficient between ENTRY and DEGREE, all others being non-
significant. However, it becomes obvious by the graphical
depiction of the patent life cycle that the amount of patents
within the technology field increased substantially from 1990
henceforth. There is a discontinuity in the graph detectable (see
Fig. 1) that suggests later inventors might have been part of a new
inventive impulse, a new inventive era that separates inventors
gaining their first patents before 1990 from those generating their
patents thereafter. Although no distinct technical reason was
detectable by the author in the patent documents, inventors
patenting after 1990 seem to have obtained by far more patents
than their pioneering counterparts before 1990. This will be taken
account for by inserting a dummy variable in the later following
regressions. We assign value 0 to the inventor group who entered
the network before 1990 and value 1 to the other group that first
patented from 1990 thenceforth. The resulting regression coeffi-
cient of the dummy variable will thus describe the difference of
the group ‘‘from 1990’’ in comparison to the reference group
‘‘before 1990’’ (with respect to the dependent variable).

Apart from moderately positive and significant correlations of
OUTPUT with IPCRANGE and the centrality variables, OUTPUT
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Table 2
Descriptive statistics main component (N¼211 inventors).

Min Max Mean St. error St. deviation

ENTRY 1974 1998 1991.47 .440 6.394

OUTPUT 1 15 3.05 .191 2.770

NETCIT 0 785 87.19 6.880 99.941

IPCRANGE 1 6 1.61 .063 .922

COLOC 0 1 .078 .014 .197

DEGREE 1 28 5.67 .307 4.464

BETWEENNESS .000 162.000 11.667 2.0128 29.237

CLOSENESS .000416 .001053 .000712 .000009 .000137

Table 3
Correlation analyses.

(1) (2) (3) (4) (5) (6) (7)

(1) ENTRY

(2) OUTPUT � .139n

(3) NETCIT � .264nn .713nn

(4) IPCRANGE .032 .237nn .000

(5) COLOC � .259nn
� .095 .055 .035

(6) DEGREE .156n .620nn .462nn .121 � .111

(7) BETWEENNESS � .008 .421nn .247nn
� .014 � .086 .624nn

(8) CLOSENESS � .021 .365nn .395nn
� .146n

� .078 .359nn .301nn

Pearson (nCorrelation is significant at the .05 level (2-tailed). nnCorrelation is significant at the .01 level (2-tailed)).
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shows the highest correlation in the table with regard to NETCIT
(.713nn). This signifies that there are overlaps in the content of
these two variables. A high number of patents is apparently often
associated with a large amount of citations received, i.e. there are
scale effects. Nevertheless no variable shall be excluded at this
stage, especially so since the patent output serves as control
variable that controls the impact of patent quantity on patent
quality measures. Instead it will be of particular interest, whether
the variable NETCIT can contribute significantly to the explana-
tion of the dependent variables, if OUTPUT is regarded at the same
time. Possibly the variances of the two measures overlap too
much, i.e. we measure the same issue by both variables (so-called
multicollinearity; Backhaus et al., 2008). If the beta-coefficient of
NETCIT is insignificant (or even negative due to occurring
multicollinearity), the variable might be deleted from the model
since we must assume that the scale effect of NETCIT (already
covered by OUTPUT) is so high as to not contribute any additional
information to the model. Still, the correlation is by no means
high enough as to expect that NETCIT could not contribute
additional information. Although there is a chance that with an
increasing number of patents also the number of citations rises,
there may be many patents with no or only few citations, whereas
some patents collect uncommonly many citations. We thus hope
that the variable NETCIT will additionally contribute explanatory
power regarding the dependent variables. The remaining correla-
tion coefficient of OUTPUT towards COLOC is negative, but non-
significant.

As for OUTPUT, the variable NETCIT is likewise moderately
positive and significantly related to all three network centrality
measures. The correlation is yet weaker than in the case of
OUTPUT. Furthermore, NETCIT shows no correlation to the
variable IPCRANGE and only a small positive coefficient towards
the variable COLOC. Both coefficients are, however, non-signifi-
cant. The IPC-range shows a negative and significant relationship
towards one of the centrality measures, CLOSENESS. The relation-
ship between IPC-range and betweenness is likewise negative, but
there the correlation coefficient is non-significant. This suggests
that a rather narrow IPC-range might be positively associated
with network centrality, contradictory to previous derivations.
There are positive correlations of IPCRANGE and COLOC as well as
DEGREE, they are yet non-significant. Regarding the variable
COLOC all coefficients with regard to centrality are negative and
non-significant, i.e. they may not have any statistically traceable
effect in the present sample. Among the dependent variables
there are overall moderately positive, significant coefficients
between the dependent variables, the centrality measures. This
is neither unexpected nor hindering, since the chosen measures
reflect the prominence and communication possibilities of an
actor in the network only through different aspects of centrality,
which are by definition not free of overlaps.

Looking now at the regression results (Table 4), three
significant regression models emerge. While the variance of
degree centrality (R2

¼ .453nn) was best explained by the chosen
model, betweenness and closeness centrality arrived at a
significant R2 as well (R2

¼ .217nn and R2
¼ .233nn). Contrary to

the expectations but conjecturable after the correlation analyses,
ENTRY marks a positive and significant impact on DEGREE (.246n),
i.e. in terms of number of contacts a later entry in the network (or
later start of patenting) yields a higher degree centrality. As was
assumed before, the beta-coefficient of DUMMY is positive (.209);
it is however non-significant. This signifies that we have reason to
assume that the inventor group who entered the network 1990
thenceforth, per se exhibits higher DEGREE values than those
before 1990. In general, this may capture the discontinuity that
was already described regarding the patent life cycle of the patent
population. It may likewise be supposed, that the growing size of
the ego networks goes back to an increased division of labour and/
or a growing complexity of technical tasks in the pacemaker field
in the 1990s. This effect may well be found in patent samples
from other technology areas as well. However, the beta
coefficients between ENTRY and BETWEENNESS (.134) as well
as ENTRY and CLOSENESS (.153) reflect the previously expected
negative effect (although non-significant). They support the initial
assumption that an early entry into the network does indeed
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Table 4
Regression statistics (ordinary least squares).

Standardised

coefficients

DEGREE

Standardised

coefficients

BETWEENNESS

Standardised

coefficients

CLOSENESS

Beta Beta Beta

ENTRY .246n
� .134 � .153

DUMMY .029 .217 .262n

OUTPUT .580nn .560nn .245n

NETCIT .120 � .128 .254nn

IPCRANGE � .026 � .157n
� .216nn

COLOC .009 .007 � .043

(R2) (.453nn) (.217nn) (.233nn)

(nRegression is significant at the .05 level (2-tailed). nnRegression is significant at

the .01 level (2-tailed)).
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foster larger centrality values. At the same time the dummy
variable for the time bias is in the two latter cases positive (.217
for betweenness and .254n for closeness, the latter of which is also
significant). Here we again note that the inventor group that
started patenting from 1990 henceforth benefited from a time
advantage and positions themselves more central in the network
than the earlier pioneers.

The beta coefficients for the predictor OUTPUT is compara-
tively large and in all cases of centrality significant (degree:
.580nn; betweenness: .560nn; closeness: .245n). The number of
patents is thus a considerable and constituting predictor regard-
ing the evolution of collaboration networks and the emergence of
their central actors. By obtaining many patents, much of the
communication possibilities of the inventors in the network can
be explained. This is admittedly largely due to the construction of
co-patent networks. Still it has to be noted, that the number of
patents plays for example a comparatively minor role with regard
to CLOSENESS. The beta-coefficient amounts here to only half of
the other values. While for the gathering of a large ego-network as
well as for the taking of mediator positions patent quantity is
decisive to a more substantial extent, it is less so for the efficacy to
reach others.

The regression coefficients regarding the patent quality
variables are with regard to some variables positive, but in many
places insignificant, and altogether not continuously on the
positive side. Basic Hypothesis 1 is thus not entirely supported.
There are positive (non-significant) coefficients in 2 of 3 cases for
NETCIT (in connection with DEGREE and CLOSENESS), i.e. it may
be assumed that the net citations received do tend to be a
generally positive predictor of network centrality in these cases.
COLOC shows 2 positive beta coefficients in relation to DEGREE
and BETWEENNESS, they are yet non-significant. Altogether
contradicting the previous suppositions is the result regarding
IPCRANGE. There, all coefficients are negative, and even signifi-
cant in the cases of BETWEENNESS and CLOSENESS. The single
effects of the quality variables on all three centrality measures
shall be examined closer in the following.

Considering the regression model for the dependent variable
DEGREE, we detect significant predictors only in the variables
ENTRY and OUPUT. The possession of a large personal network,
i.e. the maintenance of many personal contacts thus goes back
primarily to a high quantity of inventions. Besides, inventors with
a large DEGREE entered the network only after the pioneering
years, when the growth stage fully started and allowed for
growing team sizes due to increased complexity of tasks. The
variable NETCIT does not contribute significantly to the explana-
tion of degree centrality, it shows however a positive regression
coefficient. Against this background, Hypothesis 1a cannot be
entirely rejected. However, the variable NETCIT does not supply
any additional information that would not have been measured
by OUTPUT. Our previous expectations were accordingly not met.

Regarding BETWEENNESS, i.e. the mediator potential an
inventor shows in their network, the variables OUTPUT and
IPCRANGE contribute significantly to the explanation of the
dependent variable. Whereas the control variable OUTPUT is
again a strong positive indicator for mediator potential, the
BETWEENNESS of an inventor is negatively dependent on
IPCRANGE. Hypothesis 1b must thus clearly be declined. However,
the IPC-result shows that it is interestingly rather specialists than
technical generalists who are able to take mediator positions in
the network. The assumption, that only technically broad knowl-
edge might serve the processing and refining of information
between other partners, is thus made obsolete. Instead, general-
ists show lower centrality values. Mediator positions are really
filled with specialists, who will presumably be best able to decide
which complementary knowledge is needed for an innovation
project. Specialists moreover will be engaged by many other
inventors due to their deep technical knowledge they show on
particular subjects. We thus conclude that generalists may after
all not reach the professional excellence that takes them to central
network positions.

Considering the regression model for the dependent variable
CLOSENESS, significant contributions by DUMMY, OUTPUT,
NETCIT and IPCRANGE can be observed. While the former show
a positive impact, the latter IPCRANGE is again negatively related.
Again those actors possess high closeness to others, who started
patenting only after the beginning of the growth stage in 1990
and who generated many patents. As before, closeness centrality
is negatively dependent on IPCRANGE. It is again rather specialists
who are close to many others in the network. Specialist inventors
with a narrow IPC-range may be sources of important specialist
knowledge, the need for which puts them in a position that
shortens the distances to other network participants. Addition-
ally, this time inventors with many citations received show higher
closeness centrality. The variable NETCIT does here contribute
positively to the explanation of the dependent variable, despite
the further remaining effect of the control variable OUTPUT. The
impact of NETCIT is even stronger than the latter�s coefficient, i.e. a
prominent scientific reputation (expressed by citations) predicts
better the efficacy to reach others on short paths than the sheer
amount of patents an inventor generated. It is, as Merton calls it,
the especially visible actors who are known to many others in
their technology field, who can in turn also easily reach many
others on short ways (Merton, 1968). Moreover, a study of NERKAR/
PARUCHURI supports the assumption that stars are often rewarded
by being the focus of later citations of others and thus connect
themselves continuously better in the network (Nerkar and
Paruchuri, 2005). Regarding the variable COLOC, however, only a
(small) negative and non-significant effect can be detected, i.e.
high closeness to others in the network is rather not associated
with contacts to foreign inventors. Hypothesis 1c must thus be
again rejected. However, since we could not find substantial proof
for the impact of the variable COLOC, empirical research might be
extended in future to populations with less domestically
characterised, more foreign-oriented inventor networks (see also
Fig. 2; Hussler and Rondé, 2007).

All regression models were tested for compliance with
statistically required premises (Backhaus et al., 2008). According
to Backhaus et al. (2008), the premises of linearity, expectancy
value of error variable unequal to zero, homoscedasticity and
normality of error variables must not be violated. This procedure
indicated that the CLOSENESS-model entirely complied with
regression requirements (referring also to residual diagnostics
and scatterplots of residuals on the predictor variables), whereas
the DEGREE and BETWEENNESS-models needed more loose
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interpretation in that respect. While this weakens the power of
results of the first two centrality measures, we still maintain the
results for closeness centrality, that are supported in their
direction by the results of degree and betweenness centrality.
5. Conclusion

In summary, the assumption that stardom in a co-patent
network is a traceable function of patent quality, does find
empirical support, although no continuous empirical affirmation.
The evolution of a co-patent network is by definition strongly
affected by time and the mere number of patents an inventor
contributes to their field of technology. However, patent quality
has an additional impact on some aspects of communication
functions a star inventor covers.

Looking at different roles or communication functions a star
inventor takes in their network, we state that patent quality is for
each role or aspect of centrality that stars fulfill decisive to a
different extent: for example, regarding the maintenance of
extensive personal networks that spread information to a large
amount of contacts on a direct way, the number of patents an
inventor files has the biggest impact. No significant evidence
could be found at this stage for the influence of patent quality.
This may be explained by the fact that the here measured degree
centrality puts emphasis on direct contacts (absolute number),
but ignores the connectedness with regard to the rest of the
network. Against this background, there are plain scale effects, i.e.
inventors with many patents tend to possess a large personal
network of collaborators. Patent quality there only comes into
practice when the interplay of stars with all other inventors of the
network is looked at.

Considering the mediator potential an inventor encompasses,
i.e. the filtering and passing on of information to partners
otherwise unknown to each other, it is patent quantity, but
moreover technical specialisation that are crucial. As a result of
the empirical analysis, an inventor with many patents, who is
highly specialised on one technical subject matter, will be able to
suit a mediator position. Thus, it is not the generalists who act in
this sense as gatekeepers or communication mediators in a
network (see in contradiction e.g. Nikulainen, 2007). Instead it can
be argued, that the (communicative) tasks an inventor has to
fulfill at this stage are so idiosyncratic, as to not fit generalists.
Specialists might be overall better able to decide about the
necessity and kind of knowledge an innovative project requires. In
consequence, specialists will also be able to evaluate incoming
information more appropriately than generalists, due to the
expert knowledge they show. We must further assume that
generalists may not have enough technical expertise as to put
themselves in any information broker or mediator position. They
may simply not develop the necessary excellence.

Aiming at reaching others in the network on especially short
notice, i.e. having short and efficient paths to other inventors,
inventors again show a high number of patents, high technical
specialisation but moreover also a high number of citations
received. Again it is not the generalists who are characterised by
great efficacy to reach other network participants, but technically
specialised inventors who patent only in a narrow IPC-range. We
observe that specialists are more able to shorten paths to other
network members, than their more general counterparts are. They
can presumably also themselves supply specific knowledge that is
needed for different innovation projects. Thus they are acquainted
and connected with different research groups and can accordingly
reach other inventors in the network comparatively quickly.
Generalists are here rather pushed to the frame of the network,
whereas specialists position themselves in the centres. Regarding
closeness, likewise the reputation (that we here see expressed by
citations received) plays an important role. The recognition and
followership that the citations by others implicate minimise the
steps an inventor needs to reach any random inventor.

Based on the results, we generally reason that concerning
selection, development and bonding issues companies should put
emphasis on inventors who are of course not clear seniors, but
who enter a field of technology only after the first insecurities of
the pioneering years and distinguish themselves by high patent
activity and clear technological specialisation. It has to be
specifically assumed, that professional generalists will much less
likely found the centres of a technological network, than
professional specialists. Thus, the development of technological
specialisation and excellence in inventors has to be paramount for
R&D management. Technological generalists will rather act at the
outskirts of a network, not contributing enough to move to the
centre. Furthermore, the number of patents and citations should
be closely monitored, to select the most promising candidates for
strategically important R&D tasks. Accompanying measures like
incentives to share knowledge, build contacts and sharpen
professional knowledge by specialist trainings will be additionally
helpful. However, there is more research to be conducted on these
grounds, e.g. with respect to personal backgrounds, scientific
affiliations or other factors that might be supportive in taking star
positions in a technology field. Based on additional interviews and
further data collection an even more complete picture of star-
factors could be drawn up in an extended study, which likewise
remains to be verified for other industry branches.
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